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Abstract: In this contribution, an original constitutive model is proposed to de-
scribe, within a unique framework, the initiation, the propagation and the arrest
phases of landslides. The model is built such that it is enable to model in one hand
a stable stage with an elasto-plastic behaviour, and in another hand a viscous domi-
nated behaviour. The transition between the two behaviours is performed by means
of the second order work stability criterion. This model is applied for an undrained
triaxial test, in which the stress invariant consistently falls after the transition.
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1 Landslides Modelling

1.1 Landslides from a mechanical point a view

In a general framework ‘landslide’ stands for a ground movement due to gravity
forces, but it gathers in fact phenomena of very different dynamics and magnitude.
One can mention for example a very fast landslide that happened in Sarno and
Quindicci (Italy, 1998) with a velocity of about 5 to 20 m/s, and a very slow one
which still keeps on going at la Clapière (French Alps), advancing 1 to 10 cm
a year (Fig. 1). This large velocity range can be explained notably by the soil
composition: firstly the saturation degree can vary between 10 and 99% [Coussot
and Meunier (1996)], secondly the solid fraction can be constituted of either fine
and cohesive particles, frictional grains, or even metric blocks. All these differences
justify the lot of denominations found in the literature: mudflows, debris flows,
solifluction. . . The common points between these phenomena finally lie in the soil
loss of stability and the transition from a static to a dynamic or quasi-static state.
This changeover of the intrinsic behaviour can be related to a mechanical failure.
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1.2 Numerical approaches for landslides modelling

The modelling of landslides requires to accurately track the history variables in-
volved in elasto-plasticity (in situ soils), and also to describe large transformations
(flowing soils). Most of the numerical methods are well suited to deal with only
one of these requirements, but very few are able to take both into account. For
instance, methods using a finite element Lagrangian description are more adapted
to describe elastoplasticity, whereas those using an Eulerian description are more
used to model fluid. The global model proposed here has been developed in a
particular numerical method, benefitting from both Lagrangian and Eulerian ad-
vantages: the Finite Element Method with Lagrangian Integration Points [Moresi,
Dufour, and Mühlhaus (2002, 2003)]. This method is based on one hand, on an
Eulerian FE grid where nodal velocities are computed, and on another hand, on
a set of Lagrangian particles that carry material history variables. Those particles
are also used as integration points when computing the elementary viscous matrix.
Furthermore, at the end of a timestep, they are advected by interpolation of nodal
velocities to an updated configuration.

Figure 1: Diversity in landslides velocity: examples of La Clapière (a,b) and Sarno
(c)

2 A Pre-failure Behaviour: Elasto-plastic Law ‘Plasol’

The elasto-plastic law named Plasol reproduces the main characteristic of soils:

- Firstly, it is based on a Van Eekelen plastic criterion close to the Mohr
Coulomb one without singularities. It follows [Barnichon (1998)]:
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J1σ , J2σ and J3σ are the three invariants of the Cauchy stress tensor, ϕc is
the friction angle in compression, n is a dimensionless number usually taken
as -0,229, a and b are functions of the friction angles in compression and
extension ϕc and ϕe. Those angles together with the Lode’s angle θ modify
the trace of the criterion in the deviatoric plane, in order not to have a circle
but a shape whose radius is not constant.

- Secondly, it is able to represent hardening. Along the plastic path the plastic
parameters (friction and dilatancy angles) vary -according to the equivalent
plastic strain- between an initial (index 0) and a final (index f ) values which
respectively define using eq (1) the elastic limit and the plastic failure crite-
rion.

- Finally, Plasol allows to describe a non associated plastic flow, i.e. not per-
pendicular to the surface defined by F (eq. (1)) but with a dilatancy angle ψ .
This specific nonassociativity of soils is notably determinant for the failure
detection.

3 A Failure Criterion: The Second-Order Work

3.1 A limitation of the elasto-plasticity theory

Many communities in solid mechanics are focusing on failure and instability issues.
Nowadays, the more developed criterion to define the failure state is the plastic limit
criterion. It can be formalized this way: let M be the constitutive matrix linking the

stress and strain increments (dσ = Mdε), then the failure condition is det(M) = 0,
i.e. dσ is becoming null for a non-zero strain increment dε . In other words, a
bounded stress increment does not produce a bounded strain response, as expressed
the Lyapounov stability definition (1907), but an undefined response. This failure
condition is well fulfilled for metals. However, in non-associated materials, such
as soils, not only localized failure modes (Fig. 2a) have been observed but also
diffuse ones (Fig. 2b). In this latter case, the loss of stability cannot be predicted
by the plasticity theory. Such an example of diffuse failure is classically obtained
during an undrained triaxial test for which the material suddenly collapses while
getting over a peak of deviatoric stress, although the plastic criterion is not reached
(Fig. 2b, 2c).

Thus, elasto-plasticity theory with limit states is not capable to precisely detect
instabilities in geomaterials, which is problematic to accurately predict landslides.
In some cases with a very small slope angle, elasto-plasticity approach cannot even
detect the failure.
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a. Desrues and Chambon 
(2002) b. Servant et al. (2005) c. Darve et al, 2004 

Figure 2: Localized and diffuse failures in drained/undrained triaxial test
(a,b).Stress path for b(c)

3.2 A more general failure criterion

In this framework a more general failure criterion has been developed by Hill
(1958): the second order work criterion. The normalized form of the stability con-
dition is written as follows:

d2Wn =
dσi jdεi j

|dσi j||dεi j|
> 0 ∀||dε 6= 0|| (2)

It has been successfully applied for geomechanical issues [Laouafa and Darve
(2002)], with a typical example being the undrained triaxial test for which d2Wn

changes sign just at the invariant stress peak (Fig. 2c). According to Darve, Ser-
vant, Laouafa, and Khoa (2004), a system has reached a failure state when it is still
subjected to strains, while no more energy is transferred to it. For landslide mod-
elling, this more general failure criterion has been chosen, upon which viscosity
appears.

4 A Post Failure Behaviour: The 3D Bingham Viscosity

Once soils are no longer in static equilibrium, they can drastically change their way
to behave. If we focus more particularly on mudflows, this material is known to
behave as viscous fluid, with a yield stress [Daido (1971)] and a non linear viscosity
[Coussot and Boyer (1995)]. In a first approximation mudflows are considered with
a mere Bingham’s constitutive relation (linear viscosity with a yield stress).

In the context of a global transition model where elasto-plasticity is defined in 3D,
it is necessary to write it also in 3D. According to Duvaut and Lions (1971) the 3D
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expression is:

if J2ε̇ 6= 0 : si j = 2η ėi j + s0
ėi j

J2ė
, else: J2σ ≤ s0 (3)

s and ė are the deviatoric stress and strain rate tensors, J2σ and J2ε̇ are the second
invariant of stresses and strain rates, s0 and η are the yield stress and the viscosity
of the viscous material. Inversely, the viscous strain rate is expressed as:

if J2σ > s0 : ėi j =
1
η

(
si j− s0

si j

J2σ

)
=

J2σ − s0

2η
·

si j

J2σ

, else: ėi j = 0 (4)

The direction of the threshold s0 is now given by the stress direction si j instead of
the strain rate ėi j. The global model considers the sum of elasto-plastic and viscous
strain rates (Fig. 3). The latter is null before the failure, it is activated as soon as
d2Wn becomes negative, and it increases according to the difference between the
current invariant J2σ and the yield stress s0 (eq. 4). If J2σ is below s0, the viscous
flow stops according to the Bingham’s relation, and the soil retrieves an elasto-
plastic behaviour. This model thus reproduces two different kinds of behaviour,
one solid and one fluid. Since the coupled model (elastoplasticity / failure criterion
/ nonlinear viscosity) presented in this contribution is general, any constitutive law
for the solid-like (e.g. Cam-Clay) phase and the fluid-like (e.g. Herschel-Bulkley)
phase can be used depending on the intrinsic properties of the material.

Figure 3: Scheme of the global constitutive relation in 1D for a soil subjected to
failure

5 Application of The Model on An Undrained Triaxial Test

As mentioned previously, the undrained triaxial test is typical for failure within the
plastic criterion, and for sudden collapse of the soil. A unit square of confined soil
(in plane strain condition) is modelled, with velocity boundary conditions such as
to apply an isochoric loading (equivalent to undrained conditions) with a strain rate
of 0.6s−1. Taking into account that friction angle in compression and extension are
equal, the mechanical parameters of the soil are gathered in Table 1.
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Table 1: Constitutive parameters of soil

ρ(kg/m3) E(MPa) v ϕ0/ϕ f (
◦) ψ0/ψ f (

◦) C(kPa) Kv(Pa.s) η(Pa.s)
0 15 0,29 3/28 −20/+5 1/10 250 10

a. b.

xxoxxo ttsJ εη
η
μεη 2)(exp)2(2 +−−−=

)1/(2/ νμ += Ewith 

Figure 4: Evolution of J2, comparison with EP case (a), and analytic case for s0 = 0
(b).

Four tests are performed: a reference one in elasto-plasticity without transition,
and 3 tests with a viscous transition at the failure and different yield stresses s0
null, equal to the second invariant at the failure, J2 f , and to half of it. The second
order work criterion (and thus the failure) is, as expected, reached at the peak of the
evolution of the second stress invariant J2 with loading (Fig. 4). In the case of s0 =
J2 f , the sample behaves as elasto-plastic since Bingham’s model cannot produce
viscous strain rate if there is no stress invariant difference (eq. 4). In the other
cases, the stress rapidly decreases, following the analytical exponential resulting
from the visco-elastic partial differential equation (Fig. 4).

6 Conclusions and Perspectives

In the context of landslide, this constitutive model has been written to describe in
a continuum framework the elasto-plastic behaviour of a in-situ soil and eventually
the failure and the transition toward viscous fluid for mud-like devastating flows.
The chosen criterion for the transition, i.e. the second order work, is able to detect
localized as well as diffuse failure modes, particularly for almost saturated soils.
The yield stress 0 s allows to model the arrest of the Bingham fluid. The benchmark
of the undrained triaxial test shows that soil turned to follow the analytical solution.
The different tests highlight that the yield stress needs to be lower than the failure
stress invariant; indeed it is consistent to consider that in the field the mudflow yield
stress is lower than the in situ soil stress at failure. The next step is to perform a
stress driven benchmark and a heuristic case with a larger scale.
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