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An Exact Boundary Integral Equation Formulation for
BEM Thermoelastic Analysis of Transversely Anisotropic

Solids

Y. C. Shiah1 and C. L. Tan2

Abstract: In BEM analysis of generally anisotropic solids, the additional vol-
ume integral associated with thermal effects that appears in the direct formulation
of the boundary integral equation (BIE) has hitherto been successfully transformed
in an analytically exact fashion into surface ones only for two-dimensions (2D), and
not for the three-dimensional (3D) case. This is due to the mathematical complex-
ity of the Green’s function and its derivatives for the 3D solid. The presence of the
domain integral destroys the distinctive feature of the boundary element method
(BEM) as a truly boundary solution numerical analysis tool. As a precursor to
treating this problem in 3D general anisotropy, the exact volume-to-surface inte-
gral transformation associated with thermal effects is successfully carried out in
this study for the special case of 3D transverse isotropy and implemented in a BEM
formulation. It follows a similar approach previously employed by the authors for
the same task in 2D generally anisotropic thermoelastic BEM analysis. However, a
numerical scheme needs to be introduced to evaluate some terms in the new surface
integrals of the BIE. Two examples are presented to demonstrate the veracity of the
analytical and numerical formulations implemented.

Keywords: Boundary element method, transverse isotropy, thermoelasticity, Green’s
function.

1 Introduction

A distinctive feature of the boundary element method (BEM) is that only the surface
of the solution domain needs to be modeled in engineering analysis as the numer-
ical solution involves solving a boundary integral equation (BIE). It is wellknown,
however, that for BEM thermoelastic stress analysis, the steady state thermal ef-
fects give rise to an additional volume integral term in the integral equation. This
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destroys the notion of the BEM as a truly boundary solution method if it is not
further transformed into surface ones. It has been successfully achieved in an an-
alytically exact manner for 2D and 3D isotropic thermoelasticity (see, e.g., [Rizzo
and Shippy (1977); Danson (1983)]) and for 2D general anisotropy, [Shiah and
Tan (1999)]. The great appeal of the exact transformation method (ETM) is that it
restores the analysis to a purely boundary or surface one without introducing addi-
tional simplifications and numerical approximations, unlike some other schemes;
a review of these schemes may be found in, e.g., [Rashed and Brebbia (2003);
Kögl and Gaul (2003)]. The extension of the ETM to BEM thermoelastic anal-
ysis of 3D generally anisotropic bodies has remained a challenge because of the
mathematical complexity of the Green’s function, or fundamental solution, and its
derivatives. The volume-to-surface integral transformation (VIT) involves these
quantities. Indeed, their efficient numerical evaluation in BEM formulations has
been a focus of several investigations over the past three decades, see, e.g., [Wilson
and Cruse (1978); Sales and Gray (1998); Wang and Denda (2007); Tan, Shiah,
and Lin (2009); Shiah, Tan, Sun, and Chen (2010)]. It is only recently that fully
explicit algebraic forms of these solutions have been successfully implemented for
BEM stress analysis of generally anisotropic 3D solids, by the authors [Tan, Shiah,
and Lin (2009); Shiah, Tan, Sun, and Chen (2010)]. As a requirement for the VIT
process using the approach which has been successfully carried out so far is that
the temperature terms can be expressed as a potential function which satisfies the
Poisson’s equation in potential theory.

As a precursor to examining the feasibility of the exact volume-to-surface integral
transformation for BEM thermoelastic analysis of 3D generally anisotropic solids,
this paper reports on its success and implementation for the special case of trans-
verse isotropy. The primary focus is on the attainability of valid numerical results in
the BEM implementation. For this special case of transverse isotropy, the Green’s
function and its derivatives are available in various explicit forms, e.g. [Willis
(1965); Pan and Chou (1976); Tavara, Ortiz, Mantic, and Paris (2008)]; the one by
Pan and Chou (1976) was chosen because it is relatively more concise even though
it has some minor limitations. The key steps involved in the VIT follow closely
those carried out in 2D for generally anisotropic solids by the authors [Shiah and
Tan (1999)]. The veracity of the formulations and the BEM implementation is
demonstrated by two examples.

2 The Bem for Transversely Isotropic Thermoelasticity

The analytical basis of the BEM for linear elasticity is the boundary integral equa-
tion (BIE) which is an integral constraint equation relating displacements, ui, to the
tractions, ti, on the surface S of the domain V . In the presence of a temperature field
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Θ(q), it may be written as follows,

Ci j(P)ui(P) =
∫

S
ti(Q)Ui j(P,Q)dS−

∫
S

ui(Q)Ti j(P,Q)dS

+
∫

S
γikΘ(Q)Ui j(P,Q)nk dS−

∫
V

γikΘ,k(q)Ui j(P,q)dV (1)

where the leading coefficient Ci j(P) depends upon the local geometry of S at the
source point P; Ui j(P,Q) and Ti j(P,Q) represent the fundamental solutions of dis-
placements and tractions, respectively, in the xi−direction at the field point Q due
to a unit load in the x j−direction at P in a homogeneous infinite body; and γik is
the thermoelasticity tensor or thermal moduli. Consider a unit point force applied
in the direction normal to the plane of isotropy of an infinite transversely isotropic
solid. The displacements derived by Pan and Chou (1976) are expressed as follows:

U13 =
2

∑
i=1

[
viAi

x1

RiR∗i
− v2

i (Ai +Bi)
x1x3

R3
i

]
, (2a)

U23 =
2

∑
i=1

[
viAi

x2

RiR∗i
− v2

i (Ai +Bi)
x2x3

R3
i

]
, (2b)

U33 =
2

∑
i=1

[
−
(

c11Bi + c44v2
i Ai

c13 + c44

)
1
Ri
− (Ai +Bi)v2

i

c13 + c44

(
c44ρ2 + c11x2

3

R3
i

)]
, (2c)

where the constants vi, Ai, Bi, ρ , Ri and R∗ are given in their paper. Although the
fundamental solution Ti j(P,Q) can be analytically derived, they can just as conve-
niently computed from the first order derivatives of the above displacement funda-
mental solution and invoking Hooke’s law.

For a transversely isotropic material, all nonzero components of the thermal moduli
are given by

γ11 = γ22 = γ0 = (c11 + c12)α0 + c13α
′
0,γ33 = γ

′
0 = 2c13α0 + c33α

′
0 (3)

where α0 is the coefficient of thermal expansion on the isotropic (x1− x2)−plane,
α
′
0 represents that in the third direction, and ci j are the elastic stiffness coefficients.

Under steady state conditions, the thermal field can be solved independently and
is first obtained before the solution of the elastostatic problem. The corresponding
heat conduction equation is

K0

(
∂ 2Θ

∂x2
1
+

∂ 2Θ

∂x2
2

)
+K

′ ∂ 2Θ

∂x2
3
= 0, (4)
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where the invariants K0 and K
′
0 are defined in terms of the thermal conductivity

coefficients, Ki j, by K0 = K11 = K22, K
′
0 = K33. Clearly, the volume integral on

the right-hand side of eq. (1) must be transformed to surface ones to restore the
BEM formulation of the BIE as a truly boundary solution process. As a first step to
this end, eq. (3) can be transformed into the standard Laplace equation by domain
mapping x̂T = FxT where F is a diagonal matrix with the elements F11 = F22 = 1

and F33 =
√

K0/K ′0. By writing the volume integral in the mapped domain, and
using Green’s theorem and second identity, it can be transformed into surface ones
Shiah and Tan (2011), as follows:

Vj =−
∫

V̂
ΓikΘ,kUi j dV̂

=
∫

Ŝ
Γik

[(
ΘWi jk,t −Wi jkΘ,t

)
nt −ΘUi jnk

]
dŜ (5)

where the underscore in the indices denote the mapped domain; Wi jk is a new func-
tion introduced that satisfies Wi jk,mm = Ui j,k; and Γik is the thermal moduli in the
mapped domain. Details of this derivation and the numerical scheme to evaluate
Wi jk and Wi jk,t are given in [Shiah and Tan (2011)]. Thus the BIE becomes:

Ci j(P)ui(P) =
∫

S
ti(Q)Ui j(P,Q)dS

−
∫

S
ui(Q)Ti j(P,Q)dS+

∫
S

γikΘ(Q)Ui j(P,q)nk dS (6)

+
∫

Ŝ
Γik

[(
ΘWi jk,t −Wi jkΘ,t

)
nt −ΘUi jnk

]
dŜ

The numerical solution of eq. (6) can be obtained by usual nodal collocation in
3D BEM formulations. In the present work, the quadratic isoparametric element
formulation is employed [Tan, Shiah, and Lin (2009); Shiah, Tan, Sun, and Chen
(2010)].

3 Numerical Results

Due to space limitations, only two examples are presented here. The first example
serves to demonstrate the mathematical soundness of the volume-to-surface inte-
gral transformation given in eq. (5). The second example is a simple problem of a
rectangular column with a thermal gradient, the BEM solutions for which are com-
pare with those obtained using the FEM commercial code ANSYS. For both these
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problems, the following transverse isotropic material properties are used:

C11 =C22 = 4.65GPa,C33 = 5.63GPa,C44 =C55 = 2.33GPa,

C13 =C23 = 1.17GPa,C12 = 1.24GPa (7a)

α11 = α22 = 6.5×10−6(/circC),α33 = 5.0×10−7(/◦C) (7b)

K0 = 355(Wm/◦C),K
′
0 = 89(Wm/◦C). (7c)

The physical problem used for the verification of the VIT in eq. (5) is a simple cube
of unit side lengths in the x̂-coordinate system, as shown in Figure 1. Each of the
faces of the cube is modeled with one 8-node quadratic isoparametric element. The
thermal boundary conditions are also as indicated in the figure; the temperature
field is thus given by Θ = 100x̂3. The numerical values of the volume integral and
the corresponding transformed surface integrals as represented in eq. (5) in the the
collocated BIE for each of the nodal points are listed in Table 1. The values from
direct volume integration, denoted by (Vj)v, are obtained using the mathematics
software MathCAD, while the transformed surface integrals are evaluated using 8-
point Gauss quadrature, denoted by (Vj)s. The percentage deviations between the
two sets of results can be seen to be very small indeed, being all significantly less
than 0.1%.
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Figure 1: A unit cube with a temperature gradient – Example I

Figure 2 shows the second example treated with a relatively refined boundary ele-
ment mesh of the full problem. The top and bottom surfaces which are fixed, have a
temperature difference ∆Θ = 100◦C while all the lateral surfaces are thermally in-
sulated. The contour plots of the von Mises equivalent stress at the bottom (x3 = 0)
and top (x3 = H) faces obtained from the BEM analysis are shown in Figures 3(a)
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Table 1: Comparison between volume integrations and surface integrations for Ex-
ample I

(x1 ,x2,x3)
(V j)v (V j)s |%Diff.|

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3
(0.0,0.0,0.0) -0.619858 -0.619858 -6.092510 -0.620052 -0.620052 -6.092664 0.0313 0.0313 0.0025
(0.0,0.0,0.5) -0.000000 0.000000 -6.945561 -0.001507 -0.001542 -6.946569 N/A N/A 0.0145
(0.0,0.0,1.0) 0.619858 0.619858 -6.092510 0.620231 0.620231 -6.092351 0.0602 0.0602 0.0026
(1.0,0.0,0.0) 0.619858 -0.619858 -6.092510 0.620031 -0.620065 -6.092649 0.0279 0.0334 0.0023
(1.0,0.0,0.5) 0.000000 0.000000 -6.945561 0.001525 -0.001588 -6.946564 N/A N/A 0.0144
(1.0,0.0,1.0) -0.619858 0.619858 -6.092510 -0.620248 0.620190 -6.092361 0.0629 0.0536 0.0024
(1.0,1.0,0.0) 0.619858 0.619858 -6.092510 0.620044 0.620044 -6.092633 0.0300 0.0300 0.0020
(1.0,1.0,0.5) 0.000000 0.000000 -6.945561 0.001571 0.001571 -6.946558 N/A N/A 0.0144
(1.0,1.0,1.0) -0.619858 -0.619858 -6.092510 -0.620208 -0.620207 -6.092373 0.0565 0.0563 0.0022
(0.0,1.0,0.0) -0.619858 0.619858 -6.092510 -0.620065 0.620030 -6.092649 0.0334 0.0277 0.0023
(0.0,1.0,0.5) 0.000000 0.000000 -6.945561 -0.001622 0.001525 -6.946564 N/A N/A 0.0144
(0.0,1.0,1.0) 0.619858 -0.619858 -6.092510 0.620191 -0.620248 -6.092361 0.0537 0.0629 0.0024
(0.5,0.0,0.0) 0.000000 -0.889828 -7.477243 -0.000025 -0.889520 -7.478550 N/A 0.0346 0.0175
(0.5,0.0,1.0) 0.000000 0.889828 -7.477243 -0.000032 0.892791 -7.482662 N/A 0.3330 0.0725
(1.0,0.5,0.0) 0.889828 0.000000 -7.477243 0.889498 -0.000025 -7.478525 0.0371 N/A 0.0171
(1.0,0.5,1.0) -0.889828 0.000000 -7.477243 -0.892805 -0.000033 -7.482683 0.3346 N/A 0.0728
(0.5,1.0,0.0) 0.000000 0.889828 -7.477243 -0.000025 0.889497 -7.478525 N/A 0.0372 0.0171
(0.5,1.0,1.0) 0.000000 -0.889828 -7.477243 -0.000032 -0.892805 -7.482683 N/A 0.3346 0.0728
(0.0,0.5,0.0) -0.889828 0.000000 -7.477243 -0.889519 -0.000025 -7.478550 0.0347 N/A 0.0175
(0.0,0.5,1.0) 0.889828 0.000000 -7.477243 0.892790 -0.000033 -7.482661 0.3329 N/A 0.0725

(a)                                  (b) 
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Figure 2: Example II - A rectangular column with a thermal load: (a) the physical
problem, lateral surfaces thermally insulated, (b) the BEM mesh (216 boundary
elements).

and 3(b), respectively; they have been normalized by c11α11∆Θ. As expected, the
results are symmetric about the x1− and x2−axes. For verification of the BEM re-
sults, the problem was analyzed using 2000 SOLID90 and SOLID186 elements in
ANSYS FEM for one-quarter model of the domain, taking advantage of symme-
try. Due to space limitation, only the results for the displacements, as normalized
by α11∆ΘL, along the line AB (on the surface of the column at the x2 = L plane
at x1 = 0.5L) are presented here, in Figure 4. It can be seen that agreement be-
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tween the BEM and FEM results is excellent indeed. The discrepancies between
the computed results of the stresses obtained from both numerical methods are also
relatively small as well; they will be shown in a forthcoming paper [Shiah and Tan
(2011)].
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Figure 3: Contour plots of normalized von Mises equivalent stresses of the trans-
versely isotropic rectangular column as obtained from the BEM analysis: (a) at the
bottom face, x3 = 0; and (b) at the top face, x3 = H. (Example II)
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Figure 4: Variations of the normalized displacements along the line AB on the
transversely isotropic rectangular column under thermal load – Example I



106 Copyright © 2012 Tech Science Press SL, vol.8, no.2, pp.99-107, 2012

4 Conclusions

Thermal effects manifest themselves as an additional volume integral in the BIE
in conventional BEM linear elastic stress analysis. In this study, the volume in-
tegral has been successfully transformed in an analytically exact manner into sur-
face integrals for the special case of 3D transverse isotropy. Such a transformation
restores the BEM for the thermoelastic analysis of the problem as a truly bound-
ary solution analysis tool; it has not been successfully carried out previously for
anisotropic solids because of the mathematical complexity of the associated spatial
Green’s function for such solids. The procedures followed similar steps as those
successfully performed by the authors for the case of 2D general anisotropic ther-
moelasticity. It involved, first, mapping the temperature field into another domain
to reduce the mathematical field problem to one governed by Laplace equation in
the mapped domain. The volume integral associated with the thermal effects was
then analytically transformed using Green’s theorem and second identity in this
mapped domain. Two examples have been presented to demonstrate the veracity of
the mathematical formulation and numerical implementation. This work serves as
a precursor for the similar task in the BEM thermoelastic analysis of 3D generally
anisotropic solids in the near future.
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