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An Approximate Method for Expansion of the Cumulative
Distribution Function in the Asymptotic Tails

Lyuben D. Ivanov1 and Justin Y-T. Wu2

Abstract: An efficient approximate method is developed for calculation of very
small values of a cumulative distribution function (CDF) or probability of ex-
ceedance (POE) located in the asymptotic tails of a continuous distribution. Only
three properly selected CDF points are needed to model each of the two tails, while
a total of nine points are sufficient to interpolate and extrapolate to cover the entire
range of the distribution. The approximated CDF is fast to calculate and is exact at
the fitting points while providing smooth transitions from point to point as well as
from the end points to the extreme tails. The method is most suitable when suffi-
cient data is unavailable or difficult to compute. In general, the method has three
areas of potential applications. The first is the calculation of the very small POE to
characterize variables such as long-term extreme loads for risk analysis and design.
The second area is calculation of the very small CDF value to characterize variables
such as material strength and flaw size. The third case is calculating all ordinates
of the entire probabilistic distribution, including CDF and PDF functions. Detailed
formulae are provided and the performance demonstrated using commonly used
distributions such as Weibull, Gaussian, Lognormal, etc.

Keywords: cumulative distribution function, CDF fitting, probability of exceedance,
risk assessment, probabilistic method, reliability method

1 Introduction

In many engineering and scientific applications, very small CDF or POE at the
extreme tails of a distribution is important for making risk-based decisions. For
example, when designing highly reliable structures, the undesirable rare events are
usually associated with the extreme tails of the interested design variables. Un-
fortunately, it is common that the available statistical data are insufficient to build
the CDF or the POE in the asymptotic tails. In such a situation, one could use an
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approximate method that could allow for its expansion in those areas. To the au-
thors’ knowledge, efforts in this direction started decades ago (Brown and Tukey,
1946). Further, the work of Alfonce, Temple, Filzmoser and Holzer (2010), Ander-
son (2006), Feldman and Whitt (1998), Fialova and Jureckova (2004) Mandelbrot
(1982) should be mentioned related to the “long tail” problem. For solution of this
problem, the Pareto Tails Function is applied in different variations. The accuracy
of the obtained results is reasonable but one should mention one of the basic re-
quirements for the application of Pareto Tails Function – i.e., one should have at
least two points in the area of the long tail. In addition, the methods developed are
on a relatively high mathematical level and are not convenient for application in
every day engineering work if corresponding computer programs are not available.

In the paper, an attempt is made to develop a simple approximate method that
does not require specialized computer program but provides reasonable accuracy
tested against more accurate methods. It allows for calculating the CDF (or POE)
in the area of tails where no data is available (in the proposed method, the data
needed for the calculations are taken from the center of the probabilistic distribu-
tion). This problem is of primary importance in reliability/risk calculations, e.g.
when the probability of exceedance of large ship’s hull girder bending moments
is to be calculated in the design stage or for an old ship. For aircrafts, 10−7 has
been commonly referred to as the acceptable threshold for single flight probability
of failure (Gallagher et al., 2005; TARAM handbook, 2011; FAA proposed risk
assessment guidance, 2011 ).

Once the implemented error in the proposed method is revealed, it could be applied
as a first approximation until more data is available in the probabilistic distribution
tails.

2 Basis of the approximate method for expansion of a CDF in the area of
very small tail probabilities

Three types of solutions are developed:

1. Expansion of the CDF into very small probabilities of exceedance of high
values of the parameter under consideration.

2. Expansion of the CDF into very small probabilities of not exceeding small
values of the parameter under consideration.

3. Complete restoration of the probabilistic distribution of the parameter under
consideration, i.e., calculating the corresponding probability density function
(PDF), cumulative distribution function (CDF) or probability of exceedance
(POE).
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To facilitate the development of the method, the whole region of possible realiza-
tions of the parameter under consideration was split into five sub-regions as shown
in Fig. 1 where x stands for any parameter under consideration. The sign ≈ is used
in order to give some freedom to the user to use values that are close to the ordinates
of the CDF (or POE) although not exactly equal to them (i.e., y1, y2, y3, etc). One
should note that for the sake of brevity, the ordinates of the CDF are marked by “y”
while those of the POE – by “z”. A total of nine data points is needed for the entire
distributions, while only three points are needed for each of the tails. The deriva-
tion of the CDF formulas started from the fifth range, i.e., from the area of large
x. Further, in all regions, four boundary conditions were used, the corresponding
value of “y” or “z” at the boundaries and the two first derivatives, to ensure smooth
transfer from one region into another one.
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Figure 1: Cumulative distribution function built with eight points 1st region: x0 ≤
x≤ x2 ≈ x0.05; 2nd region: x0.05 ≈ x2 ≤ x≤ x3 ≈ x0.10; 3rd region: x0.10 ≈ x3 ≤ x≤
x5 ≈ x0.50; 4th region: x0.50 ≈ x5 ≤ x≤ x7 ≈ x0.95; 5th region: x0.95 ≈ x7 ≤ xmax

The proposed CDF model for Region 5 (x7 ≤ x≤ xmax), is:

yV (x) = 1− exp{ln(z8)+ +[ln(z8)− ln(z7)]
x− x8

x8− x7

}
(1)

which approaches unity exponentially for large x. While Eq. (1) has been found
to work reasonably well with y8= 0.99, it also has been observed that for some
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distributions, using y8= 0.999 or even larger values can provide better accuracies
for extremely small POEs such as 1.e-08. In general, it is recommended that the
user should conduct a sensitivity study to select the most proper yi values depend-
ing on the specific application requirements. In addition, two other forms for Re-
gion 5 have been studied, as presented in the Appendix. These two forms were
found to provide excellent tail approximations for distributions close to Gaussian
or Rayleigh.

For Region 4 (x5 ≤ x≤ x7), the CDF model has the following nonlinear form with
four constants.

yIV (x) = 1−
(

a+
b
x
+

c
x2 +

d
x3

)
(2)

For Region 3 (x5 ≤ x≤ x7), the CDF is a cubic polynomial with four coefficients:

yIII (x) = α3 +β3x+ γ3x2 +δ3x3 (3)

For Region 2 (x2 ≤ x ≤ x3), the CDF is also a cubic polynomial with four coeffi-
cients:

yII (x) = α2 +β2x+ γ2x2 +δ2x3 (4)

For the first region (x0 ≤ x ≤ x2), the CDF takes the form of Eq. (5) with one
constant.

yI (x) = y2
(x− x0)

20J2(x2−x0)

(x2− x0)
20J2(x2−x0)

(5)

It is worth noting that it may be practically impossible to determine the smallest
possible value of x, x0, in the first region. In such cases, it is recommended to
determine it based on the available knowledge including the physics of the phe-
nomenon under consideration. A simple parametric study could be performed to
determine the sensitivity of the CDF or POE when different x0 values are used.

If determination of the entire probabilistic distribution is not needed, one can use
the equations only for the first and fifth region (see the appendix) to calculate, cor-
respondingly, the tail CDF or POE. Except for symmetric probabilistic distributions
(e.g., Gaussian distribution), it was found in this study that typically the CDF for
the first region is more sensitive than the POE for the fifth region, i.e., even a small
change of “x” in the first region could cause greater change of the ordinate of the
CDF than for the POE in the fifth region (when the same relative change of “x” is
applied). This is the reason why, in the proposed approach, the expansion of the
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POE in the fifth region is calculated using only two percentiles of “x” while for
the expansion of the CDF in the first region, three percentiles of “x” are used. One
should emphasize that the accuracy of the approximate method also depends on the
accuracy of the input data (i.e., the accuracy of the percentiles).

3 Expansion of A CDF into very small probabilities of exceedance of high
values of the parameter under consideration

This is probably the most frequently met problem, especially when checking the
structure’s strength against permissible stresses (bending moments, shear forces,
etc.). Region No. 5 in Fig. 1 corresponds to this case. The calculations only
require data for two ordinates of the CDF - y7 and y8 (the equations are given in
the Appendix). To verify the results obtained by the approximate method, com-
parison was made against Monte Carlo simulation method (Kalos and Whitlock,
1986). For the calculations, a specialized computer program (Crystal Ball, Oracle
Corporation) for Monte Carlo simulation was used. The comparison is shown in
Fig. 2. The agreement between the results shown in Fig. 2 is obvious but this is
not a proof for the accuracy of the approximate method. Therefore, more calcula-
tions were performed to compare the results obtained by the approximate method
and results obtained from other (already known) probabilistic distributions, such as
exponential, Weibull, Lognormal, etc.). A summary of the calculations is shown
in Fig. 3 - Fig. 7. The calculated by Eq. 1 - Eq. 5 POEs are compared with the
POEs for exponential, Weibull and lognormal distribution is shown in Fig. 3 - Fig.
5. The calculated by Eq. 1 - Eq. 5 POEs are compared with the POEs for Gaussian
and Rayleigh distributions are shown in Fig. 6 and Fig. 7. The comparison is quite
promising. One should mention here that for Gaussian and Rayleigh distribution,
the effect of different coefficients of variance (COV) on the agreement between the
POE obtained by the approximate method and the corresponding equations for the
Gaussian and Rayleigh distribution was analyzed by a parametric study.

Based on it, an equation was derived for presentation of the POE for these two
cases (see the Appendix). In order to determine the similarity between the original
CDF and the Gaussian or Rayleigh CDFs, some of the properties of these two
distributions could be utilized. For example, the Gaussian PDF is symmetric, i.e.,
if the pairs (y1, y8); (y2, y7); (y4, y6) are the same (or very close), it is very likely
that the probabilistic distribution is a Gaussian one. As to the Rayleigh distribution,
one can use its peculiar property that the COV is a fixed value (i.e., COV = 0.523).
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Figure 2: Comparison between the POE of x derived by Monte Carlo simulation
(100 million simulations) and the approximate method
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Figure 3: Comparison between the results for the POE obtained by the approximate
method and the equations for exponential distribution

4 Expansion of A CDF into very small probabilities of not exceeding small
values of the parameter under consideration

As in the previous section, the accuracy of the approximate method was tested
against results for the CDF obtained with a specialized computer program for
Monte Carlo simulation (see Fig. 8).

Comparison between the results for CDFs obtained by the approximate method and
the formulas for known probabilistic distributions is shown in Fig. 9-13.
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Figure 4: Comparison between the results for the POE obtained by the approximate
method and the equations for Weibull distribution
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Figure 5: Comparison between the results for the POE obtained by the approximate
method and the equations for Lognormal distribution

5 Calculating the ordinates of the complete probabilistic distribution of the
parameter under consideration

There are cases, when the whole probabilistic distribution is needed. This can be
done by the equations given in the APPENDIX. Their accuracy was tested against
results obtained by a specialized computer program for Monte Carlo simulation.
Fig. 14 illustrates the similarity between the PDF obtained by the specialized
Monte Carlo computer program and the proposed method. One can observe the
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Figure 6: Comparison between the results for the POE obtained by the approximate
method and the equations for Rayleigh distribution
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Figure 7: Comparison between the results for the POE obtained by the approximate
method and the equations for Gaussian distribution
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Figure 8: Comparison between the CDF of x derived by Monte Carlo simulation
(100 million simulations) and the approximate method (for small values of x)
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Figure 9: Comparison between the results for the CDF obtained by the approximate
method and the equations for exponential distribution
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Figure 10: Comparison between the results for the CDF obtained by the approxi-
mate method and the Weibull distribution
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Figure 11: Comparison between the results for the CDF obtained by the approxi-
mate method and the equations for Lognormal distribution
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Figure 12: Comparison between the results for the CDF obtained by the approxi-
mate method and the equations for Rayleigh distribution
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Figure 13: Comparison between the results for the CDF obtained by the approxi-
mate method and the equations for Gaussian distribution
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Figure 14: Calculated PDF by the approximate method and by Monte Carlo simu-
lation with 100 million simulations

fact that the results are very close with slight differences in the area of the mode.
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Figure 15: Effect of the accuracy of the input data derived by Standard Monte Carlo
method on the POE of very large x
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Figure 16: Effect of the accuracy of the input data derived by Standard Monte Carlo
method on the CDF of very small x

6 Effect of the accuracy of the input data derived by standard Monte Carlo
simulation method on the calculated CDF or POE in the asymptotic tails

To determine the sensitivity of the calculated by the approximate method CDF
or POE in the asymptotic tails, a parametric study was performed with a different
level of error of the input data. Four levels were selected: 5% error, 10% error, 20%
error and a case with almost zero error (after 10 million simulations). The results
are illustrated in Fig. 15 and Fig. 16. One can conclude from the graphs that the
effect of a different level of error of the input data is not big. From a practical point
of view, it means that there is no need to run the Standard Monte Carlo computer
program with a very large number of simulations. Even a relatively small amount
of simulations (in the example – 3151) could serve the purpose, especially in early
design stages when many parameters are not yet accurately determined.

7 Conclusion

An approximate method is proposed for calculating the probability of exceeding a
given value (or probability of not reaching it) in the asymptotic tail of a CDF. The
accuracy of the method was tested against results obtained by results from more
elaborate calculations with the Monte Carlo simulation method and also against
known probabilistic distributions (Gaussian, Rayleigh, Weibull, lognormal, expo-
nential). The accuracy of the approximate method is reasonable, especially for the
asymptotic tail with large values of the parameter under consideration.
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Appendix: Equations for Calculation of the CDF, POE or PDF

The full set of data necessary for solving the third problem formulated in Introduc-
tion section is given in the Table 1.

Fifth region: valid for x0.95 ≈ x7 ≤ x≤ xmax

The following formulae are valid for any distribution type except Gaussian and
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Table 1:
x: x0 x1 x2 x3 x4 x5 x6 x7 x8

x: x0 x0.01 x0.05 x0.10 x25 x50 x0.75 x0.95 x0.99

y: y0 y1 y2 y3 y4 y5 y6 y7 y8

y: 0.00 0.01 0.05 0.10 0.25 0.50 0.75 0.95 0.99
z = 1 - y z0 z1 z2 z3 z4 z5 z6 z7 z8

z = 1 - y 1.00 0.99 0.95 0.90 0.75 0.50 0.25 0.05 0.01
z = ordinate of the cumulative distribution function; y = ordinate of the probability

of exceedance

Rayleigh distribution:

POE (x) = zV (x) = EXP{LN (z8)+ +[LN (z8)−LN (z7)]
x− x8

x8− x7

}
(6)

CDF (x) = yV (x) = 1− zV (x)PDF (x) =
d [yV (x)]

dx
=−d [zV (x)]

dx
(7)

d [zV (x)]
dx

= EXP
{

LN (z8)+ [LN (z8)−LN (z7)]
x− x8

x8− x7

}
LN (z8)−LN (z7)

x8− x7
(8)

The following formulae are valid for Gaussian and Rayleigh distribution

POE (x) = zV (x) = p.EXP(−qxα)CDF (x) = 1−POE (x) = 1− zV (x) (9)

PDF (x) =− d
dx

[zV (x)]
d
dx

[zV (x)] =−pqαxα−1EXP(−qxα) (10)

q =
LN (z8)−LN (z7)

xα
7 − xα

8
p =

z7

EXP
(
−qxα

7

) (11)

α = 1.83+
0.28
COV

COV =
st. deviation
mean value

Fourth region: valid for x0.50 ≈ x5 ≤ x≤ x7 ≈ x0.95

POE (x) = zIV (x) = a+
b
x
+

c
x2 +

d
x3 CDF (x) = 1−POE (x) = 1− zIV (x) (12)

PDF (x) =
d
dx

[CDF (x)] =− d
dx

[zIV (x)]
d
dx

[zIV (x)] =− b
x2 −

2c
x3 −

3d
x4 (13)

J5 = EXP{LN (z8)+ [LN (z8)− LN (z7)]
x7− x8

x8− x7

}
LN (z8)−LN (z7)

x8− x7
(14)
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B4 = z6− z5 + J5x2
7

(
1
x6
− 1

x5

)
C4 =

1
x5

(
2
x7
− 1

x5

)
− 1

x6

(
2
x7
− 1

x6

)
(15)

D4 =
1
x5

(
3
x2

7
− 1

x2
5

)
− 1

x6

(
3
x2

7
− 1

x2
6

)
(16)

E4 = z7− z5 + J5x7

(
1− x7

x5

)
− B4

C4

[
1
x5

(
2
x7
− 1

x5

)
− 1

x2
7

]
(17)

F4 =
1
x5

(
3
x2

7
− 1

x2
5

)
− 2

x3
7
− D4

C4

[
1
x5

(
2
x7
− 1

x5

)
− 1

x2
7

]
(18)

d =
E4

F4
c =

B4−d.D4

C4
(19)

b =−
[

J5x2
7 +

1
x7

(
2c+

3d
x7

)]
(20)

a = z5 + J5
x2

7
x5

+
1

x2
5x7

[
c(2x5− x7)+d

3x2
5− x2

7
x5x7

]
(21)

Third region: valid for x0.10 ≈ x3 ≤ x≤ x5 ≈ x0.50

CDF (x) = yIII (x) = α3 +β3x+ γ3x2 +δ3x3 (22)

POE (x) = 1−CDF (x) (23)

PDF (x) =
d
dx

[CDF(x)] =
d
dx

[yIII (x)] (24)

d
dx

[yIII (x)] = β3 +2γ3x+3δ3x2 (25)

A3 =
1

x5− x4

(
y5− y3

x5− x3
− y4− y3

x4− x3

)
(26)

B3 =
x4 (x4 + x3)− x5 (x5 + x3)

x5− x4
(27)

δ3 =
A3 (2x5− x4− x3)+

y4−y3
x4−x3

− J4

B3 (x4 + x3−2x5)+ x4 (x4 + x3)+ x2
3−3x2

5
(28)

J4 =
d
dx

[yIV (x)] for x = x5 (29)

d
dx

[yIV (x)] =− d
dx

[zIV (x)] for x = x5 (30)

J4 =
b
x2

5
+

2c
x3

5
+

3d
x4

5
(31)
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γ3 = A3 +δ3B3 (32)

β3 =
y4− y3

x4− x3
− γ3 (x4 + x3)−δ3

[
x4 (x4 + x3)+ x2

3
]

(33)

α3 = y3− x3[β3 + x3(γ3 +δ3x3)] (34)

Second region: valid for x0.05 ≈ x2 ≤ x≤ x3 ≈ x0.10

CDF (x) = yII (x) = α2 +β2x+ γ2x2 +δ2x3 (35)

POE (x) = 1−CDF (x) (36)

PDF (x) =
d
dx

[yII (x)] = β2 +2γ2x+3δ2x2 (37)

A2 =
1

x3− x2

(
y3− y1

x3− x1
− y2− y1

x2− x1

)
(38)

B2 =
x2 (x2 + x1)− x3 (x3 + x1)

x3− x2
(39)

δ2 =
A2 (2x3− x2− x1)+

y2−y1
x2−x1

− J3

B2 (x2 + x1−2x3)+ x2 (x2 + x1)+ x2
1−3x2

3
(40)

J3 =
d
dx

[yIII (x)] for x = x3 (41)

d
dx

yIII (x) = β3 +2γ3x+3δ3x2 (42)

J3 = β3 +2γ3x3 +3δ3x2
3 (43)

γ2 = A2 +δ2B2 (44)

β2 =
y2− y1

x2− x1
− γ2 (x2 + x1)−δ2

[
x2 (x2 + x1)+ x2

1
]

(45)

α2 = y1− x1 [β2 + x1 (γ2 +δ2x1)] (46)

First region: valid for x0 ≤ x≤ x2 ≈ x0.05

The following formulae are valid for any distribution type except Gaussian distri-
bution:

CDF (x) = yI (x) = y2
(x− x0)

20J2(x2−x0)

(x2− x0)
20J2(x2−x0)

(47)

POE (x) = 1−CDF (x) (48)
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PDF (x) =
d
dx

[yI (x)] =
20J2 (x2− x0)y2

(x2− x0)
20J2(x2−x0)

(x− x0)
20J2(x2−x0)−1 (49)

J2 =
d
dx

[yII (x)] for x = x2 (50)

J2 = β2 +2γ2x2 +3δ2x2
2 (51)

J2 =
(y3− y2)

(x3− x2)
(52)

Eq. (52) is performed only for small values of x.

Due to symmetry of the Gaussian distribution, the calculation of the approximate
CDF is to be carried out by the formulae for the POE in the fifth region in the
following way:

Calculate the ordinates of the POE by the formulae for the fifth region.

For each of the used “x” in the calculation of the POE, find the corresponding “x”
that is symmetrically located relative to the mean value of x, i.e.

I f xi, f = xm + x f xi,a = xm− x f (53)

where xi, f = any x in the fifth region; xm = mean value of x; x f = distance from xm

to xi, f .; xi,a = symmetric abscissa of xi, f when the axis of symmetry passes though
the mean value of x.

Using the already calculated ordinates of the POE, build a graph with these ordi-
nates but with the newly calculated symmetric x.

Once the POE is calculated, the derivation of the CDF and PDF can be determined
by, e.g., Eq. (6) and Eq. (7).

Notes:
x0 is to be determined based on the physics of the phenomenon under consideration.

The calculations for the whole probabilistic distribution start from the CDF in the
fifth region.

For the whole procedure, a simple EXCEL spreadsheet is developed. An exam-
ple for application of this procedure to results obtained by specialized computer
program for Monte Carlo simulation is shown in Fig. 14.


