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Internal Combustion Engine controlled by Artificial
Neural Network
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Abstract: The paper presents a control strategy concept of a piston engine fu-
eled by Natural Gas as a DG unit obtained by using an Artificial Neural Network.
The control strategy is based on several factors and directs the operation of the unit
in the context of changes occurring in the market, while taking into account the
operating characteristics of the unit. The control strategy is defined by an objective
function: for example, work at maximum profit, maximum service life, etc. The re-
sults of simulations of the piston engine as a DG unit at chosen loads are presented.
Daily changes in the prices of fuel and electricity are factored into the simulations.

1 Introduction

Rising fuel prices combined with an upward trend in electricity consumption are
providing strong incentives for research into systems that boost generation effi-
ciency.

An electricity distribution system based on a network of small, interconnected
sources is characterized by both load variability and changing electricity prices.
This means that the sources will have to adapt to the load not only for local changes,
but also as it relates to the market balance between buyers and sellers of power to
the grid and changes in fuels markets.

The DG system has many advantages, including very high certainty of supply,high
efficiency power generation (both electricity and cogeneration) and high adaptabil-
ity to changes in demand (both daily and annual). The DG system can be compared
in its essence and mode of operation to the Internet or to mobile networks.

Sources in a distributed system can operate in one of many variants, depending on
the individual preferences of the operator. One option is to work for maximum
profit - increasing the supply of high-margin power sources, another is to boost the
longevity of equipment in order to avoid additional starts and stops, and yet another
might be to provide maximum subsistence for a customer’s needs (e.g. hospitals).
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Most operators will probably devise a blend of factors depending on their individual
circumstances. An interconnected network of small sources, and their cooperation
with the electricity network might add one extra layer of complexity: the operator
may cede control of the source to a larger operator who, through control of a large
number of similar sources, may have a power comparable to that of a classic large
power plant. A network of sources and combined operational control would change
power relations.

Current trends in energy and fuels on the market lends additional influence to all
those issues. There are here the following options: operation of the device at a cost
below the purchase price (Bid), operation at a cost between the sale price (Ask)
and the Bid price; operation at a cost above the Ask price. Additionally, some
operators may cooperate with the distribution network to provide system solutions
and situations may arise when the source is disconnected from the network (‘island
operation’).

The selection of individual sources working in a distributed system is a complex
issue [El-Ela, Allam, and Shatla (2010)]. Until now, research work on source op-
eration in DG has focused on issues of electrical [Hajizadeh and Golkar (2007)]
synchronization with the network, the impact of noise generated, etc. Issues relat-
ing to long-term source operation are virtually unrecognized and unexplored. The
analysis available applies only to selected elements of the work of DG sources.

In [Wang, Kang, Chang, Cao, and Xu (2004)] sources that can operate as a dis-
tributed source were classified: (i) Reciprocating engines; (ii) Gas turbines [Ja-
gaduri and Radman (2007)]; (iii) Stirling engines [Corria, Cobas, and Lora (2006)];
(iv) Combination systems based on gas turbines [Tarroja, Mueller, Maclay, and
Brouwer (2008)] and reciprocating engines; (v) Small hydro, wind power; (vi)
Photovoltaic systems [Maine and Chapman (2007)]; geothermal power plants [Al-
Sulaiman, Dincer, and Hamdullahpur (2010)]; (vii) Fuel cells [Hajimolana, Hus-
sain, Daud, and Shamiri (2011); Kupecki and Badyda (2012)]; and (viii) Sys-
tems using: biomass Milewski and Lewandowski (2009); Lanzini, Santarelli, and
Orsello (2010); Budzianowski (2011) and waste, tides, currents, waves and warm
seas.

Most available studies almost exclusively concern the issues of electrical and elec-
tronic collaboration between the DG source and the power system [Wang, Kang,
Chang, Cao, and Xu (2004)]. The time periods considered there are below 1 sec-
ond. The proposed variants are closely related to the network source (e.g. through
an intermediate network of DC). Issues are also dealt with the same power grid
work [Paatero, Sevon, Lehtolainen, and Lund (2002)] including the determinants
of transmission. The behavior of the power grid of connected sources distributed
in emergency situations [Rodriguez, Timbus, Teodorescu, Liserre, and Blaabjerg
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(2007)] also on electrical issues was also analyzed.

Control of multiple DG sources via the Internet was subject to study [Sonderegger
(2001)], which also took into account the economic aspects of making sources work
together. A simulator running in real mode was created [Ocnasu, Gombert, Bacha,
Roye, Blache, and Mekhtoub (2008)] to analyze power source co-operation with
the network, but it only studied electric co-operation with the network source. An
analyzed time frame of less than 100 micro seconds was concerned. Analyses of
the work of the same sources from the standpoint of efficiency and power were also
carried out, as well as opportunities to work in co-generation [Milewski, Miller, and
Salacinski (2005)]. There were attempts to use artificial intelligence to predict the
safe operation of sources involved in the distributed system [Rezaei and Haghifam
(2008)].

Economic issues of implementing a DG system were analyzed, among others in
[Ho, Wenger, and Farmer (1996)]. Attention was paid to the environmental aspects
of the application of DG sources on a larger scale. Technical and economic analysis
and a comparison of a piston engine with a µ-gas turbine is presented in [Arteconi,
Brandoni, and Polonara (2009)], which implies that the piston engine achieves a
positive NPV after 5 years (for µ-turbine, this time is almost 8 years).

Decentralized systems are beginning to prevail over centralized models. Very elo-
quent examples, schematically, are provided by mobile phone networks and the
Internet. It is expected that Distribution Generation [Ackermann, Andersson, and
Soder (2001)]consisting of many small units will dominate in the near future. In
this system, electricity will be produced by small sources installed directly along-
side consumers of energy and working mainly to meet their needs. These sources
must meet specific requirements including: high generating efficiency, providing
most of the energy needs of a facility and possibly providing a small amount of
delivered fluids (such as fuel only).

The Artificial Neural Network (ANN) can be applied to simulate an object’s be-
havior without an algorithmic solution merely by utilizing available experimental
data. Simultaneously, the ANN can make the model more general, which means
that model gives accurate results for data other than that used in training processes.

An overly complex network can be trained with extraordinary accuracy, which
means that the network becomes noise dependent (overfitting). Overfitting means
the network has memorized the training examples, but has not learned to generalize
to new situations. To improve network generalization a network can be used that
is just large enough to provide an adequate fit. The simplest architecture of the
network was found in each case, to avoid overfitting. If a small enough network
is used, it has insufficient power to overfit the data. Further, optimal regularization



190 Copyright © 2012 Tech Science Press SL, vol.7, no.3, pp.187-202, 2012

parameters were applied in automated fashion (Bayesian). This approach does not
require dividing the database into two parts: training and testing. Bayesian reg-
ularization makes a model generalized, which is the main advantage of applying
this algorithm to the network teaching process. This means that the model can be
validated by the same batches of data. The weights of the network were assumed to
be random variables with specified distributions. The regularization parameters are
related to the unknown variances associated with these distributions. Estimation of
these parameters can be made using statistical techniques. A detailed discussion
of the use of Bayesian regularization, in combination with Levenberg-Marquardt
training, can be found in [Foresee and Hagan (1997)]. When using Levenberg-
Marquardt training with Bayesian regularization, it is important to let the algorithm
run until the effective number of parameters has converged.

The “black box” model, based on ANN, generates an answer immediately after
input data are obtained. The ANN-based model can predict the object behavior
based merely on the available experimental data taken from experimental investi-
gations. The model can generalize the object behavior for both inter- and extra-
polations without knowledge of the physical relationships [Chaichana, Patcharavo-
rachot, Chutichai, Saebea, Assabumrungrat, and Arpornwichanop (2012)].

The available data on the use of artificial neural networks to predict the demand for
electricity date back to the early 90s. In [Kiartzis, Bakirtzis, and Petridis (1995)]
a model (based on artificial neural networks) is used to predict the load profile for
the next 24 hours and for the very next hour was presented. The input data for the
simulation were: the load profile of the two previous days and the forecasted mini-
mum and maximum ambient temperature. The model was tested for the data of one
year from the Greek interconnected power system. The resulting average absolute
prediction error for this period was 2.66%. In turn, [Paarmann and Najar (1995)]
presented a model which automatically adapts and is used to predict the daily and
weekly demand for electricity. The error obtained in this way ranged from 2.5 to
5.1%. Similarly, the authors [Sforna and Proverbio (1995)] used artificial neural
networks for online load prediction. This model was tested in Italy on data from 15
February to 31 July 1993, yielding an average error of 1.93% (for maximum load)
and 2.65% (for minimum load). [Hobbs, Helman, Jitprapaikulsarn, Konda, and
Maratukulam (1998)] presented a fairly comprehensive assessment of the results
of the use of artificial neural networks by various centers for short-term electricity
load and gas demand forecasting. However, the authors of [Tamimi and Egbert
(2000)] presented the benefits of a merger of Fuzzy Logic (FL) with an artificial
neural network, compared to the Autoregressive Moving Average (ARMA) model
for load forecasting. [Abraham and Nath (2011)] compared the neuro-fuzzy sys-
tem (a combination of artificial neural network (ANN) with a fuzzy neural network
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(EFuNN)) with Box-Jenkins autoregressive integrated moving average (ARIMA),
a program to predict the load used by Victorian Power Exchange (VPX) and also
compared with an artificial neural network only. All compared options were tested
on the data describing the demand for electricity in the state of Victoria, Australia.
These comparisons showed the neuro-fuzzy system was the best.

The authors [Hsu and Chen (2003)] took a slightly different subject, focusing on
the use of artificial neural networks to predict the peak demand for electricity in
Taiwan. The learning networks were made on data from 1981 to 1997, and testing
- from 1997 to 2000.

In [Beccali, Cellura, Brano, and Marvuglia (2004)] a model was proposed to predict
the load for 24 hours based on weather data (temperature, relative humidity, total
solar radiation). The model was trained on historical data for parts of the electricity
grid in Palermo (Italy) during the period 2001–2003. The average prediction error
for this case was 1.97%. In turn, [Azadeh, Ghaderi, Tarverdian, and Saberi (2007)]
shows an integrated genetic algorithm (GA) and artificial neural network used to
predict electricity consumption in the Iranian agriculture sector. The genetic algo-
rithm was tested on data from 1981 to 2005, while the artificial neural network was
used to predict electricity consumption to 2008. An algorithm was presented in
[Azadeh, Ghaderi, and Sohrabkhani (2008)] based on an artificial neural network,
and was used to predict monthly electricity consumption in Iran from March 1994
to February 2005.

A hybrid model was presented in [Amjady and Keynia (2009)] to predict hourly
electrical load using the wavelet transform (WT), neural network and evolutionary
algorithm (EA). The model created in this way was tested on data for New York
for 1 July 2004, yielding an average prediction error of 2.06%. In [Kavaklioglu,
Ceylan, Ozturk, and Canyurt (2009)] a model was presented that used artificial
neural networks to predict electricity consumption in Turkey. The inputs to the
model were economic indicators such as gross national product, population and
import and export. The second version of the model only had to input the ratio of
imports to exports and time. The result of this work was a prediction of electricity
consumption in Turkey until the year 2027 using data from 1975 to 2006, along
with the previously mentioned economic factors.

In contrast to previous examples in [Adam, Elahee, and Dauhoo (2011)] an artificial
neural network was used to predict the input data (gross domestic product - GDP,
temperature, hours of sunshine and humidity) to a model which forecasts peak
electrical load in Mauritius using NHGDP method (non-homogeneous Gompertz
diffusion process).

In [Cai, Wang, Tang, and Yang (2011)] a neural network was presented that was
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based on adaptive resonance theory called a distributed ART and HS-ARTMAP
(Hyper-spherical ARTMAP) network to predict electricity load.

As we can see from literature data, the problem with load or demand for electricity
forecasting has been pretty well researched, but the ways of using such information
for devices working in a distributed generation system have not been analyzed.

2 Theory

2.1 Piston engine

Stationary piston engine LHM80 made by the Chinese company LVHUAN was an
analyzed source.

Specification of that unit was shown in Table 1.

Table 1: Specification of LVHUAN LHM80 engine

Parameter Value (prime/standby)
Rated power, kW 64/80
Rated speed, RPM 1500/1800
Heat consumption, ≤ 9.8(η = 0.367)
MJ/kWh

The engine efficiency graph (Fig. 1) was based on actual data from the operation of
Mephisto engines ([Kwk (2013)]) after they were first normalized and generalized.
Changes in the efficiency of the engine during load changes can be approximated
by the following relationship:

ηrel = 1,2484 ·P3
rel −3,0771 ·P2

rel +2,8448 ·Prel (1)

where: ηrel - relative engine efficiency, Prel - relative power.

Engine efficiency at the actual load is obtained by multiplying nominal electrical
efficiency by relative efficiency.

2.2 Artificial Neural Networks

An ANN is a black-box model which produces certain output data as a response
to a specific combination of input data. The ANN can be trained to learn the in-
ternal relationships and predict system behavior without any physical equations.
The ANN consists of neurons gathered into layers. Information is delivered to the
neurons by dendrites and the activation function is realized (by the nucleus). Then,
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Figure 1: Relative engine efficiency (based on [Kwk (2013)])

Figure 2: Artificial Neural Network model
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Figure 3: Neuron scheme (a) and its mathematical model (b) [Demuth, Beale, and
Hagan (2013)]

modified information is transferred forward by the axon and synapses (see Fig. 2)
to other neurons.

Each neuron in the first layer takes the input values, multiplies them by the cor-
responding weights (wk,i,1) and summarizes all these multiplications. Bias (xk,0)
is added to the sum (sk,i). The sum (sk,i) is recalculated by the neuron activation
function (see Eq. 3) which gives the neuron answer: yk,i.

sk,i =
Nk−1

∑
j=0

wk,i, j · xk, j (2)

yk, j = f (sk, j) (3)

In this study, a hyperbolic tangent sigmoid transfer function was used as the neuron
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activation function in the first layer, whereas a linear transfer function was used in
the output layer (see Fig. 3).

During the model calculations, information proceeds step by step from the first
layer to the last one. The answers of the neurons in the last layer are the output
parameters of the ANN model (see Fig. 2).

Backpropagation was chosen as the learning process of the ANN. Backpropagation
is the generalization of the Widrow-Hoff learning rule to multiple-layer networks
and nonlinear differentiable transfer functions. A detailed description of backprop-
agation can be found in [Demuth, Beale, and Hagan (2013)]. The governing equa-
tions of the process are presented below.

sk,i =
Nk−1

∑
j=0

wk,i, j · xk, j (4)

yk,i = f (sk,i) (5)

εL,i = dL,i − yL,i (6)

δk,i = εk,i ·
∂ f (sk,i)

∂ (sk,i)
(7)

εk,i =
Nk+1

∑
m=1

δk+1,m ·wk+1,m,i, k = 1,2, . . . ,L−1 (8)

wn+1
k,i, j = wn

k,i, j +2 ·η ·δk,i · xk, j +α

(
wn

k,i, j −wn−1
k,i, j

)
(9)

where: η - learning rate; α - momentum parameter; for a description of the other
parameters see Fig. 3 and Fig. 2.

Commercially available software [Demuth, Beale, and Hagan (2013)] was used
for the ANN calculations. The Levenberg-Marquardt algorithm was used to ac-
celerate the training procedure. An overly complex network can be trained with
extraordinary accuracy, which means that the network becomes noise dependent
(overfitting). Overfitting means the network has memorized the training examples,
but has not learned to generalize to new situations. To improve network gener-
alization a network can be used that is just large enough to provide an adequate
fit. The simplest architecture of the network was found in each case to avoid over-
fitting. If a small enough network is used, it has insufficient power to overfit the
data. Further, optimal regularization parameters were applied in automated fashion
(Bayesian). This approach does not require dividing the database into two parts:
training and testing. Bayesian regularization makes a model generalized, which is
the main advantage of applying this algorithm to the network teaching process. This
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means that the model can be validated by the same batches of data. The weights
of the network were assumed to be random variables with specified distributions.
The regularization parameters are related to the unknown variances associated with
these distributions. Estimation of these parameters can be made using statistical
techniques. A detailed discussion of the use of Bayesian regularization, in com-
bination with Levenberg-Marquardt training, can be found in [Foresee and Hagan
(1997)]. When using Levenberg-Marquardt training with Bayesian regularization,
it is important to let the algorithm run until the effective number of parameters has
converged. The training was stopped by the message “Maximum MU reached”.
This is typical, and is a good indication that the algorithm has truly converged. A
detailed explanation of the training algorithm parameters can be found in [Demuth,
Beale, and Hagan (2013)].

The network architecture is indicated in the following way: “number of inputs -
number of neurons in the first layer - number of neurons in the second layer”; e.g.
9-7-1 means that the two-layer network consists of nine inputs, seven neurons in
the first layer and one neuron in the second layer (the number of neurons in the last
layer equals the number of outputs).

Figure 4: Model of artificial neural network (25-2-24) in MATLAB

2.3 Construction of chosen variants of ANN

Based on the performed analysis, it has been found that the most appropriate ANN
architecture is as follows: one input layer, one hidden layer and one output layer.
The quantity of used neurons in both input and output layers depends on model
in/out parameters. The number of neurons in the hidden layer was determined
during training procedures.

The network has 25 inputs, of which 24 is the load in each hour of the previous
day and one determined day of the week. The output layer consists of 24 neurons,
which reflects the forecast demand for every hour during the day and night.

Different types of neuron activation functions were applied for the first and hid-
den layers (hyperbolic tangent sigmoid) and different for the output layer (linear
transfer functions).
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The only quantity of neurons in the hidden layer was found by the trial and error
method. Networks have been tested from 1 to 25 neurons in the hidden layer. The
best configuration turned out to be 25-14-24 because it gave reasonable results with
the least number of neurons.

2.4 Costs

In order to reduce electricity costs the possibility of using a dual-zone tariff of
electricity in cooperation with a natural gas-powered piston engine was studied in
order to benefit from cheaper electricity in the valleys and to produce it oneself in
the peaks or to buy it from the mains, depending on what is more profitable.

Fixed costs include license fees for electricity, which for the tariffs used in this anal-
ysis are about $5.2/month gross (tariff G12r relating to power companies: “ENERGA-
OBRÓT S.A.” and “Energa Operator S.A”). They also include a fixed charge of
$37.71/month gross for gas (transmission & distribution charged by the company
“PGNiG”).

Variable costs include primarily the purchase of electricity (Table 2) and the scales
of the gas group of “PGNiG” in tariff w-2 for fuel only ($0.415/Nm3) and tariff
E-1A for transmission ($0.011/Nm3).

Table 2: Variable costs of electricity by tariff G12r relating to power companies:
“ENERGA-OBRÓT S.A.” and “Energa Operator S.A”

hours $/MWh
7:00-13:00 & 16:00-22:00 0.228
13:00-16:00 & 22:00-7:00 0.091
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Revenues include above all the avoided costs of purchasing electricity at a time
when producing it is a cheaper way of meeting demand.

3 Optimal control strategy of a NG piston engine

The neural network created as described above was trained using load data from
08.10.2011 to 15.10.2011 for part of the Institute of Heat Engineering and Central
Canteens of Warsaw University of Technology.

After putting on the input of the network information about the load of 16.10.2011
together with information what day of the week it concerns was received a load
of 17.10.2011, which was put on the network input together with the information
about the day of the week.

This operation was repeated many times to obtain load for the entire week from
17.10.2011 to 23.10.2011.

Figure 5 shows a comparison of results obtained as described above against the real
load of the same period.

In the next step, a simulation of engine operation on the load generated by the
neural network was performed.

Figure 6 shows the optimal way of meeting demand of part of the complex of
buildings using the piston engine and power grid.
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Figure 6: Demand vs optimal engine load

Figure 7 shows the cost of producing electricity and its cost at the optimal operating
strategy.

As is shown in Figure 5 the load predicted for the week ahead is fairly close to the
measured load. This gives an opportunity for better analysis of the profitability of
potential investments.
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Figure 7: Cost of electricity vs cost of electricity production

The simulation engine work (Fig. 6) done on the load generated by the neural net-
work shows that the engine operates only in the peaks of demand. In the valleys
electricity from the grid is so cheap that it is not profitable to operate the engine in
this situation.

On Monday (10.17.2011), Tuesday (18.10.2011) and Thursday (20.10.2011), the
engine shuts down before the end of the evening peak, which is due to low load
and thus the low efficiency of electricity generation. A similar situation occurred
on Saturday and Sunday (22.10.2011 and 23.10.2011), when the engine did not run
continuously during the peaks and sometimes electricity was purchased from the
grid.

The cost of electricity production (Fig. 7) for the previously predicted load ranged
from $0.13/kWh (in peaks) to $0.27/kWh (in valleys). The cost of electricity at the
optimum operating strategy (Fig. 7) during both the peaks and the valleys could not
be higher than the cost specified in the tariff G12r of the companies “ENERGA-
OBRÓT S.A.” and “Energa Operator S.A”.

In order to compare the cost-effectiveness of the proposed solution it should be
compared with the single-zone electricity tariff by subtracting from each the sum
of both the variable and fixed costs for the considered time period. As a reference
point the G11 tariff was assumed, relating to the power companies “ENERGA-
OBRÓT S.A.” and “Energa Operator S.A” (fixed cost - $3.49/month gross and vari-
able cost - $0.19/kWh gross).

For the considered week the difference in variable costs was $287/week. After tak-
ing into account the fixed costs, the income associated with the proposed solution
was $278/week.
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4 Conclusions

The neural network used to predict the load was proposed and the control strategy
for the NG piston engine as a DG source of power is presented. From the investiga-
tions performed, it was determined that the most appropriate objective function of
the strategy is to operate the engine for maximum profit (defined as avoided costs
of buying electricity from the grid). On average, the NG piston engine is started up
two times a day: during both the morning and evening peak loads.

Profits from operation of the NG piston engine depend strictly on the load profile
and for the case at hand it was $278/week.

Currently, many buildings (e.g. office buildings) have piston engines as emergency
power units, but mainly fueled by liquid fuels (gasoline, oil) - which are more ex-
pensive than NG. Those units are not used for power generation. If as expected
there is further inflation in electricity prices, power units might be considered for
power generation exclusively during peak loads. In those cases, investment (instal-
lation) costs are incurred, but in the case of large buildings (with a range of MW),
the profits could be quite substantial.
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