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On the Uncertainties of a Structural Model

Giora Maymon1

Abstract: In the last decade, probabilistic analysis was incorporated into the de-
sign process of structural elements and systems, using analytical methods and com-
putational algorithms, which were developed for this purpose. Nevertheless, in
such process there is always the question of the validity of the applied model. In
this presentation, a method, which enables the inclusion of a random variable or
process into the model, is described. These parameters are selected so that existing
experimental results can be included in the probabilistic model, thus incorporating
uncertainties of the simulation model in the analysis. Two examples are described.

1 Introduction

The importance of probabilistic analysis in the design process of structural elements
and structural systems is well recognized today. Analytical methods and computa-
tional algorithms were developed, and are used in many design establishments and
in R&D institutes. Randomness in structural geometric and dimensional parame-
ters, material properties, allowable strength and external loads can now be treated
during the design process.

All these analyses are based on a model which is built for the designed structure,
either by a closed form expressions or an algorithm, like a finite element computer
code. A question may be asked about the validity of the model itself, which cer-
tainly has some uncertainties in it. Not always the model used in the solution of
a problem truly describes the behavior of the observed system, and in many cases
the discrepancy between the observed experimental results and the model presents
a random behavior. A well-known example is the buckling of a simply supported
beam-column. The classical buckling load predicted by using the Euler model is
never met when experimental results are analyzed. We now know that this hap-
pens because of the initial imperfections of the original beam-column. Bending
moments are created in the beam, and the bending stresses induce a nonlinear be-
havior of the structure, causing the collapse of the beam-column when the com-
1 (Retired) RAFAEL Ltd, P.O.B. 2250 Haifa 31021, Israel.

Email: gioram@netvision.net.il



2 Copyright © 2012 Tech Science Press SL, vol.7, no.1, pp.1-11, 2012

pressive external force is lower than the Euler buckling load. These imperfections,
which are generated during the manufacturing phase of the beam, may be random
in their magnitudes. Results from experiments of many “identical” specimens show
dispersion in the value of the buckling load. Similar phenomena are observed in
experimental results of plates and shells buckling.

There is no way to avoid modeling in an intelligent design process. This is espe-
cially true for large projects in which many sub-systems comprise the final product,
where time to design and manufacture a prototype is long, and when the number
of tests is limited. In the aerospace industry, products are frequently manufactured
in small quantities (e.g. the space telescope, a satellite for a given mission, the
small number of space shuttles, the Martian Lander, a special purpose aircraft).
The problem of verification of their reliability is not similar to the reliability ver-
ification of consumer goods, where a large number of tests can be conducted and
statistical estimates can be verified. In some cases, complete tests are not possi-
ble at all. Therefore, in large projects of this kind, the importance of models is
enhanced. Once a model is built and verified, simulations that use it can be con-
ducted instead of real tests. The collection of product’s performance data can be
replaced by these “model simulations”, including extreme points in the required
performance envelope that cannot usually be tested.

Probabilistic models, which enable the determination of the probability of failure
of structural elements and structural systems, lead to the reliability of the structure
which can be estimated and verified through the model, and incorporated into the
reliability analysis of the system as a whole. It is clear that in such cases, incor-
poration of model uncertainties is extremely important. When building a model,
many assumptions are made. Sometimes, the influence of some parameters is in-
tentionally neglected, with the proper justification. In many cases there are param-
eters whose influence cannot be evaluated due to ignorance. Suppose that nobody
thought about the initial imperfection and the possibility of these influencing the
buckling load of a beam-column. Then, the available model (e.g. the Euler buck-
ling load) is unable to describe the real behavior of the structure, as observed from
experiments. When there is a discrepancy between carefully controlled experi-
ments and a model, something is wrong with the model. These discrepancies can
originate from some (unknown?) parameters or physical phenomena that were not
included in the model, and the designer is unaware of.

In many cases this uncertainty in the model can be formulated using an additional
random variable or random process. Using this methodology, the model, which
includes now a “device” which takes care of the model uncertainties, can predict
probabilistic behavior of the structure that will be in agreement with the experi-
mental result. In the following Chapters, two examples are demonstrated.
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2 Probabilistic model for Beam-Column buckling

The proposed approach is demonstrated on the Euler buckling model discussed
earlier. A beam-column of length L, width b and thickness h, made of a material
with Young’s modulus E is subjected to an axial compressive force P. The model is
shown in Figure 1.

When the beam is perfectly straight, the buckling load is given by the Euler critical
load, which is a solution of the eigenvalue equation.

Pcr =
π2EI

L2 (1)

where I is the cross section moment of inertia, which in this case is:

I =
bh3

12
(2)

Figure 1: A Simply Supported Beam-Column Under Axial Compression

According to this solution, the column will not have any lateral deflections when the
force P is increased from zero toPcr, and will collapse when the force reaches the
critical valuePcr. The lateral deflection at this point will tend to infinity. If the beam
has an initial lateral deflectionw0, increase of the load creates lateral deflection w.
Assuming the initial deflection is half sine wave with amplitudea0:

w0 = a0 sin
πx
L

(3)

It can be shown that in this case, the lateral deflection w is given by

w = a0 sin
πx
L

·
P

Pcr

1− P
Pcr

(4)

For any given x, Eq. (4) describes a non-linear relation between the lateral de-
flection w and the applied force P. Due to the lateral deflection there is a bending
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moment in the beam, which has a maximum at the beam center, x = L
/

2. This mo-
ment creates bending stresses. In addition to these there are compression stresses
due to the axial force itself. Suppose that the material fails when the total local
stress reaches a value of σmax. When σmax is reached, the beam collapse while the
acting force P is smaller than the Euler critical valuePcr.

In reality, initial imperfections may be a combination of many sine waves along
the beam, but they can be described by a Fourier series of amplitudes (that may be
random) for many wave lengths. In what follows only one half sine wave is used,
without a loss of generality, because expressions similar to Eq. (4) can be obtained
for every combination of initial waves.

In Figure 2, the absolute maximum stress in the mid-length is described as a func-
tion of P for several values ofa0. The thicker L shaped line shows the Euler solution.
The numerical values used for the example are:

L = 60 cm
b=8 cm
h=0.5 cm
E = 2100000kg f/cm2 = 29842ksi
σmax = 5000kg f/cm2 = 71ksi

(5)

The Euler buckling force in this case is:

Pcr = 479.77 kgf=1056.76 Lbs. (6)

Figure 2: Stress in Mid-Beam for 3 Values of Imperfection. Euler Load=479.77
kgf
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As we do not have experimental results for this case, such results will be “manufac-
tured” artificially. It is assumed that the specimens in the “experiments” have a half
sine-wave initial imperfection, with amplitude a0 which has a lognormal distribu-
tion with mean=0.15 cm and standard deviation=0.07 cm. The location and shape
parameters for this case are m=-1.9956338 and s=0.443878028. The distribution
of the imperfection amplitudes is shown in Figure 3.

With this distribution, “virtual experimental data” can be created for Pratio- the ratio
of the collapse force (the force that creates a stress of 5000kg f/cm2in the beam) to
the Euler buckling force. The computations were done running 5000 Monte-Carlo
simulations with MATLAB.

Figure 3: PDF of the Amplitude of Imperfection(Lognormal). Mean=0.15,
SD=0.07

The histogram of the results is described by square symbols in Figure 4. The mean
of these results is µ = 0.958 and the standard deviation isσ = 0.01803. A Weibull
distribution with the same mean and standard deviation was fitted to this data, and is
shown in full line in Figure 4. The parameters of the Weibull distribution obtained
are:

µ = mean = 0.958
σ = s tandard deviation = 0.01803
α parameter=67.42607
β parameter=0.9660698

(7)

It can be seen that the fitted distribution agrees very well with the “experimental”
results.
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Figure 4: Distribution of “Experimental” Force Ratio (squares) and Fitted Weibull
Distribution (solid line)

Figure 5: Probability that Collapse Load is Lower than Plower

A model for the collapse load based on the Euler buckling load and includes the
model uncertainty can now be written as:

Pcollapse =
π2EI

L2 ·Pratio (8)

Pratiois an added random variable which has a Weibull distribution shown in Fig-
ure 4, with the parameters given in Eq. (7).

Assuming that E, I and L are deterministic, and the only random variable isPratio

(e.g. only model uncertainty exists), one can calculate the probability that the col-
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lapse load will be lower than a given valuePlower. Results computed using NESSUS
program, are shown in Figure 5. A similar computation can be performed assum-
ing that the geometry parameters (L, b and h) and material property (E) are also
random.

3 Probabilistic model for crack propagation

Models for crack growth have been the subject of thousands of papers published
over the past 40 years. These ranges from simplified to more advanced models,
most of them are based on experimental observations. The most basic model is the
one suggested by Paris and Erdogan [Paris and Erdogan (1963)], where the rate of
crack growth is described by:

da
dN

=C · (∆KI)
n (9)

where a is the crack length, N is the number of load cycles, ∆KI is the stress inten-
sity factor, C and n are material properties extracted from tests. There are models
which includes the effects of the stress ratio R (i.e. Forman equation, which is used
in the NASGRO computer code), with corrections for crack closure phenomena,
and the “unified” approach model suggested by Vasudevan and al.(e.g. [Vasude-
van, Sadananda and Galinka (2001); Sadananda and Vasudevan (2003)]). All these
models are deterministic.

When tests are performed on many “identical” specimens, typical results look like
those in Figure 6 (e.g. [Virkler (1979); Ghenom and Dore (1987)]).

These results are characterized by three major properties:

(1) The behavior of crack length is random, even when very carefully controlled
experiments are performed with “identical” specimens;

(2) The crack length behavior is non-linear;

(3) The curves of different specimens intermingle.

When the growth rate da/dN is plotted against the stress intensity factor, exper-
imental results yield the experimental circles depicted in Figure 7. On a log-log
scale, the straight line shown is, in fact, the Paris Law. The Forman law can model
the rise toward infinity at the fracture toughness value. Thus, these are models,
which describe the mean behavior of the experimental data, but not the random-
ness expressed by the scatter in the experimental results, and therefore there is an
uncertainty in the model.

There were many attempts to formulate a stochastic crack growth law. In some
of them (e.g. [Lawrence, Liu, Besterfield and Belytchko (1990)]), the material
constants C and n were considered as random variables. This approach suffers from
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a serious physical interpretation – randomizing these constants also randomize
their units. Also, the use of this approach does

not describe the intermingling of the curves (Figure 6) which is observed experi-
mentally.

Figure 6: Generic Curves for Crack Size as a Function of Time or Cycle

Figure 7: Crack Growth Rate vs. Stress Intensity Factor

Similar to the approach demonstrated for the Euler buckling model in the previous
Chapter, it was suggested (e.g., [Lin, Wu and Yang (1984)]) to write the crack
growth model in the following form:
da
dN

= Q ·ab ·X(t) (10)

Eq. (10) can be expressed in the following logarithmic form:

log
(

da/
dt
)
= b · log(a)+ log(Q)+ log[x(t)] (11)
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or

Y = bU +q+ z (12)

The first two terms in Eq. (12) describe a straight line with a slope b and a vertical
axis intersection q. The z = log(x) is a normal random process with zero mean and
a standard deviationσz. The constants b and q can be estimated by linear regression
of plots similar to Figure 7. The linear regression also yields a value for σz =
σlog(x(t)). Once this is known the mean and standard deviation of x(t) can then be
calculated by the normal to lognormal conversion formulas (see, e.g., Eq. (13.8) in
ref. [Maymon (1998)]). In ref. [Lin, Wu and Yang (1984)], the following values
were obtained from experimental results of a specific case:

b = 0.9297
Q = 1.1051 ·10−4

µx = 1.0206
σlog(x) = 0.087635

(13)

For these values, random processes z(a) with a normal distribution with σlog(x) =
0.087635were created using random generator computer program. Four such pro-
cesses are shown in Figure 8.

Figure 8: Four normally distributed random processes with σlog(x) = 0.087635

In Figure 9, data points for da/dt vs. a are shown. Such results are similar to those
found in experimental tests, e.g. Figure 7.
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Figure 9: Scattered da/dn vs. a points, log-log scale.

As the crack growth is a local phenomenon, the stochastic process is correlated only
within a certain distance near the crack tip. There are some suggestions (e.g. [Lin,
Wu and Yang (1984); Sobcyzk (1984); Sobcyzk (1986)]) how to select this correla-
tion time. When the stochastic approach is applied, results obtained show both the
nonlinear behavior of the crack’s length and the intermingling phenomena, thus
better describe the experimental results.

4 Summary

The parameters of either a stochastic variable or a stochastic process can be de-
termined from experimental results of a case where uncertainties in the model are
looked for. Thus, they can represent properly, in a probabilistic way, the uncer-
tainties in the model. This can be done even when the reasons for these uncertain
outcomes are not completely understood, and the effects of uncertainties are intro-
duced in an "integral" way. More on the subject can be found in Ref. [Maymon
(2008)]. In this way, uncertainties of a model can be included, based on the ob-
served experimental results of a specific case.

Reference

The NESSUS Structural Probabilistic Analysis Code. Details in http://www.
nessus.swri.org

Paris, P. C.;Erdogan, F.(1963): A Critical Analysis of Crack Propagation Laws.
Journal of Basic Engineering, vol.85, no.1963, pp.528-534.



On the Uncertainties of a Structural Model 11

NASGRO Crack Propagation Computer Program. Details in http://www.
nasgro.swri.org

Vasudevan, A. K.; Sadananda, K.; Galinka, G.(2001): Critical Parameters of
Fatigue Damage. International Journal of Fatigue, vol.23(s1), pp.s39-s53.

Sadananda, K.; Vasudevan, A. K.(2003): Multiple Mechanism Controlling Fa-
tigue Crack Growth. Fatigue and Fracture of Engineering Materials and Struc-
tures, vol.26, no.9, pp.835-845.

Virkler, D. A. et al.(1979): The Statistical Modelling Nature of a Fatigue Crack
Propagation. Journal of Engineering Materials and Technology, vol. 10, no.4,
pp.143-153.

Ghenom, H.; Dore, S.(1987): Experimental Study of Constant Probability Crack
Growth Under Constant Amplitude Loading. Engineering Fracture Mechanics,
vol. 27, no.1, pp.1-66.

Lawrence, M.; Liu, W. K.; Besterfield, G.; Belytchko, T.(1990): Fatigue Crack
Growth Reliability. Journal of Engineering Mechanics, vol.116, no.3, pp.696-708.

Lin, Y. K.; Wu, J. N.; Yang, J. N.(1984): Stochastic Modeling of Fatigue Crack
Propagation in Proceedings of the IUTAM Symposium On Probabilistic Methods
in Mechanics of Solids and Structures, Stockholm, Sweden, pp. 103-110.

Maymon, G.(1998):Some Engineering Applications in Random Vibrations and
Random Structures, AIAA Book Publishing.

Sobcyzk, K.(1984): Stochastic Modeling of Fatigue Crack Growth in Proceeding
of the IUATM Symposium On Probabilistic Methods in Mechanics of Solids and
Structures, Stockholm, Sweden, pp.111-119.

Sobcyzk, K.(1986): Modeling of Random Fatigue Crack Growth. Engineering
Fracture Mechanics, vol. 24, no.4, pp.609-623.

Maymon, G.(2008): Structural Dynamics and Probabilistic Analyses for Engi-
neers, Elsevier, Ma., USA.




