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Abstract: By using the high froze/recovery strains of shape memory polymers to
meet the requirements of deployable space structures, the folding behavior of shape
memory tape spring consisting of shape memory polymer and metal spring was an-
alyzed. Firstly, numerical simulations were performed on the buckling modes and
affecting factors under the equal- and opposite-sense bends. The results show that
the folding deformations of such structure in the two cases are completely differ-
ent. The equal-sense bending leads to the structure buckled abruptly, but gradual
torsion buckling is received in the case of opposite-sense bending. The critical
bending moments have big difference in the two cases, and the structure response
is strongly dependant on the geometric parameters. Secondly, the critical buckling
solution under pure bending was derived, and the result confirms to be agreeable
with the finite element calculation.
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1 Introduction

The traditional metallic tape spring, also known as carpenter tape, has been exten-
sively researched and applied in deployable space structures due to the advantages
of low cost, low mass, self-locking function, stowage in a compact volume, de-
ployment in large surfaces and/or large volumes, and others[1−4etal]. However, such
structure requires a motor to provide power and damping mechanisms to ensure
reliable and stable deploying. Thus it is complicated in design.

As considering the capability of self-frozen/deployment of thermal-activated shape
memory polymers (SMPs) through a special thermomechanical cycle, new design
concept and prototypes have been developed in deployable space structures by us-
ing continuous fiber-reinforced SMPs-based composites[5−9etal]. However, the ir-
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regular distribution of fibers in SMP matrix commonly causes pre-mature failure
due to the local stress concentration.

This paper aims to investigate a new type of composite tape springs, which is con-
sisted of one layer of metal and one layer of SMP. The advantage of such composite
tape spring is that the metallic layer can present a high stiffness while SMP-layer
has the function of shape frozen/recovery. Numerical simulation and theoretical
analysis will be carried out on the non-linear responses (critical buckling and post-
buckling) of such structure under bending. Further work will focus on their shape
frozen/recovery behaviors.

2 Numerical simulation of metal/SMP tape spring under bending

2-D behaviors of the metal/SMP tape spring were numerically researched for two
types of folds: equal-sense and opposite sense as seen in Fig. 1. ABAQUS com-
mercial software was used and S4R5 shell element was selected. Fig. 2 presents the
geometrical schematic of the metal/SMP tape spring in this study, which consists
of an outer layer of metal and an inner layer of SMP (zm=0.1 mm and ze=5 mm).
The material’s parameters are listed in Table. 1.

Figure 1: Folding of a tape spring: (A) opposite-sense bending (B) equal-sense
bending

Fig. 3 shows the distribution of Von-mises stress when the metal/SMP tape spring
subjected to opposite-sense bending. Before loading, there is no deformation (Fig.
3A). When a small bending angle is applied, the significant tensile and compres-
sive zones are developed (Fig. 3B). With further increasing the bending angle,
an ellipse stress-concentration zone is developed in the middle of the specimen
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Figure 2: Schematic of a metal/SMP tape spring

Table 1: Material parameters

Parameter Unit Value Description
Ee Pa 5.74×106 Young’s modulus of SMP-layer

Esteel Pa 210×109 Young’s modulus of Metal-layer
νSMP – 0.4 Possion ratio of SMP-layer
νsteel – 0.3 Possion ratio of Metal-layer

(Fig. 3C). Then continuing increasing the bending angle, the shape of the stress-
concentration zone develops from ellipse to rectangle and the stress in the two ends
decreases significantly, which indicates that the structure is buckled (Fig. 3D). Af-
ter buckling, the area of the stress concentration is increased with the bending angle
(Figs. 3E and F). Similar deformation process is received when changing the ge-
ometer parameters (L, θ and R). So it means that the result is independent of the
geometer parameters.

Fig. 4 shows the Von-mises stress distribution of a short-length metal/SMP tape
spring (L=200 mm) subjected to equal-sense bending. Significant tensile and com-
pressive zones are developed under the small bending angle (Fig. 4a). With in-
creasing the bending angle, the stress concentration zone develops in the two edges
of the middle zone (Fig. 4b). As further increasing the bending angle, the curvature
radius in the stress concentration zone is significantly enlarged, which indicates that
the structure is buckled (Figs. 4c and d). After that, the buckling zone is increased
but its curvature radius keeps a nearly constant value (Figs. 4e and f). However,
with increase of the length of the tape spring, the buckling is different (see Fig. 5).
The critical buckling is happened in the two ends of the structure and companied
with torsional deformation (Figs. 5c and d). With increase of the bending angle,
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Figure 3: Stress distribution of tape spring under opposite sense bending: L=500
mm, R=50 mm, θ=60˚

the buckling concentrates in the middle of the structure. The following deformation
is similar with results in Fig. 4.

Table 2 list the critical buckling moments for metal/SMP tape spring with different
lengths. It is clear that the length of the tape spring has significant influence on
the critical buckling moment. Larger moments are required for the buckling of the
structure at small length, which is due to the constraint at the two ends. When the
length of the tape spring is larger than 600 mm, such influence becomes weak. The
results also show a significant difference of the critical moments when the struc-
ture is under equal-sense and opposite-sense loads. When the structure is under
opposite-sense load, the critical buckling is located in the middle of the structure
and influences each other. Since it is close to the neutral center, the stress is small.
When the structure is under equal-sense load, the critical buckling is located in the
two edges of the structure and the constraint is weak. Hence the stress is large and
the strcuture is easy to be buckled.

Table 3 presents the influence of the warp angle on the critical moments. The result
confirms that the warp angle has a significant influence on the critical buckling
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Figure 4: Stress distribution of a tape spring under equal-sense bending: L=200
mm, R=50 mm, θ=60˚

Table 2: Length effect on the buckling moment: R=50mm, θ=60˚

Angle (˚) 300 400 500 600 700 800 1000
Opposite-sense moment (N·mm) 571 484 446 425 415 414 406

equal-sense moment (N·mm) 219 202 180 171 169 165 160

moments. Comparatively speaking, the warp angle has more strong influence when
the structure is under opposite-sense load than that under equal-sense load. So we
can change the critical buckling moments by changing the warp angle in design.

3 Theoretical solution of metal/SMP tape spring under bending

Fig. 6 presents the whole non-linear behaviors of a metal/SMP tape spring under
equal-sense and opposite-sense bends. Linear relation between moment M and an-
gle Θ exists before the critical buckling (E-O-A). After critical buckling (points A
and E), M decreases significantly. A large local fold is created in the middle zone of
the structure in the case of opposite-sense bending. But a flexural–torsional-mixed
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Figure 5: Stress distribution of a tape spring under equal-sense bending:L=500 mm,
R=50 mm, θ=60˚

Table 3: Angle effect on the buckling moment: L=700 mm, R=50 mm (R=52.33
mm)

Angle (˚) 30 50 70 90 110 120
Opposite-
sense
moment
(N·mm)

50 (105) 233 (300) 682(566) 1826(948) 4748 (1430) 7300 (1720)

equal-
sense
moment
(N·mm)

12 (54) 94 (136) 295(217) 601 1038 (566) 1306 (660)

mode is observed in the case of equal-sense bending. With further increase of the
rotation angle, the equal-sense and opposite-sense bending moments are respec-
tively close to a constant value (B-C and F-G). Then curvature radius keeps nearly
constant value, but the buckling length is increased.
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Figure 6: Bending moments of a metal/SMP tape spring

If we use a homogeneous material instead of such composite tape string, then the
equal thickness is

H =
Emz2

m−2zmzeEe−Eez2
e

zmEm− zeEe
(1)

When the strip is deformed from point A to point B (fFig. 6), the moment decreases
abruptly, but the rotation has no significant change. During this process, the whole
deformation energy UA and the local deformation energy UB are nearly equal:

UA ≈UB (2)

The critical buckling deformation energy UA can be expressed as

UA =
1
2

∫
v
σεydv =

Em

2

∫
v
ε

2
y dv (3)

where εy denotes the tension/compression strain along the Y-axis.

If we assume the critical buckling curvature radius to be ρcr, then the strain apart
along the thickness of the specimen is

εy =
z− z0

ρcr
(4)

where z0 denotes the distance of the neutral center apart from the coordinate axis.
On condition of the pure bend, following relation exists along the cross section∫

a
σda = 0 (5)
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where a denotes the area of the cross section. Thus

z0 =
Rsin(θ/2)

θ/2
(6)

Substituting Eqs. (4) and (6) into Eq. (3) receives

UA =
HLEmR3

2ρ2
cr

[
sinθ

4
− sin2

θ/2
θ/2

+
θ/2

2
] (7)

After buckling, assuming the curvature to be the function of buckling distance y
and angle θ , thus

UB =
1
2

∫
v
Emz2

ψ(y,θ)2dv =
RθEmH3

24

∫ L/2

0
ψ

2(y,θ)dy (8)

Further assuming
∫ L/2

0 ψ2(y,θ)dy = A0 +A1e(A2+A3L)θ , where A0,A1,A2,A3 are fit-
ting constants, then Eq. (8) can be expressed as

UB =
RθEmH3

24
[A0 +A1e(A2+A3L)θ ] (9)

Substituting Eqs. (7) and (9) into Eq. (2) receives the critical buckling curvature
radius as

1
ρcr

=
H
2R

√√√√ θ(A0 +A1e(A2+A3L)θ )

3L( sinθ

4 − sin2
θ/2

θ/2 + θ/2
2 )

(10)

Thus, the critical buckling moment under opposite-sense bending is

M+
cr = 2

∫
θ/2

0
σ(z− z0)da = 2

∫
θ/2

0
Emεy(z− z0)da (11)

Substituting Eqs. (4) and (6) into Eq. (12) receives

M+
cr =

2HEmR3

ρcr
(
sinθ

4
− sin2(θ/2)

θ/2
+

θ

4
) (12)

According to the above FE calculating results listed in Tables 2 and 3, linear relation
exists between the moments of equal-sense and opposite-sense bending. The factor
is dependant on the arc length of the specimen. Thus following relation is assumed

M+
cr = δM−

cr = [B0 +B1(S−B2)3]M−
cr (13)

By substituting the parameters of Table 1 into Eq. (13) and (14), the theoretical
critical buckling moment are calculated. The fitting constants are listed in Table 4.
Figs. 7 and 8 show the theoretical results and FE calculating values. It is clear that
both are much agreeable.
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Figure 7: Relations between the length and critical moment

Table 4: Predictions of material constants
Constants A0 ×10−3 A1 ×10−3 A2 A3 ×10−3 B0 B1 ×10−6 B2

Values 4.9 1.3 0.92 1.4168 2.22 5.6 22

4 Conclusions

FE simulation was carried out on the non-linear bending behaviors of metal/SMP
tape spring under equal-sense and opposite-sense bends. The results confirm that
the bending behaviors in the two cases are much different: abrupt buckling in the
case of opposite-sense bending and flexural–torsional-mixed mode in the case of
equal-sense bending. Moreover, theoretical solutions of the critical buckling in the
two cases are derived, which is much agreeable with the FE results.
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Figure 8: Relations between the angle and critical moment
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