
Copyright © 2011 Tech Science Press SL, vol.6, no.3, pp.115-126, 2011

Determination of Physical Properties of Euler Bernoulli
Beam via the Method of Inverse Vibration Problem
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Abstract: In this study, some physical properties of an Euler–Bernoulli beam
was tried to be estimated by using the method of inverse vibration problem. The
Euler –Bernoulli beam was first modeled and simulated on the ANSYS program
for different boundary condition to obtain data to be used as experimental input
to the optimization program aroused during the solution of inverse problem. An
numerical model of the Euler-Bernoulli beam with unknown parameters was also
developed using a two-dimensional finite element model. Then, these two models
were embedded into the optimization program to form the objective function to
be minimized using genetic algorithms. After minimizing the squared difference
of the natural frequencies from these two models, the unknown parameters of the
beam was found. The estimated values were finally compared with the expected
values and a very good correspondence was observed.

Keywords: Inverse problem, inverse vibration, FEM, Euler-Bernoulli beam, Ge-
netic algorithm, free vibration, ANSYS, MATLAB.

1 Introduction

Beams find an important area of applications in many mechanical and civil engi-
neering structures. As a result, studies on their statics and dynamics stability anal-
ysis have gained important place among mechanics researches, and hence, a vast
amount of study has been carried out on this area lately. However, designing beams
representing pre-specified behavior or suitable to any working conditions is a hard
task because of large number of unknown parameters appearing in their designs.
Consequently, to be able to overcome this difficulty and to estimate beam param-
eters, the method of inverse vibration problem has found its place in the design of
beams.
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The method of inverse vibration problem can be basically used to estimate un-
known parameters by using data obtained from experiments or computer simula-
tions. There are some literatures using the inverse vibration for parameter estima-
tions. For instance, Huang et al. [1] attempted inverse vibration method to solve
a forced vibration problem raised in cutting tools which were modeled as Euler-
Bernoulli beam. In the numerical solutions conjugate gradient method was utilized
and the simulation results for the beam displacements were used for estimating
the external forces on the cutting tool. Huang [2] tackled an inverse nonlinear
forced vibration problem and solved it by using conjugate gradient method. In the
solution, experimental results were used to estimate external forces on a damped
multi degree of freedom system. Chiwiacowsky et al. [3] used dynamics inverse
problem to assess damages in buildings through the use of experimental vibration
measurements. Marinov et al. [4] utilized the variational imbedding method to
solve the inverse problem arisen during the estimation of unknown coefficients of
Euler-Bernoulli equation. Gladwell [5-7] developed finite element model for an in-
line two-degree-of-freedom systems and solved it as an inverse vibration problem.
Mass and stiffness matrices were written in a closed form procedure in such a way
to minimize the mass.

Dynamic stability of Euler-Bernoulli beams were also investigated in some stud-
ies. For instance, Ozturk [8] solved the free vibration problem of a pre-stressed
curved beam whose model is obtained through the finite element model of a largely
deflected cantilever beam. The same problem was solved with ANSYS and the
results are compared with the previous ones. Karaagac et al. [9] developed a finite
element model for the lateral buckling of a cantilever beam with an edge crack using
Euler-Bernoulli beam approach. Results from this model were compared with the
experimental findings. Rossit and Laura [10] investigated a cantilever beam hanged
by a mass-spring system at the free end by treating the beam as an Euler-Bernoulli
beam.

In this paper, inverse vibration problem was utilized to find physical properties of
an Euler-Bernoulli beam from its measured vibration frequencies. In the method
proposed, the difference between the measured frequencies and the ones from nu-
merical model with unknown parameters is minimized to be able to choose the
best solution among infinitely many possible solutions that can arise in an inverse
method. Simulation results from an ANSYS model were used to imitate the exper-
imental data. Genetic algorithms are used in the optimizations to ensure not to be
trapped by local minima.
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2 Mathematical Model

According to Euler-Bernoulli beam theory, the deformations caused by the trans-
verse shear stresses are accepted as zero [11]. The bending behavior of an Euler-
Bernoulli beam was shown on the Figure 1.

Axes and cross section of the beam under consideration have been shown in Figure
2. The letter L represents the beam length, I the area moment of inertia, A the cross
sectional area, b the width of the beam, and h the height of the beam.

Stress-strain relationship for an Euler-Bernoulli beam is given by the Hooke’s law

 

Figure 1: Euler-Bernoulli beam theory [11]

 

Figure 2: Coordinates and Geometry of Euler-Bernoulli beam
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as [11]

σ = Eε (1)

where E is the modulus of elasticity while σ representing the stress. Material was
assumed to be linear isotropic.

The relation between the strain ε and the axial displacement u is given by [12]

ε =
du
dx

(2)

The relationship between the axial displacement u and the rotation of the cross-
section θ is obtained as [12].

du =−dθz (3)

The relationship between the deflection of beam w and the rotation of the cross-
section θ can be written as

θ ∼=
dw
dx

(4)

from the Euler-Bernoulli beam theory [11]. If the equations (4) and (3) are substi-
tuted into equation (2),

ε =−d2w
dx2 z (5)

can be obtained [11]. The curvature of the beam from equation (5) can be written
as [12]

κ =
d2w
dx2 (6)

2.1 Finite Element Model

A planar beam bending element with two nodes, each having two-degree-of-freedom,
was chosen obeying Euler-Bernoulli beam theory. The beam element having the
degree of freedom as the beam deflection “w” and the rotation of the cross-section
“θ” was depicted in Figure 3.

The potential energy for a beam element in bending vibration is given as [12]

U =
1
2

l∫
0

EI
(

d2w
dx2

)2

dx (7)
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The kinetic energy of a beam element in bending vibration is

T =
1
2

l∫
0

ρA
(

dw
dt

)2

dx (8)

If the potential and kinetic energy expressions are substituted in the Hamilton prin-
ciple [12]

L =
t1∫

t0

δ (T −U)dt+
t1∫

t0

δWdt (9)

is obtained, where W expresses the work done by external forces. If the equation (9)
is minimized for a system under undamped free vibration, the equation of motion
of a beam undergoing bending vibrations can be obtained as [13]

[me]{q̈e}+[ke]{q}= 0 (10)

where [me] and [ke] are the mass and stiffness matrices, respectively. If the curva-
ture of the Euler-Bernoulli beam is re-written

κ =
d2w
dx2 =

d2

dx2 {w} → κ = Dw (11)

where D is the linear differential operator and w displacement. Beam displacement
equation is then [14]

w = Nd (12)

where N represents shape function and d nodal displacement operator. The nodal
displacement operator is given as

d =
{

wi
dwi
dx

}
=
{

wi

θi

}
(13)

If the equation (13) is substituted in equation (12) the expression

κ = Dw = DNd→ κ = Bd (14)

is obtained [14], where the expression B is the strain-displacement matrix. If the
stiffness matrix for the bending beam element is given as [12, 14]

[ke] = EI
∫
A

BT BdA (15)
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The mass matrix for the bending beam element is also given as [12, 14]

[me] = ρA
∫
A

NTNdx (16)

If the mass and stiffness matrices developed for the bending beam element are
combined together so as to represent an Euler-Bernoulli beam

[M] =
n

∑
e=1

me

[K] =
n

∑
e=1

ke
(17)

are obtained, where the matrices [M] and [K] are respectively the global mass and
stiffness matrices, and n the number of finite elements used in the model.

 

Figure 3: Plane beam bending element

2.2 Development of Shape Function

Plain beam element shown in Fig. 3 has two nodes with two degrees of freedom,
and hence it has four degrees of freedom in total. To form shape function, cubic
polynomial with four terms for each degree of freedom has been chosen as the
displacement shape function.

w(x) = a1 +a2x+a3x2 +a4x3 (18)

Beam displacement can be written in the following form [15]:

w = {P}T {a} (19)
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In Eqn. (19), a is the coefficient vector and P is the interpolation polynomial term
vector. Coefficient and the interpolation polynomial term vector are given in the
following format [15]

{a}=
{

a1 a2 a3 a4
}T

{P}=
{

1 x x2 x3
}T (20)

If the displacement polynomial given in Eqn. (18) is substituted in Eqn. (12) in a
matrix form and expanded for each node [15],

{d}= [X ]{a} (21)

is obtained. X in Eqn. (21) represents the expanded displacement matrix of dimen-
sion 4x4. Then, Eqn. (21) is solved for coefficient vector

{a}= [X ]−1 {d} (22)

If Eqn. (22) is substituted in Eqn. (19), one may obtain

w = {P}T [X ]−1 {d} (23)

If Eqn. (23) is substituted in Eqn. (12) and reorganized, the shape function is
developed in the form below

N = {P}T [X ]−1 (24)

2.3 Dynamics Analysis

The equation of motion for the beam undergoing an undamped free vibration was
given in Eqn. (10). The equation of motion for the global system is

[M]{q̈}+[K]{q}= 0 (25)

for which a harmonic solution can be proposed in the following form:

{q}= {ψ}sin(ωt) (26)

If Eqn. (26) is substituted in Eqn. (25)

− [M]{ψ}ω
2 sin(ωt)+ [K]{ψ}sin(ωt) = 0 (27)

can be obtained. If Eqn. (27) is further reorganized, it takes the following eigen-
value problem form(
[K]−ω

2 [M]
)
{ψ}= 0 (28)

where λ = ω2 are eigenvalues representing vibration frequencies while ψ are eigen-
vectors representing vibration modes.
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3 Forming Objective Function for Genetic Algorithm use

There are infinitely many possible solutions in the solution of inverse problems, and
hence, some form of optimization is necessary to choose the best solution amongst
them. Furthermore, there is a possibility of getting trapped in local minima in such
optimizations of multimodal problems. Therefore, genetic algorithms are utilized
to make sure that global minima are searched for the solutions.

Objective functions are needed in the optimizations and the sum of squared dif-
ference between the frequencies obtained from simulations and numerical model
was accepted as the objective function for optimizations. Natural frequencies are
chosen as optimization parameters as they provide more information about systems
with fewer data, and this further leads to less computation time. The objective
function is used in the objective function evaluations is

FF(t) = min
n

∑
i=1

({ωANSY S(t)}−{ωModel(t)})2 (29)

where ωANSY S represents the natural frequencies obtained from ANSYS, which im-
itates experimental data, while ωModel represents the frequencies obtained from
numerical model, which includes unknown system parameters.

In the optimizations with Genetic Algorithms, settings are of great importance be-
cause small changes result in large difference in solutions. Settings were decided
after a long period of trial and error as shown in Table 1 [13].

Table 1: Genetic Algorithm Settings

Population size 30
Selection Stochastic uniform
Mutation Adaptive feasible

Mutation rate 0.01
Crossover Arithmetic

4 Simulation data

In the study performed in ANSYS, Euler-Bernoulli beam is modeled with clamped-
free (CF), clamped-clamped (CC), and simple-simple supported (SS) boundary
conditions. In the model, BEAM3 element from ANSYS element library was used
for the Euler-Bernoulli beam. The BEAM3 element is a single axis elastic beam
element with two nodes and three degrees of freedom on each node, which can be
used to model both Euler-Bernoulli and Timoshenko beams.
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Geometric and physical properties of Euler-Bernoulli beam to be used in ANSYS
are provided in Table 2 below.

Table 2: Geometric and physical properties of Euler-Bernoulli beam

 

Table 3: Natural frequencies of Euler-Bernoulli beam from simulations (Hz)

Mode no Clamped-Clamped (CC) Clamped-Free (CF) Simply supported (SS)
1 26.58 4.178 11.73
2 73.27 26.18 46.91
3 143.64 73.30 105.53
4 237.42 143.63 187.60
5 354.63 237.41 293.09
6 495.26 354.61 422.00
7 659.28 495.21 574.32
8 846.67 659.21 750.01
9 1057.40 846.58 949.07

10 1291.50 1057.30 1171.5

5 Parameter estimation

Numerical model for the Euler-Bernoulli beam was constructed in MATLAB, and
the optimizations are realized in Genetic Algorithm Toolbox in MATLAB.

The finite element model for the Euler-Bernoulli beam was constructed with a mesh
size of 500x500, and its elasticity module E and density ρ were estimated for dif-
ferent boundary conditions. The estimates are tabulated together with the objective
function evaluations and percent errors.

6 Results and discussion

In this study, physical properties of an Euler-Bernoulli beam were estimated based
on its known/measured natural frequencies. The simulation results obtained from
ANSYS were assumed to be experimental data. On the other hand, the numerical
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Table 4: Natural frequency (Hz) estimates for Euler-Bernoulli beam

Mode no Clamped-Clamped (CC) Clamped-Free (CF) Simply supported (SS)
1 26.56 4.17 11.72
2 73.22 26.16 46.87
3 143.53 73.25 105.45
4 237.27 143.54 187.47
5 354.43 237.28 292.92
6 495.04 354.46 421.80
7 659.08 495.07 574.13
8 846.55 659.11 749.89
9 1057.46 846.60 949.11

10 1291.81 1057.50 1171.78

Table 5: Elasticity module (E) and density (ρ) estimates for Euler-Bernoulli beam

Clamped-Clamped (CC) Clamped-Free (CF) Simply supported (SS)
E (N/m2) ρ (kg/m3) E (N/m2) ρ (kg/m3) E (N/m2) ρ (kg/m3)

Desired 2.1x1011 7850 2.1x1011 7850 2.1x1011 7850
Estimated 2.026x1011 7584,86 2.07x1011 7755.30 2.111x1011 7904.566
Error (%) 3.52 3.38 1.428 1.2 -0.52 -0.695
Objective 0.003788 0.1278 0.2276
function

evaluations
(FF(t))

model with unknown parameters was established in MATLAB. Finally, the natural
frequencies from these two sources were combined in the objective function to
estimate the unknown physical parameters.

The inverse vibration problem was tackled as an optimization problem and solved
using Genetic Algorithm Toolbox of MATLAB. Elasticity module (E) and density
(ρ) of the beam were estimated simultaneously for different boundary conditions
and compared with the real values.

The proposed method gives base not only for estimation of physical properties
of materials used in a system but also for estimation of initial conditions and/or
boundary conditions, etc.

When the results obtained from the optimizations are compared with the real values,
very good correspondence is observed within a maximum error of 3.5%. Although
the result would be satisfactory for most of the applications, further improvements



Determination of Physical Properties 125

might be sought for by improving the following items:

• Timoshenko beam theory which takes shear deformations into account would
be used.

• Damping effects would be added to the model.

• Nonlinear analysis would be performed.

• More suitable finite element would be chosen to increase the effectiveness of
finite element method, and further a shape function suitable to this element
would be chosen.

• Mesh density of the model would be increased for improved computations.

• More data and some constraints would be added to the objective function to
improve the Genetic Algorithm solution.

• Genetic Algorithm itself would be improved with more intelligence such as
Fuzzy and/or Neural Networks, or more advanced mutation and crossover
methods would be embodied for getting improved results.
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