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Discretisation of the velocity-pressure formulation with
integrated radial-basis-function networks

N. Thai-Quang1, K. Le-Cao1, N. Mai-Duy1 and T. Tran-Cong1

Abstract: This study is concerned with the use of integrated radial-basis-function
networks (IRBFNs) for the discretisation of the velocity-pressure formulation in
two dimensions on Cartesian grids. In the approximation of the field variables
(i.e. velocity components and pressure), instead of using low-order polynomial
interpolants, we employ global IRBFNs along grid lines (i.e. one-dimensional
IRBFNs). In the imposition of boundary condition for the pressure, we propose
two treatments, namely Treatment A and Treatment B. For both treatments, Neu-
mann boundary conditions are transformed into Dirichlet ones. The former is based
on values of the pressure at interior nodes along a grid line and first derivative val-
ues of the pressure at two extreme nodes of that grid line; while the latter relies on
values of the pressure at interior nodes along a grid line together with both first and
second derivative values of the pressure at two extreme nodes of that grid line. The
proposed method is verified successfully through the simulation of a benchmark
test, namely the isothermal lid-driven cavity flow problem.

Keywords: integrated radial basis function, pressure-velocity formulation, lid-
driven cavity flow, Dirichlet boundary condition, Cartesian grid.

1 Introduction

It is known that the equations of motion of a Newtonian fluid can be written in sev-
eral formulations including the velocity-pressure (û− p) formulation, the stream
function-vorticity (ψ −ω) formulation and the stream function (ψ) formulation.
The last two involve less dependent variables than the first one. However, they re-
quire some special treatments for the handling of the vorticity boundary condition
(the ψ−ω formulation) and the calculation of high-order derivatives including the
cross-ones (the ψ formulation). Furthermore, the pressure field needs be resolved,
which is generally recognised as a complicated process. For the û− p formula-

1 Computational Engineering and Science Research Centre, Faculty of Engineering and Surveying,
The University of Southern Queensland, Toowoomba, Queensland 4350, Australia.



78 Copyright © 2011 Tech Science Press SL, vol.6, no.2, pp.77-91, 2011

tion, the pressure and velocity fields are obtained directly from the discretisation
equations and it is straightforward to extend the formulation to 3D problems.

It was reported in the literature (e.g. [Roache (1998); Cheng (1968);Cyrus and
Fulton (1967)]) that the use of conservative form of the governing equation has
the ability to give more accurate results than the use of non-conservative form,
especially for problems where the conservative property is crucial. The reader is
referred to [Cheng (1968)] for certain solutions of the Burgers equation, and [Cyrus
and Fulton (1967)] for elliptic equations. In [Torrance, Davis, Eike, Gill, Gutman,
Hsui, Lyons, and Zien (1972)], through the simulation of a flow in a cavity, it
was shown that results by using the conservative equations and first-order accu-
rate interpolants are better than those by using the non-conservative equations and
second-order accurate interpolants.

To facilitate numerical calculation, the spatial domain needs be discretised. Gener-
ating a Cartesian grid, which is associated with finite-difference methods (FDMs),
can be seen to be much more straightforward than generating a finite-element (FE)
mesh, which is associated with FEMs and finite-volume (FV) methods.

Radial basis function networks (RBFNs) have been emerged as a powerful approx-
imation tool. They have been applied for the solution of ordinary and differen-
tial partial equations. The RBF approximations representing the field variable can
be constructed through differentiation (DRBFNs) [Kansa (1990), Kansa, Power,
Fasshauer, and Ling (2004)] and integration (IRBFNs) [Mai-Duy and Tran-Cong
(2001)]. The latter has extra power in the implementation of multiple boundary
values.

Most numerical methods for solving viscous incompressible flow in the û− p
formulation utilize a fractional step approach, which is originally suggested by
[Chorin (1968)]. The variations of this approach have been published in, for exam-
ple, [Kim and Moin (1985), Van Kan (1986), Bell, Colella, and Glaz (1989), Perot
(1993), Almgren (1996)]. In this study, we will propose a numerical projection
method, based on Cartesian grids and 1D-IRBFNs, for the simulation of viscous
incompressible flows in two dimensions. Boundary conditions for the pressure are
taken in the form of Dirichlet type, and to do so, two treatments, i.e. Treatment
A and Treatment B, are proposed. The main difference between these two lies in
the number of derivative boundary values used. The performance of the proposed
method is investigated numerically through the simulation of isothermal lid-driven
cavity flow. Numerical results show that the proposed Dirichlet boundary form
yields better accuracy than the usual Neumann boundary form, and Treatment B is
more accurate than Treatment A.

The remainder of the paper is organised as follows. Section 2 and 3 briefly outline
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the governing equations and the proposed method, respectively. In section 4, two
boundary treatments for the pressure are described. Numerical results are reported
in section 5, where comparisons with the benchmark solutions are made. Finally,
concluding remarks are given in section 6.

2 Governing equations

The transient incompressible Navier-Stokes equations in non-dimensional conser-
vative form can be expressed as follows.

Continuity equation:

∂u
∂x

+
∂v
∂y

= 0 (1)

Momentum equations:

∂u
∂ t

+
∂ (uu)

∂x
+

∂ (vu)
∂y

=−∂ p
∂x

+
1

Re

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
(2)

∂v
∂ t

+
∂ (uv)

∂x
+

∂ (vv)
∂y

=−∂ p
∂y

+
1

Re

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
(3)

where u, v and p are the x and y velocity components and the static pressure, respec-
tively; and Re = UL/ν the Reynolds number, in which ν is the kinematic viscosity,
L a characteristic length and U a characteristic speed of the flow.

3 Reviews of 1D-IRBFNs and projection method

3.1 1D-IRBFNs

Consider an univariate function f (x). The second-order derivative of f is decom-
posed into RBFs

∂ 2 f (x)
∂x2 =

m

∑
i=1

wiGi(x) (4)

where m is the number of RBFs; {Gi(x)}m
i=1 the set of RBFs; and {wi}m

i=1 the set of
weights to be found. Approximations for the first-order derivative and the function
itself are then obtained through integration

∂ f (x)
∂x

=
m

∑
i=1

wiHi(x)+ c1 (5)

f (x) =
m

∑
i=1

wiH i(x)+ c1x+ c2 (6)
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where Hi(x) =
∫

Gi(x)dx; H i(x) =
∫

Hi(x)dx; and c1 and c2 are the constants of
integration with respect to x.

Let {xi}q
i=1 and {xb1,xb2} be a set of interior points and a set of boundary points,

respectively. We choose the set of centres as the set of nodal points. Evaluation of
(6) at interior and boundary points results in(

f̂
f̂b

)
= H

 ŵ
c1
c2

 (7)

where m = q+2

f̂ = ( f1, f2, · · · , fq)
T

f̂b = ( fb1, fb2)
T

ŵ = (w1,w2, · · · ,wm)T

H =



H1(x1) · · · Hm(x1) x1 1
H1(x2) · · · Hm(x2) x2 1

...
. . .

...
...

...
H1(xq) · · · Hm(xq) xq 1
H1(xb1) · · · Hm(xb1) xb1 1
H1(xb2) · · · Hm(xb2) xb2 1


(8)

The obtained system (7) for the unknown vector of network weights (ŵ,c1,c2) can
be solved using the singular value decomposition (SVD) technique ŵ

c1
c2

= H
−1
(

f̂
f̂b

)
(9)

where H
−1

is the pseudo-inverse of H .

Making use of (9), (5) and (4), the values of the first and second derivatives of f at
the interior and boundary points are respectively computed as

∂ f1
∂x
∂ f2
∂x
...

∂ fq
∂x

∂ fb1
∂x

∂ fb2
∂x


=



H1(x1) · · · Hm(x1) 1 0
H1(x2) · · · Hm(x2) 1 0

...
. . .

...
...

...
H1(xq) · · · Hm(xq) 1 0
H1(xb1) · · · Hm(xb1) 1 0
H1(xb2) · · · Hm(xb2) 1 0


H
−1
(

f̂
f̂b

)
(10)
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

∂ 2 f1
∂x2

∂ 2 f2
∂x2

...
∂ 2 fq
∂x2

∂ 2 fb1
∂x2

∂ 2 fb2
∂x2


=



G1(x1) · · · Gm(x1) 0 0
G1(x2) · · · Gm(x2) 0 0

...
. . .

...
...

...
G1(xq) · · · Gm(xq) 0 0
G1(xb1) · · · Gm(xb1) 0 0
G1(xb2) · · · Gm(xb2) 0 0


H
−1
(

f̂
f̂b

)
(11)

or in compact form

∂̂ f
∂x

= D̂1x f̂ + k̂1x, (12)

and

∂̂ 2 f
∂x2 = D̂2x f̂ + k̂2x, (13)

where the matrices D̂1x and D̂2x consist of all but the last two columns of the prod-
uct of two matrices on the right-hand side of (10) and (11); and k̂1x and k̂2x are
obtained by multiplying the vector f̂b with the last two columns. It is noted that k̂1x

and k̂2x are vectors of known quantities related to boundary conditions.

The above 1D-IRBFNs expressions for the function derivatives are now written in
terms of nodal values of f .

3.2 Projection method

Equations (1)-(3) can be rewritten in vector form as

∇.û = 0 (14)

∂ û
∂ t

+∇.(û û) =−∇p+
1

Re
∇

2û (15)

In the projection method, the velocity and pressure equations are solved separately
in each iteration. Discretisation of (15) with an explicit Euler scheme gives

ûn+1− ûn

∆t
=−∇pn+1 +

1
Re

∇
2ûn−∇.(ûnûn) (16)

An intermediate velocity vector, denoted by û∗, is computed by neglecting the pres-
sure gradient term on the RHS of (16).

û∗− ûn

∆t
=

1
Re

∇
2ûn−∇.(ûnûn) (17)
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or

û∗ = ûn +∆t(
1

Re
∇

2ûn−∇.(ûnûn) (18)

It is seen that û∗ does not satisfy the continuity equation.

From (16) and (17), one can derive the following equation

ûn+1− û∗

∆t
=−∇pn+1 (19)

The pressure Poisson equation is obtained by applying the gradient operator to both
sides of (19) and forcing ûn+1 to satisfy the continuity equation

∇
2 pn+1 =

1
∆t

∇ · û∗ (20)

After solving (20), the velocity field at the next time level is calculated through (19)
as

ûn+1 = û∗−∆t∇pn+1 (21)

4 Proposed method

It has generally been accepted that, among RBFs, the multiquadric (MQ) scheme
tends to result in the most accurate approximation [Franke (1982)]. We choose MQ
as the basis function in the present calculation.

The problem domain is discretised using a Cartesian grid. On each grid line,

• 1D-IRBFNs are employed to represent the variations of the velocity compo-
nents, the intermediate velocity components and the pressure

• values of the pressure at the two extreme are estimated and they are used as
Dirichlet boundary conditions for the pressure Poisson equation (20)

In the following, the solution procedure is first outlined and the two boundary treat-
ments for the pressure are then presented.

4.1 Solution procedure

At each time step, the following calculations are required

• Compute the diffusion term ∇
2ûn and the convection term ∇.(ûnûn) using

1D-IRBFNs
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• Compute the intermediate velocity field û∗

û∗ = ûn +∆t(
1

Re
∇

2ûn−∇.(ûnûn) (22)

• Compute boundary derivative values of the pressure from the momentum
equations

∂ pn+1

∂ n̂
=

1
∆t

(û∗− ûn) (23)

• Derive a Dirichlet boundary condition for the pressure using Treatment A
and Treatment B

• Compute ∇.û∗ using 1D-IRBFNs

• Solve the pressure Poisson equation

∇
2 pn+1 =

1
∆t

∇.û∗ (24)

subject to Dirichlet boundary conditions

• Compute ∇pn using 1D-IRBFNs

• Estimate the velocity field at the next time level

ûn+1 = û∗−∆t(∇pn) (25)

4.2 Pressure boundary treatments

As mentioned earlier, for both Treatment A and Treatment B, Neumann boundary
conditions are transformed into Dirichlet ones. The former is based on values of
the pressure at interior nodes along a grid line and first derivative values of the
pressure at two extreme nodes of that grid line; while the latter relies on values of
the pressure at interior nodes along a grid line together with both first and second
derivative values of the pressure at two extreme nodes of that grid line.

4.2.1 Treatment A

On a x-grid line, the system that represents the relationship between the RBF space
and the physical space (i.e. the conversion system) can be established as p̂

∂ pb1
∂x

∂ pb2
∂x

=
(

H
H

)  ŵ
c1
c2

 (26)
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or ŵ
c1
c2

=
(

H
H

)−1
 p̂

∂ pb1
∂x

∂ pb2
∂x

 (27)

where

p̂ = (p1, p2, · · · , pq)
T

ŵ = (w1,w2, · · · ,wm)T

H =


H1(x1) · · · Hm(x1) x1 1
H1(x2) · · · Hm(x2) x2 1

...
. . .

...
...

H1(xq) · · · Hm(xq) xq 1

 (28)

H =
[

H1(xb1) · · · Hm(xb1) 1 0
H1(xb2) · · · Hm(xb2) 1 0

]
(29)

The nodal values of p at the two boundary nodes are then obtained by collocating
(6) at xb1 and xb2 and making use of (27)

(
pb1
pb2

)
=
[

H1(xb1) · · · Hnx(xb1) xb1 1
H1(xb2) · · · Hnx(xb2) xb2 1

](
H
H

)−1
 p̂

∂ pb1
∂x

∂ pb2
∂x

 (30)

For a y-grid line, in the same way, one obtains nodal values of p at the two boundary
nodes yb1 and yb2.

4.2.2 Treatment B

On a x-grid line, the conversion matrix is established as
p̂

∂ pb1
∂x

∂ pb2
∂x

∂ 2 pb1
∂x2

∂ 2 pb2
∂x2

=

 H
H
G

  ŵ
c1
c2

 (31)
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or

 ŵ
c1
c2

=

 H
H
G

−1


p̂

∂ pb1
∂x

∂ pb2
∂x

∂ 2 pb1
∂x2

∂ 2 pb2
∂x2

 (32)

where

p̂ = (p1, p2, · · · , pq)
T

ŵ = (w1,w2, · · · ,wm)T

H =


H1(x1) · · · Hm(x1) x1 1
H1(x2) · · · Hm(x2) x2 1

...
. . .

...
...

H1(xq) · · · Hm(xq) xq 1

 (33)

H =
[

H1(xb1) · · · Hm(xb1) 1 0
H1(xb2) · · · Hm(xb2) 1 0

]
(34)

G =
[

G1(xb1) · · · Gm(xb1) 0 0
G1(xb2) · · · Gm(xb2) 0 0

]
(35)

It leads to

(
pb1
pb2

)
=
[

H1(xb1) · · · Hm(xb1) xb1 1
H1(xb2) · · · Hm(xb2) xb2 1

] H
H
G

−1


p̂

∂ pb1
∂x

∂ pb2
∂x

∂ 2 pb1
∂x2

∂ 2 pb2
∂x2

 (36)

For a y-grid line, nodal values of p at the two boundary nodes can be obtained in a
similar manner.

It is noted that when the convection term vanishes on the boundary, e.g. walls in a
lid-driven cavity flow problem, boundary derivative values for the pressure can be
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calculated as

∂ pb

∂x
=

1
Re

(
∂ 2ub

∂x2 +
∂ 2ub

∂y2

)
(37)

∂ pb

∂y
=

1
Re

(
∂ 2vb

∂x2 +
∂ 2vb

∂y2

)
(38)

5 Numerical results

The isothermal lid-driven cavity flow has been widely used as a test problem for the
assessment of accuracy of numerical solvers in CFD. From the literature, FD results
using very dense grids by Ghia, Ghia, and Shin (1982) and pseudo-spectral results
by Botella and Peyret (1998) have been often cited for comparison purposes. It is
noted that for the latter, the field variable was decomposed into the regular part that
is approximated with Chebyshev polynomials and the singular part that is treated
analytically; and a benchmark spectral solution for Re = 100 and Re = 1000 were
provided.
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Figure 1: Comparison of the velocity profiles of the flow at Re = 1000 by the IRBFN
method between the two proposed treatments (Treatment A and Treatment B) and the usual
treatment (i.e. Neumann boundary condition). Results obtained by the FDM [Ghia, Ghia,
and Shin (1982)] are also included.

Figure 1 shows a comparison of the velocity profiles of the flow at Re = 1000
by the IRBFN method between the two proposed treatments (Treatment A and
Treatment B) and the usual treatment (i.e. Neumann boundary condition). Note
that a coarse grid is used to accentuate the difference between results. It can be seen
that the former is in closer agreement with the FD results than the latter. Moreover,
Treatment B performs better than Treatment A.
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The IRBFNs results of velocity are compared with the benchmark finite-difference
and spectral solutions and some other published solutions in Tables 1 and 2. It can
be seen that the present results are in good agreement with the spectral solutions,
even at relative coarse grids. Some plots of velocity profiles for Re = 100, Re = 400,
Re = 1000 are shown in Figures 2, 3 and 4.
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Figure 2: Comparison of the velocity profiles of the flow at Re = 100 between the present
method (Treatment A and Treatment B with two grids) and the FDM.
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Figure 3: Comparison of the velocity profiles of the flow at Re = 400 between the present
method (Treatment A and Treatment B with two grids) and the FDM.
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Figure 4: Comparison of the velocity profiles of the flow at Re = 1000 between the present
method (Treatment A and Treatment B with two grids) and the FDM.

Figure 5 displays the static pressure field for Re = 100 and Re = 400, which look
feasible when compared with those reported in Abdallah (1987). It is noted that the
static pressure coefficient Cp,s is defined as Cp,s = 2(Ps−Pc)/U2, where Pc is the
static pressure at the center of the cavity lower wall and U is the reference velocity.
When compared with pseudo-spectral techniques, attractive features of the present
1D-IRBFNs technique are that it does not require any special treatments for the
corner singularity and it can work with uniform grids.
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Figure 5: Contour plots of the static pressure ReCp,s for Re = 100 (left) and Re = 400
(right).
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(û
−

p)
[D

en
g]

64
x6

4
-0

.2
13

15
0.

41
7

—
0.

17
89

6
0.

34
1

—
-0

.2
53

39
0.

16
3

—

B
en

ch
m

ar
k

[B
ot

el
la

]
-0

.2
14

04
24

0.
45

81
0.

17
95

72
8

0.
23

70
-0

.2
53

80
3

0.
81

04

Ta
bl

e
2:

L
id

-d
riv

en
ca

vi
ty

flo
w

,R
e
=

10
00

:e
xt

re
m

a
of

th
e

ve
rt

ic
al

an
d

ho
ri

zo
nt

al
ve

lo
ci

ty
pr

ofi
le

s
th

ro
ug

h
th

e
ce

nt
re

of
th

e
ca

vi
ty

M
et

ho
d

G
ri

d
u m

in
E

rr
or

(%
)

y m
in

v m
ax

er
ro

r(
%

)
x m

ax
v m

in
er

ro
r(

%
)

x m
in

Pr
es

en
t(

Tr
ea

tm
en

tA
)

41
x4

1
-0

.3
23

83
02

16
.6

61
0.

19
55

0.
31

06
13

8
17

.5
97

0.
17

56
-0

.4
42

50
82

16
.0

45
0.

89
59

Pr
es

en
t(

Tr
ea

tm
en

tB
)

41
x4

1
-0

.3
36

29
97

13
.4

52
0.

18
90

0.
32

39
60

4
14

.0
56

0.
17

00
-0

.4
60

65
64

12
.6

02
0.

89
73

Pr
es

en
t(

Tr
ea

tm
en

tA
)

81
x8

1
-0

.3
72

28
85

4.
19

0
0.

17
69

0.
35

98
33

0
4.

54
0

0.
16

24
-0

.5
05

28
74

4.
13

4
0.

90
72

Pr
es

en
t(

Tr
ea

tm
en

tB
)

81
x8

1
-0

.3
75

69
13

3.
31

4
0.

17
54

0.
36

33
99

6
3.

59
3

0.
16

12
-0

.5
09

97
89

3.
24

4
0.

90
77

FD
M

(ψ
−

ω
)[

G
hi

a]
12

9x
12

9
-0

.3
82

89
1.

46
2

0.
17

19
0.

37
09

5
1.

59
0

0.
84

37
-0

.5
15

5
2.

19
6

0.
90

63
FD

M
(û
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6 Concluding remarks

This paper reports a projection technique, based on point collocation, 1D-IRBFNs
and Cartesian grids, for the discretisation of the velocity-pressure formulation in
conservative form. Two effective treatments are proposed to transform a Neumann
boundary condition of the pressure into a Dirichlet one. Numerical results of the
lid-driven cavity flow problem indicate that (i) the IRBFN solutions agree well
with those published in the literature, (ii) the use of a Dirichlet boundary form
outperforms the use of a Neumann boundary form, and (iii) Treatment B is more
accurate than Treatment A.
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