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The Study of Using External Fluid Loading on a Vibrating
Rectangular Plate for Suspended Sediment Concentration

in Water
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Abstract: This paper presents the result of a theoretical study on a new fluid den-
sity measuring concept which uses the effect of external fluid loading on a vibrating
thin plate. The underling physical principle of this concept is that the resonance
frequencies of an immersed vibrating plate change with the surface impedance
changes caused by the mass density variations of the external fluid. In this paper,
the analytical solutions of resonance frequencies with specific gravity are demon-
strated by a COMSOL the finite element simulation. The theoretical analysis pre-
sented in this paper shows that the resonance frequencies of an immersed vibrating
thin plate affect significantly with surrounding fluid loading, which is loaded as an
extra added mass. The resonance frequencies shifted to lower frequencies when
the fluid specific gravity increased. For the resonance frequency ratio applied to
the specific gravity estimation of onsite measurement, the increases in this coeffi-
cient are directly proportional to the increase with the specific gravity. In addition,
size effect on the thin plate is also presented. The results show that the thickness
of the thin plate is the most important factor for this resonance frequency ratio.
Finally, the preliminary experiment of the thin plate immersed in the various fluid
loading is also accomplished. The comparison shows that the experimental results
agree reasonably well with the finite element simulation. Based on these results of
the theoretical analysis and the experiment in this paper, using the loading by the
external fluid on the vibrating thin plate is feasible.
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1 Introduction

Measurements of fluid density are required in various industries and scientific fields;
for examples: industrial, mechanical, chemical, agricultural, and mining engineer-
ing. In hydrological and water resources engineering, measuring the density of
turbid water may offer a great potential for an indirect method for determining the
onsite suspended sediment concentration (SSC) in water bodies (Yin-Sung Hsu and
Cai, Jun-Feng, 2010). This is the so-called densimetric technique for SSC, which
is one of the more recently developed indirect methods intended to remedy the
many drawbacks of the convectional direct method. The advantage of this method
is that it offers automated real-time onsite measurements plus instant digital data
capability.

Density measurements may be categorized as the traditional and modern meth-
ods. The former includes the density bottle and the hydrometer methods. The
density bottle method offers good measurement precision and has a wide range of
applications, but its measurement operation is cumbersome and complicated. The
hydrometer method is easier to operate but offers only to some applications. The
common drawbacks of the traditional methods are that both the measurement op-
eration and reading are performed manually and are more susceptible to error. The
modern methods include the float, ultrasonic, nuclear, electromagnetic, desimetric
and vibration methods. Although these modern methods can only provide indirect
measurements but they offer the advantageous automated and real-time capability.
However, these methods are often subjected to severe environmental constrains.

Presently, all of the vibration methods utilize liquid-filled vibrating tubes which
are excited to vibrate by electromagnetic actuations. The resonance frequencies of
the tube vary with the densities of the fluid that flows inside the tube. In 1986,
Hinghofer-Szalkay H. pioneered that the mechanical oscillator technique (MOT)
for fluid density measurement had used this method by Leopold (1969). Due to
their versatility, reliable, high precision, and ease to use, the vibrating tube type
densimeters have become more popular. The United States Geological Survey
(USGS) had developed several types of vibration densimeters. The types may be
categorized according to the geometry of the tube, e.g., single-tube, double-tube,
and U-tube (Guy H. and Norman V., 1970), etc. Among them the U-tube type is
the most frequently used. The theoretical basis for the vibrating tube densimeters is
that the square of the resonance frequency of a bending vibration mode is propor-
tional to the ratio between the tube stiffness and the total mass of the tube, which
includes the mass of the tube material and that of the fluid inside. Since the stiffness
and the tube material mass are fixed constants, the resonance frequency will vary
with the mass of the fluid contained inside the tube. Sultan G. and Hemp J. (1989)
had theoretically derived and experimentally verified the relationship between res-
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onance frequency and fluid mass. Based on this study, he developed the theoretical
foundation for the Coriolis mass flowmeter. In 1999, Kalotay Paul obtained the
fluid mass density from the measured resonance frequency of a liquid filled tube.
In addition, the kinematic coefficients of viscosity were also estimated according to
the inlet-outlet pressure differences. In order to reduce the noise interference and
to improve measurement accuracy, Henry M. (2000) used an electronic data acqui-
sition system to obtain the resonance frequencies via discrete Fourier transform of
the acquired data.

The currently available vibrating tube densimeters are all liquid-filled type (usually
a U-shaped tube). The shortcoming of this internal flow based measuring system is
that it must be forced to overcome the tube wall resistance, the physical properties
of the fluid sample inside the tube may be somewhat altered and no longer com-
pletely representing the properties of the fluid to be measured. When the fluid is
transported as a slow two-phase flow containing heavy particles, deposits may build
up on the tube wall. Eventually, the tube may get clogged due to the restricted area
inside the tube. Under such circumstance, the fluid density inside the tube will be
no longer representing that intended to be measured.

In order to remedy the shortcomings of the internal flow based measuring system,
Hsu, Hwang and Huang. (2008) proposed the use of external fluid loading on a
vibrating tube for measuring the density of the fluid that surrounds the tube. The
theoretical analysis presented by Hsu et al. showed that this new measuring concept
is feasible and the previously mentioned shortcomings of the conventional internal
flow based measuring system can be prevented. This paper reports the result of an
experimental verification of the previous theoretical analysis presented by Hsu et al
(2008). A nearly simply supported slander thin aluminum tube was manufactured
and tested while it was immersed in a fluid filled tank. The experimental results
agree reasonably well with the theoretical results. The previous theoretical claim
on the feasibility of using the external fluid loading on a vibrating tube for the
measurement of fluid density is substantiated.

Similarly to the external fluid mass loading of the tube (Hsu, Hwang, and Huang.,
2008), the variation of resonance frequency of the thin plate in vacuum and which
immersed in the water or suspended sediment concentration (SSC) in river will
be presented in this paper. For the theoretical deviation of thin plate with fluid
loading, several exact and numerical methods have been developed from elasticity
theory and corresponding to the boundary condition of fluid structural interactions.
(Auld and Solie, 1973; Skelton and James, 1992, 1997; Rokhlin and Wang, 2002;
Chen et al., 2007). In addition to the discussion of the effect of the mass loading or
acoustic radiation loss by the fluid medium, the changes of the resonance frequency
with the mode number and various specific gravity are also discussed by using
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analytical numerical calculation and the finite element simulation. Finally, based
on the theoretical analysis, the size analysis including the Lx, Ly, and thickness
(h) of thin plate for the relation between square resonance frequency and specific
gravity using in the onsite measurement are proposed.

2 Basic equation of a rectangular plate

Consider a rectangular plate with length 2Lx and width 2Ly subjected to lateral
point load fz(x, y, t) and fluid pressures pt(x, y, t) and pb(x, y, t) on the upper and
lower surface of the plate as shown in the Fig. 1. If the plate is simply supported
on the edges, boundary conditions require that the transverse displacement w(x, y)
and its second derivatives vanish at the plate ends. That is,

(x,y) = 0,
∂ 2w
∂y2 = 0 at x =−Lx,Lx

w(x,y) = 0,
∂ 2w
∂x2 = 0 at y =−Ly,Ly

(1)

The equation of bending motion for an orthotropic thin plate is given by (Leissa,
1993; Skelton and James, 1997).

D11
∂ 4w
∂x4

1
+2H

∂ 4w
∂x2

1∂x2
2
+D22

∂ 4w
∂x4

2
+ρsh

∂ 2w
∂ t2 = fz(x,y, t)− pt(x,y, t)+ pb(x,y, t) (2)

where ρs and h are the density and thickness of the thin plate; H=D12 + 2D66 is
termed as the effective torsion rigidity of the plate, and D12=ν1D22=ν2D11.

To satisfy the equation of motion and the simply supported boundary conditions,
the following displacement function is introduced:

w(x,y, t) =
∞

∑
m=1

∞

∑
n=1

Wmn ·
[
sinkm(x+Lx)sinkn(y+Ly) · e−iωmnt] (3)

where Wmn is the corresponding Fourier coefficients of w(x,y), km=(mπ/2Lx) and
kn=(nπ/2Ly).

Substituting equation (3) into (2) and setting fz=0 results in the following charac-
teristic equation:

Wmn ·
[
D11k4

m +2Hk2
mk2

n +D22k4
n−ρphω

2
mn + f`

]
= 0 (4)
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where fl is the fluid pressure loading per unit transverse displacement, Wmn, im-
posed on the plate surface and the corresponding equation can be represented as

f` (m,n) =
−iρtω

2√
(ω/ct)

2− k2
x − k2

y

− iρbω2√
(ω/cb)

2− k2
x − k2

y

(5)

It can be obtained through the linearized Euler equation which relates pressure to
the transverse displacement distributed in the plate. Here, kx and ky are propagation
wavenumbers along x and y directions, respectively. The fluid loading terms act
as a radiation damping for acoustic wavenumbers [(ω/ci)2 > (kx)2+(ky)2], and as a
added mass for [(ω/ci)2 < (kx)2+(ky)2], where ci is set to ct and cb for upper and
lower halfspaces, respectively.
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Figure 1: The schematic geometry of the rectangular plate.

3 Fluid loading discussions

Equation (5) shows that fluid loadings may provide added masses to a plate. It also
points out that, for a given fluid medium, the loading depends on the exciting an-
gular frequency (ω), wavenumber (ki), and the dimensions (Lx and Ly) of the plate.
Obviously, it is remarked that the fluid loading is proportional to the fluid density
(ρi). We may choose to compare the relative magnitudes of fluid loadings of a
wave train at a particular wavenumber (kmx,kny), especially in the wavenumber of
the first three simply supported bending mode(m=1, 2, 3; n=1). The fluid loading
at any angular frequency is caused by the plate vibratory response to an external
excitation at that frequency. The example given here is an aluminum (E=7.5x1010
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Pa, ρs=2700 kg/m3, ν=0.3) rectangular plate with h=3 mm, Lx=30 cm, and Ly=15
cm. Both the upper and lower fluids are pure water (ρw=1000 kg/m3, cw=1500
m/s). Using the aluminum plate, the comparisons between the first three fluid load-
ings normalized by (ρ f c f ω are shown as Fig. 2 and Fig. 3 for lower and higher
frequencies, individually.

The Fig. 2 shows that the external fluid loading acts as mass loadings and without
any acoustic radiation loss below 2500 Hz due to only negative real parts of the
fluid loadings in the plate. In addition, the fluid mass loading of the lower mode,
(m,n)=(1,1), will increases faster than other higher mode obviously. It is meaning
that, in the low frequencies, the mass loading caused by fluid medium is almost
contributed from the fundamental mode.

With the increment of frequencies, shown in the Fig. 3, the mass loading by exter-
nal fluid grows exponentially and reaches its maximum value when the frequency
is approaching to 2795 Hz, where the wavenumber of the surrounding fluid loading
is equal to the plate (ω/c f ). When frequencies exceed 2795 Hz, this effect of mass
like loading from external fluid in the mode (1,1) abruptly turns into the acoustic
radiation loss and radiates to the external medium due to the vanish of the real parts
and replace to the imaginary parts. The similar variations of the fluid loading type
can also be obtained for each higher mode number, especially at their correspond-
ing critical frequency, 3535 Hz for (2,1) mode and 4507 Hz for (3,1) mode. After
these critical frequencies of each mode, the acoustic radiation loss will decrease
rapidly and converge asymptotically to a constant value in the further higher fre-
quency. It is considerably discrepancy with the cylindrical thin shell because of
the existence of both mass like and radiation loss in the higher frequencies for the
specific mode.

4 Effects of resonance frequencies of a simply supported plate with fluid
loading

4.1 Variations of resonance frequencies with fluid loading

Once the fluid loading is determined, the resonance frequencies of the simply sup-
ported thin plate considering the fluid loading can be determined from equation
(4). It is remarked that the fluid loading term fl is frequency dependent. To find
resonance frequencies of the plate, it is therefore necessary to calculate the un-
loaded ( fl=0) resonance frequency first, and then use this resonance frequency as
the frequency parameter for estimating fl in equation (4). The estimated fl is then
substituted into equation (4) to calculate the first fluid loaded frequency, which will
be used again for calculating the new fl . Subsequently, the second resonance fre-
quency is calculated by using the new fl . The iteration process will be repeated
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Figure 2: Fluid loading by pure water on the aluminum rectangular plate normal-
ized by (ρcω) for n=1 and m=1, 2, and 3 from frequency 0 to 2500Hz.

continuously until the calculated frequencies converge to a constant value.

Here again, we use the aluminum rectangular thin plate, where h=0.03 cm and
2Lx=30 cm and 2Ly=15cm, as an example. In the beginning, assuming this thin
plate is in vacuum and then immersed in pure ware completely. The convergence
of numerical calculated resonance frequency with (m,n) is shown in Tab. 1.

Table 1: Convergence of the iterations for the resonance frequency (kHz) of alu-
minum thin plate with (m,n).

(m,n) In vacuum
In Water

Iteration -1 Iteration -2 Iteration -3

m=1

n=1 417.548 122.733 122.876 122.876
n=2 668.078 218.208 218.598 218.598
n=3 1085.624 394.123 395.210 395.210
n=4 1670.191 663.729 666.392 666.388

n=1

m=1 417.548 122.733 122.876 122.876
m=2 1419.662 545.473 547.376 547.373
m=3 3089.853 1387.543 1396.920 1396.889
m=4 5428.120 2701.677 2730.773 2730.571
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Figure 3: Fluid loading by pure water on the aluminum rectangular plate normal-
ized by (ρcω) for n=1 and m=1, 2, and 3 from frequency 2500 to 6000Hz.

In most case, even for the higher mode (m,n), the resonance frequency with fluid
loading will converge to a constant value after only two or three calculating iter-
ations. On the other hands, it also shows that the first resonance frequeny with
external fluid loading in the thin plate will reduce to almost one-third of its in vac-
uum. This ratio will slightly decrease with the increment of mode number (m,n),
but these ratios will maintain almost twic to third time in the more higher modes.

The comparsions of the resonance frequencies, among the unloaded (in vacuum)
and loaded the plate are decipted in Fig. 4. It is shown that the fluid loading
by pure water have significantly changed the thin plate’s resonance frequencies
from its in the vacuum values. This difference between in vacuum and in water
increases apparently with the mode number (m,n). In other words, the external
fluid loading will suppress the increment of the resonance frequnecies in the lower
modes number than these in the higher mode numbers.

4.2 Variations of resonance frequencies by SSC

Since the increase in mass density or corresponding specific gravity of water in
rivers is correlated with the various suspended sediment concentration (SSC), the
variations of resonance frequencies of thin plate due to the change in the specific
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Figure 4: The resonance frequencies of bending vibrations of the thin plate for n=1
and m=1∼5 modes in the vacuum and corresponding frequencies with fluid loading
by using numerical approach.

gravity of the external fluid loading should be investigated. In order to validate
the influence of resonance frequencies in specific gravity of external fluid, the an-
alytical results will not only be calculated by the numerical approach represented
above, but also simulated by the finite element software, COMSOL. Similar to the
previous example for aluminum thin plate, the influence of resonance frequencies
in various specific gravity which varied from 1.0 to 1.5 is discussed and shown the
results in the Fig. 5. As expected, since the impact of external fluid as an added
mass to the thin plate, the resonance frequencies apparently shifted to the lower
frequencies when the fluid specific gravity increased. On the other hand, the ac-
curacy by using theoretical numerical analysis is demonstrated from the COMSOL
finite element simulation because of the same variation with the numerical result
for diverse specific gravities shown in the same figure.

The difference ratio of resonance frequency for each specific gravity calculated by
numerical approach and COMSOL finite element simulation are shown in the Fig.
6. This result shows that the difference ratios are almost the same for each mode
even the specific gravity increase and this difference ratio will decrease apparently
with the mode. In other words, the resonance frequency of the thin plate with fluid
loading evaluated by theoretical numerical approach is reasonable and properly
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Figure 5: The relations between resonance frequencies and the specific gravity of
fluid loading on the thin plate for n=1 and m=1∼3 by numerical calculation and
COMSOL FEM simulation.

enough. Based on this result, it is reasonable for the simulation of the complicated
model by using the COMSOL finite element.

4.3 Useful approach to estimate the undetermined specific gravity of the fluid

A useful approach to estimate the undetermined specific gravity of the fluid on the
vibrating plate is to use the relationship between the specific gravity ratio (ρ0/ρw)
and the square of the resonance frequency ratio (ωw/ω0)2. Fig. 7 shows these
relations from (1,1) to (3,3). In these modes, the increases in the squares of the fre-
quency ratios are almost directly proportional to the increase in the specific grav-
ity. The lower the mode number is, the larger the slope between specific ratio and
square of resonance frequency will be. These slops for mode number (1,1) to (3,3)
can be calculated to vary from 0.92∼0.78. In practice, the slope of the fundamental
mode number of thin plate is most important than others because of the visual-
ization of the first mode for measurement. Therefore, the formulation applied to
estimate the undetermined specific gravity of the fluid can be obtained as bellow

(m, n) = (1, 1),
ρ0

ρw
; 1+1.09

(
ω2

w

ω2
0
−1
)

(6)
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Figure 6: The difference ratio of resonance frequency with fluid loading calculated
by numerical calculation and COMSOL FEM simulation for specific gravity for
n=1 and m=1∼3.

For the application, when the resonance frequency of a thin plate discussed above
immersed in a river water can be measured, the mass density of the river water can
be calculated from equation (6).

4.4 Analysis of size effect for the rectangular plate with fluid loading

In order to realize the influence of square of frequency ratio (ωw/ω0)2 in the dimen-
sional directions of the rectangular plate, the variations with lengths (Lx,Ly) and
thickness (h) for mode number (1,1) and (3,3) are discussed and shown as Fig. 9
and 10, respectively. Fig. 8 shown that there is slight influence in the square of
the resonance frequency ratio (ωw/ω0)2 in the fundamental mode (1,1) and higher
mode number (3,3) even the length of y-direction is four time of x-direction. In
other words, the variations of slope between the specific gravity and square of res-
onance frequency are rarely affected by the dimension of thin plate.

For the effect of thickness (h) of thin plate, shown in the Fig. 9, the slope decreased
apparently with the thickness. This is because that the increment of thickness of
thin plate mainly increases the plate mass and corresponding inertia force. In other
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Figure 7: The relations of the square of resonance frequencies ratio (ωw/ω0)2 re-
lated to the specific gravity of fluid on the thin plate with (m,n).

words, it will decrease the resonance frequency of thin plate. For the thin plate,
thickness is equal to 0.5 mm, the slop of the mode (1,1) is approximately the same
with the mode (3,3). The difference between mode (1,1) and (3,3) will increase
with the thickness apparently. Therefore, before the application of thin plate for
on-site measurement, the coefficient of the slope in the equation (6) must be re-
simulated and modified in the laboratory according desired dimension of the plate,
especially in the thickness of plate.

4.5 A preliminary experiment for the demonstration of the feasibility

In order to verify the feasibility of the proposed concept, an experimental proto-
type for the thin plate shown in Fig. 10 can be obtained. In the convenience of the
production, the clamped boundary condition of this prototype may be used. How-
ever, in the numerical analysis, it is difficult to find the adequate shape functions
for the clamped boundary condition. Therefore, the COMSOL finite element sim-
ulation will be used to compare with the final experimental results. The various
concentrations of the fluid can be mixed by the pure water and sodium metasilicate
(Na2O.SiO2). To make sure the uniformly distribution of the fluid concentration
in the finite space, the stirring rod in the process is necessary. The signal adaptor
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Figure 8: The relations of the square of resonance frequencies ratio (ωw/ω0)2 re-
lated to the specific gravity of fluid on the thin plate with (m,n)=(1,1) and (3,3) for
a variety of (Ly/Lx).

(IMC CRONOS-PL2) can be used to pick up the output signal and transfer by FFT.

Fig.11 shows the comparison of the first four resonance frequency in the specific
gravity range from 1.0 to 1.5. As shown in the figure, the fundamental mode fre-
quencies are virtually the same whether the specific gravity is increased to 1.5. The
similar results can also be found in other higher modes. These results show a simi-
lar trend on the calculated effects by the external fluid loading shown in Fig. 5. The
difference between Fig. 5 and Fig.11 is the boundary condition and the geometric
scale. Therefore, although this is a rather crude experiment, the result is believed
adequate to demonstrate the feasibility of the concept.

5 Conclusions

An investigation of using the external fluid loading on the vibrating rectangular
thin plate has been presented. The fluid loading, like the added mass loading, by
the external fluid on the vibrating thin plate has been evaluated analytically. The
accuracy of the resonance frequencies with specific gravity by using the numerical
approach presented in this paper is demonstrated from the finite element simulation,
COMSOL. The rapid processes and explicit results is the advantage of using the nu-
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Figure 9: The relations of the square of resonance frequencies ratio (ωw/ω0)2 re-
lated to the specific gravity of fluid on the thin plate with (m,n)=(1,1), (3,3), and
(LxLy)=(15 cm,7.5 cm) for a variety of the thickness (h) of plate.

      
(a)                                                               (b) 

 
Figure 10: The prototype of the thin plate; (a) experimental model; (b) simulated
model.

merical approach. The result shows that resonance frequencies change are sensitive
enough to have the possible resolution on the various fluid specific gravity to the
pure water. The relationships between the square of the resonance frequency ratio
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Figure 11: The comparisons between experiment and simulation for first four
modes.

and specific gravity related to the pure water are discussed in this paper. The vari-
ation of these coefficients for the estimated formulation related to the dimensions
in x-, y-, and h directions are also presented and discussed. It is very convenient
and rapid to be referred to the design of the thin plate in advance and be used to
estimate the unknown specific gravity of fluid in the onsite measurement. Finally,
the preliminary experiment of the plate immersed in the fluid loading with various
specific gravity are also accomplished. The comparison shows the good agreement
with the experiment and finite element simulation. Therefore, based on the results
of the theoretical analysis and the experiment shown in this paper, the concepts
using the loading by the external fluid on the vibrating thin plate is feasible.
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