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Prestress Force Identification for Eccentrically Prestressed
Concrete Beam from Beam Vibration Response

Jianglin Xu1 and Zhi Sun2

Abstract: The measurement of residue prestress force is one main issue for con-
dition and performance assessment of prestressed concrete beam bridge. This pa-
per proposes a vibration based parameter estimation technique for this purpose.
Under given form external excitation, beam velocity responses at multiple points
are collected firstly. The prestress force of the beam is then identified based on the
minimization of the least square difference between the measured response and the
baseline response. A numerical study on a beam of variant length, subjected to a
constant prestress force with variant eccentricity, is conducted to show the effect of
prestress force and the effect of bending moment due to eccentricity on fundamen-
tal frequency of the beam. The results show that this vibration based method for
prestress force identification is both theoretically feasible and practically workable.
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1 Introduction

Prestressed concrete beam bridge is one of the most popular types of bridge in
highway system. Interest in the safety and load assessment of this type of bridge
is increased in recent years. Since prestress force is one of the most important pa-
rameters, an accurate and efficient measurement technique is important. Most of
the in-service bridges have not been equipped with sensors on prestressed tendons.
Consequently, prestress force cannot be measured from popular detective methods
nowadays. Several researchers tried to estimate the residue prestress force by vi-
bration test. Abraham, Park and Stubbs (1995) reported that the effect of prestress
force on the mode shape and amplitude is tiny. Saiidi, Douglas and Feng (1994)
studied on the variation trend of natural frequencies to the axial force, and a concept
of effective rigidity was used to account for this trend. Lu and Law (2006) reported
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a method based on sensitivity for prestress force identification, and the method was
used to identify a PC beam under axial prestress force. Li and Sun (2008) made a
further study on the identification of eccentricity compression force with the sen-
sitivity method. Kim, Park, Hong, Cho and Na (2009) reported the effectiveness
of vibration-impedance-based method on the identification of prestress force loss.
Moreover, several researchers studied on the effect of dead load on the vibration
characteristic of beams. Takabatake, H. (1990) established the governing equation
of a beam under transverse dead load using Hamilton principal. The effect of dead
load was obtained by solving the governing equation using Galerkin method.

In this study, a method based on vibration response measurement is proposed to
estimate the residue prestress force. The proposed method takes both the effect of
prestress force and the effect of eccentricity into account. Firstly, the responses
of the beam subjected to an eccentric prestress force under a given form exter-
nal excitation are collected by sensors. Secondly, the responses of a FEM beam,
with zero initial prestress force, are calculated. There is a difference between the
two responses above. Thirdly, the sensitivities of dynamic responses to prestress
force and the ones to bending moment due to eccentricity are calculated. Then, a
difference of prestress force is obtained via the relationship between sensitivities
and responses. Consequently, the FEM is updated. Finally, the prestress force is
identified when the steps above get a converged result. Numerical study is carried
out to verify the effectiveness of this method. Numerical studies of a beam with
variant length, subjected to a constant prestress force with variant eccentricity, are
conducted to show the effect of prestress force and the effect of bending moment
due to eccentricity on fundamental frequency of the beam.

2 Method

For the structure subjected to an arbitrary loading, the differential equation of mo-
tion can be written as:

[M]{ẍ}+[C]{ẋ}+[K]{x}= {F} (1)

where M, C and K are the mass, damping and stiffness matrix, respectively. F is
the excitation vector.

Suppose a beam subjected to an eccentric prestressed force as shown in Fig. 1.
The beam can be modeled as n finite elements of beam. So the stiffness matrix and
mass matrix can be written as:

K = K̄−KG +KM =
n

∑
i=1

(
k̄i− ki

G + ki
M
)

, M =
n

∑
i=1

mi (2)
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out to verify the effectiveness of this method. Numerical studies of a beam with variant length, 
subjected to a constant prestress force with variant eccentricity, are conducted to show the effect of 
prestress force and the effect of bending moment due to eccentricity on fundamental frequency of the 
beam. 

2 Method 

For the structure subjected to an arbitrary loading, the differential equation of motion can be written 
as: 

[ ]{ } [ ]{ } [ ]{ } { }M x C x K x F+ + =                                                   (1) 

where M, C and K are the mass, damping and stiffness matrix, respectively. F is the excitation vector.  
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Figure 1: (a) Eccentrically prestressed beam with a straight unbonded tendon; (b) transferring the 
eccentric prestress force to the center of the cross section of the beam as the superposition of an axial 
prestress force and a moment couple. 

Suppose a beam subjected to an eccentric prestressed force as shown in Fig. 1. The beam can be 
modeled as n finite elements of beam. So the stiffness matrix and mass matrix can be written as: 

( )
1

n
i i i

G M G M
i

K K K K k k k
=

= − + = − +  , 
1

n
i

i

M m
=

=                           (2) 

where K , GK  and MK  are the global elastic stiffness matrix, geometric stiffness matrix caused by 

axial force and stiffness matrix caused by the moment due to eccentricity, respectively. ik , i
Gk , i

Mk  

and im  are the elemental elastic stiffness matrix, geometric stiffness matrix, and mass matrix, 
respectively.  

The following elemental elastic stiffness matrix, geometric stiffness matrix, stiffness matrix caused by 
the moment due to eccentricity and mass matrix are adopted in this study, as below. 
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where L, m  and T are the length, the mass per meter and the prestress force of element, respectively. 
EI and EA are the flexural rigidity and compressive rigidity of the cross section of the beam. d2 and d1 
are the deflection at the left end and the right end of the element, respectively. Since the prestress 
force T is set to be positive, the item KG is minus in Eq. (2) to indicate the softening effect of prestress 
force on stiffness. 
Rayleigh damping is used, and the damping matrix C is written as 

0 1C a M a K= +  (4) 

where a0 and a1 are the two Rayleigh damping coefficients. 

Take the first differential of the dynamic response with respect to the prestress force T, Eq. (1) 
becomes 

Figure 1: (a) Eccentrically prestressed beam with a straight unbonded tendon; (b)
transferring the eccentric prestress force to the center of the cross section of the
beam as the superposition of an axial prestress force and a moment couple.

where K̄, KG and KM are the global elastic stiffness matrix, geometric stiffness
matrix caused by axial force and stiffness matrix caused by the moment due to ec-
centricity, respectively. k̄i, ki

G, ki
M and mi are the elemental elastic stiffness matrix,

geometric stiffness matrix, and mass matrix, respectively.

The following elemental elastic stiffness matrix, geometric stiffness matrix, stiff-
ness matrix caused by the moment due to eccentricity and mass matrix are adopted
in this study, as below.
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where L, m̄ and T are the length, the mass per meter and the prestress force of
element, respectively. EI and EA are the flexural rigidity and compressive rigidity
of the cross section of the beam. d2 and d1 are the deflection at the left end and
the right end of the element, respectively. Since the prestress force T is set to be
positive, the item KG is minus in Eq. (2) to indicate the softening effect of prestress
force on stiffness.

Rayleigh damping is used, and the damping matrix C is written as

C = a0M +a1K (4)
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where a0 and a1 are the two Rayleigh damping coef?cients.

Take the ?rst differential of the dynamic response with respect to the prestress force
T , Eq. (1) becomes

[M]
{

∂ ẍ
∂T

}
+[C]

{
∂ ẋ
∂T

}
+[K]

{
∂x
∂T

}
+
[

∂C
∂T

]
{ẋ}+

[
∂K
∂T

]
{x}= 0 (5)

It is noted that [M] is not dependent on T , and thus the partial derivative ∂M
∂T in Eq.

(5) disappears.

According to Eq. (2) and Eq. (4),

∂K
∂T

=
∂ (K̄−KG +KM)

∂T
=−∂KG

∂T
+

∂KM

∂T
∂C
∂T

=
∂ (a0M +a1K)

∂T
= a1

∂K
∂T

= a1

(
−∂KG

∂T
+

∂KM

∂T

) (6)

Since the deflections of the beam under bending moment caused by eccentric pre-
stress force T can be written as

dx =
Te

2EI
x(l− x) (7)

where x is the distance from the left end of the beam to the point of deflection, e
is the eccentricity of the prestress force. Obviously, d1 and d2 are dependent on T ,
and the partial derivative ∂KM

∂T appears in Eq. (7).

Substituting Eq. (6) into Eq. (5), the following ODE is obtained

[M]
{

∂ ẍ
∂T

}
+[C]

{
∂ ẋ
∂T

}
+[K]

{
∂x
∂T

}
=
(

∂KG

∂T
− ∂KM

∂T

)
(a1 {ẋ}+{x}) (8)

Define S = ∂x
∂T as the sensitivity of dynamic response to prestress force and {P}=(

∂KG
∂T −

∂KM
∂T

)
(a1 {ẋ}+{x}). Then Eq. (8) becomes

[M]
{

S̈
}

+[C]
{

Ṡ
}

+[K]{S}= {P} (9)

S can be obtained by solving Eq. (8). According to the definition of sensitivity, the
relationship between dynamic response and prestress force can be found as

{S} ·δT = {δx} (10)

where {δx} is the difference between the response of the beam subjected to eccen-
tric prestress force T and the response of the beam subjected to T +δT , under the
same excitation.
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Then δT can be obtained by solving Eq. (10) using least square method. Since
δT −{δx} relationship is nonlinear, numerical iterations are generally required to
get converged results. The convergence principle to stop the iteration is set to be

|Tk−Tk−1|
|Tk|

=
|δTk|
|Tk|

≤ r (11)

where r, set to be 1×10−5, is a threshold value to stop the iteration.

3 Effect of prestress force and eccentricity on fundamental frequency

A simply-supported beam is studied. The width and depth of the beam are both
20cm. The mass per meter of the beam and Young’s modulus of concrete are
100kg/m and 32.5Gpa, respectively. The prestress force is set to be 100kN. The
length of the beam varies from 1.8m to 12m. The eccentricity (denoted by e) varies
from 0 to 0.1m with 0.02m increment. The variation of fundamental frequency is
shown in Fig. 2 and Fig. 3. We denote the fundamental frequency of the beam
without prestress force as the reference frequency ω0. Put an axial prestress force
T onto the beam, the fundamental frequency changes to ω1. When the eccentricity
is varying, the fundamental frequency changes to ω2. Denote α = ω1−ω0

ω0
×100% as

the softening effect of prestress force. Denote β = ω2−ω1
ω0
×100% as the stiffening

effect of eccentricity. Denote ε = e/h , where h is the depth of the beam.

From Fig. 2 and Fig. 3 we can find that, as h/l decreases, the absolute values of
α and β both have a notable increase. That means as the beam getting more slen-
der, the effect of prestress force and the effect of eccentricity on the fundamental
frequency both increase significantly, thus should not be ignored. Moreover, as the
eccentricity increases, the effect of eccentricity on the fundamental frequency has
an increase.

4 Case study on prestress force identification

A simply-supported beam is studied. The width, depth and length of the beam are
20cm, 20cm and 6m respectively. The mass per meter of the beam and Young’s
modulus of concrete are 100kg/m and 32.5Gpa, respectively. The first three natural
frequencies are 9.083, 36.361 and 82.069 Hz, obtained by solving the frequency
equation. Figure 4 illustrates the procedure of the identification of the prestress
force. The beam is subjected to four different levels of eccentric prestress forces
of 30, 60, 90, 120 kN, with constant eccentricity of 0.1m. The excitation force is
shown in Fig. 4(a). The response of the beam with or without prestress force is
obtained under the excitation above, as shown in Fig. 4(b). Then the differences
of responses and sensitivities {S} were calculated, as shown in Fig. 4(c) and Fig.
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Figure 2: Effect of axial prestress force on fundamental frequency when h/l varies. 
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Figure 3: Effect of eccentricity on fundamental frequency when h/l varies. 
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4(d). After that, δT was calculated by solving Eq. (11) using least square method.
Finally the prestress force T was obtained when iteration of the identification con-
verged controlled by Eq. (12). Fig. 4(e) shows the comparison of the responses
when the iteration of the identification stopped. The cases considering or ignor-
ing the effect of eccentricity are both conducted. The results of the prestress force
identified are shown in Tab. 1.
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stopped. The cases considering or ignoring the effect of eccentricity are both conducted. The results of 
the prestress force identified are shown in Tab. 1. 

Results from the simulation above indicate that the prestress force can be identified accurately from 
the measured dynamic responses. Not only the effect of prestress force, but also the effect of 
eccentricity should be taken into account to get accurate results of the identification of prestress force. 

Table 1: The results of identification of prestress force (T) 

Ignoring eccentricity effect 
Case Actual T (kN) 

Identified T (kN) Error (%) 
Considering eccentricity 

effect (kN) 

1 30 28.413 -5.28922 30 

2 60 53.654 -10.5764 60 

3 90 75.726 -15.8594 90 

4 120 94.636 -21.1364 120 
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Figure 4: Excitation, velocity response and sensitivity: (a) excitation; (b) comparison of response 
with and without prestress force; (c) the difference of the responses in (b); (d) sensitivity of velocity 
response to prestress force; (e) comparison of responses when identification finished. 

5 Conclusions 

A method based on velocity-response-sensitivity to prestress force is proposed for the identification of 
the prestress force of PC beam. Numerical study is conducted to verify the effectiveness of the 
proposed method. Results from numerical study show that the effect of prestress force and the effect 
of eccentricity are both important to get accurate results of identification of prestress force.  
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Results from the simulation above indicate that the prestress force can be identi?ed
accurately from the measured dynamic responses. Not only the effect of prestress
force, but also the effect of eccentricity should be taken into account to get accurate
results of the identification of prestress force.

Table 1: The results of identification of prestress force (T )

Case Actual T (kN)
Ignoring eccentricity effect Considering eccentricity

Identified T (kN) Error (%) effect (kN)
1 30 28.413 -5.28922 30
2 60 53.654 -10.5764 60
3 90 75.726 -15.8594 90
4 120 94.636 -21.1364 120

5 Conclusions

A method based on velocity-response-sensitivity to prestress force is proposed for
the identification of the prestress force of PC beam. Numerical study is conducted
to verify the effectiveness of the proposed method. Results from numerical study
show that the effect of prestress force and the effect of eccentricity are both impor-
tant to get accurate results of identification of prestress force.
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