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Flow Simulations by a Particle Method Using Logarithmic
Weighting Function
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Abstract: The application of a particle method to incompressible viscous fluid
flow problems is presented. The method is based on the MPS (Moving Particle
Semi-implicit) scheme using logarithmic weighting function. Numerical results
demonstrate the workability and the validity of the present approach through in-
compressible viscous fluid flow in a driven cavity and flow behavior in a liquid ring
pump with rotating impeller blades.
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1 Introduction

From a simulation-based practical point of view, it is important to compute ef-
ficiently multi-physics problem and moving boundary/obstacle one in the wide
fields of engineering and science. There are various meshless-based methods,
such as SPH (Smoothed Particle Hydrodynamics) method [Lucy (1977);Gingold
and Monaghan (1977)], MPS (Moving Particle Semi-implicit) one [Koshizuka and
Oka (1996)], and MLPG (Meshless Local Petrov-Galerkin) one [Atluri and Zhu
(1998);Lin and Atluri (2001)], to simulate effectively such problems.

The purpose of this paper is to present the application of a particle method us-
ing logarithmic weighting function to incompressible viscous fluid flow problems,
namely flow in a driven cavity [Ghia, Ghia and Shin (1982);Kakuda and Tosaka
(1992)] and flow in a liquid ring pump with rotating impeller [Kakuda, Ushiyama,
Obara, Toyotani, Matsuda, Tanaka and Katagiri (2010)]. The cavity flow is the
well-known typical problem in an incompressible viscous fluid flow. On the other
hand, the phenomena in the liquid ring pump require the multi-physics problem
including the moving interface boundary between gas and liquid, and the rotating
impeller with blades. The pump has an impeller with blades attached to a center
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hub, located by the decentering in a cylindrical body. The workability and validity
of the present approach are demonstrated through the driven cavity flow and flow
in the liquid ring pump, and compared with experimental data and other numerical
ones.

(a) Particle interaction models (b) Logarithmic weighting function

Figure 1: Particle interaction models and weighting functions

2 MPS formulation

Let us briefly describe the MPS as one of the particle methods [Koshizuka and Oka
(1996)]. The particle interaction models as illustrated in Fig. 1(a) are prepared with
respect to differential operators, namely, gradient, divergence and Laplacian. The
incompressible viscous fluid flow is calculated by a semi-implicit algorithm, such
as SMAC (Simplified MAC) scheme.

The particle number density n at particle i with the neighboring particles j is defined
as

ni = ∑
j 6=i

w(|rrr j− rrri|) (1)

in which the weighting function w(r) is

w(r) =

{re

r
−1 (r < re)

0 (r ≥ re)
(2)
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where re is the radius of the interaction area as shown in Fig. 1(a).

The model of the gradient vectors at particle i between particles i and j are weighted
with the kernel function and averaged as follows :

< ∇∇∇φ >i=
d
n0 ∑

j 6=i
[

φ j−φi

|rrr j− rrri|2
(rrr j− rrri)w(|rrr j− rrri|)] (3)

where d is the number of spatial dimensions, φi and φ j denote the scalar quantities
at coordinates rrri and rrr j, respectively, and n0 is the constant value of the particle
number density. The Laplacian model at particle i is also given by

< ∇∇∇
2
φ >i=

2d
n0λ

∑
j 6=i

(φ j−φi)w(|rrr j− rrri|) (4)

where λ is an ad hoc coefficient.

(a) Geometrical configuration (b) Initial state of particles

Figure 2: Flow in a driven cavity

3 Logarithmic weighting function

For the MPS formulation mentioned above, the weighting function of Eq. 2 is a
key factor in the particle framework. If the distance r between the coordinates rrri

and rrr j is very close, then there is a possibility that the computation fails suddenly.
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(a) MPS with Eq. 2 (b) Present

(c) Comparisons with FDM

Figure 3: Velocity vector fields and comparisons with the other numerical data
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Therefore, we propose the following logarithmic-type weighting function instead
of Eq. 2 as shown in Fig. 1(b).

w(r) =

{
log(

re

r
) (r < re)

0 (r ≥ re)
(5)

4 Numerical examples

In this section we present numerical results obtained from applications of the above-
mentioned numerical methods to incompressible viscous flow problems, namely
flow in a driven cavity and flow in a liquid ring pump with rotating impeller blades
from a practical point of view. The initial velocities are assumed to be zero every-
where in the interior domain. In both cases, we set the CFL condition umax∆t/lmin≤
C, where C is the Courant number (= 0.1). The kernel size for the particle num-
ber density and the gradient/Laplacian models is also re = 4.0l0 in which l0 is the
distance between two neighboring particles in the initial state. In this case, we set
l0 = 0.002333.

(a) Geometrical configuration (b) Initial state of particles

Figure 4: Flow in a liquid ring pump

4.1 Flow in a driven cavity

Let us first consider the flow in a square cavity driven by a lid sliding at a uniform
velocity. The geometry, the boundary conditions and the initial state of particles
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(a) MPS with Eq. 2 (b) Present

(c) Comparisons with exp.

Figure 5: Particle behaviors and comparisons with the experimental data
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are shown in Fig. 2. In the initial configuration, we set 2,500 particles and the
Reynolds number of 100. Fig. 3 shows the velocity vector fields using MPS with
Eq. 2 and present approach, and the velocity profiles on the centerline of the cavity.
Our numerical results are generally comparable to the finite difference solutions
[Ghia, Ghia and Shin (1982)].

4.2 Flow in a liquid ring pump

As the second example, Fig. 4 shows the geometry and the initial state of particles
for flow in a liquid ring pump with rotating impeller. In Fig. 4(a) the blades near the
top of the pump are very closer to the outside wall than at the side and bottom of the
pump. The impeller with blades is attached to a center hub and located in off-set
from the center of the cylindrical body. In this two-dimensional simulation, we set
9,527 particles in the initial configuration and 2,400rpm as the speed of the rotating
impeller. Fig. 5 shows the instantaneous particle behaviors using MPS with Eq. 2
and present approach, and we compare our results with the air-water interface line
obtained from the experiment (see Fig. 5(c)). Our results are qualitatively similar
to the experimental data.

5 Conclusions

We have presented the MPS approach using logarithmic weighting function for
solving numerically incompressible viscous fluid flow problems. The MPS scheme
has been widely utilized as a particle strategy for free surface flow, the problem of
moving boundary, and multi-physics/multi-scale ones. As the numerical examples,
the driven cavity flow and the flow in a liquid ring pump with rotating impeller are
carried out and compared with experimental data and other numerical ones.
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