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ABSTRACT

The characteristics of soil treated with cationic polyacrylamide (CPAM) mass content of 0%, 0.2%, 0.4%, 0.6%,
0.8%, and 1% were investigated through a series of laboratory tests to explore the practical engineering effect
of an expansive soil amended with environmental protection material CPAM. The results indicate that with
the increasing CPAM content, the liquid limit and plasticity index of soil decrease, the plastic limit increases,
and the free swelling ratio and loaded swelling ratio decrease. Besides, the improved soil has less disintegrating
property and better water stability. The shear strength increases as the content increases, and the optimal content
is 0.6%. Meanwhile, the cohesion of the soil first increases and then decreases, and the internal friction angle
increases. Additionally, the unconfined compressive strength first increases and then decreases. The improved soil
presents the characteristics of brittle failure and reaches the peak value (410.1 kPa) at the content of 0.8% after
curing for 14 days. Scanning electron microscope (SEM) exhibits that the number of curved and wrinkled sections
of the expansive soil is reduced after CPAM improvement. Simultaneously, the arrangement of the superimposed
polymer changes from face-face to side-angle or side-face-angle, and the reticular structure formed improves the
strength and spatial stability of the soil. Therefore, adding appropriate cationic polyacrylamide could improve
expansive soil in engineering.
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1 Introduction

Expansive soil is a catastrophic soil whose mucilaginous composition is mainly composed of the
hydrophilic mineral montmorillonite and illite [1-4]. Expansive soil has the recurrent and potential
deformation characteristic of swelling with water absorption and shrinking with water loss [5—8]. In the
construction of roads, railways, and underground buildings, the special characteristics of expansive soil
often cause more problems in the construction and maintenance of the project [9-16]. Therefore,
expansive soil must be improved and treated first to ensure the smooth construction and safety of the project.

Chemical treatment of expansive soil mainly uses the addition of stabilizers [17,18]. Traditional
stabilizers such as lime, fly ash, and cement can effectively reduce the swelling ratio of expansive soil
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and increase the strength of expansive soil [19-21]. Studies have revealed that the effect of improving
expansive soil can be improved by mixing them [22-25]. The microstructure and mineral composition of
expansive soil before and after the improvement has been observed by scanning electron microscope
(SEM) and X-ray diffraction (XRD) test method. It was demonstrated that these materials all have
pozzolanic properties of reducing shrink-swell behavior by chemical reactions between the clay minerals
and the calcium oxide molecules at the surface level [26,27]. However, these traditional inorganic
ameliorants have problems such as groundwater pollution, great impact on the environment, high dosage,
and influence on project progress and cost.

At present, the use of non-traditional stabilizers is becoming more and more popular. Taher et al. [28]
compared and evaluated the effectiveness of traditional chemical stabilizers and commercially available
polymers in reducing the swelling potential of expansive clays. Tiwari et al. [29,30] discovered that using
polypropylene fiber combined with silica fume can effectively improve the shrinkage behavior of
expansive soil and increase the CBR value of expansive soil roadbed. Gautam et al. [31] chose a liquid
ionic stabilizer composed of sulfuric acid, phosphoric acid, and citric acid, revealing that the swelling rate
was effectively reduced in the treated soil compacted with the optimal water content. Besides, salt [32—
35] and enzymes [36] can weaken swelling by improving the ionic composition of the soil and reducing
the concentration gradient between absorption and free pore water. Natural and synthetic polymers can
reduce soil shrinkage and swelling by forming nanocomposite structures [37—40].

Polyacrylamide (PAM) has been used in the improvement of expansive soil [41]. Cationic
polyacrylamide (CPAM) is an organic polymer compound [42,43]. This material has good stability and
long shelf life. Adding its aqueous solution to the expansive soil in a reasonable proportion has the effect
of chemically solidifying the expansive soil and changing the soil structure [44,45]. Considering the
influence of organic materials on geotechnical properties [46], the production of CPAM generates little
environmental pollution. CPAM is an environmentally friendly material. It is soluble in water, and its
aqueous solution is neutral, pollution-free [47]. In this experiment, cationic polyacrylamide (CPAM) is
used to improve the expansive soil, and indoor tests are conducted to determine the optimal content, so as
to provide scientific suggestions for engineering construction while reducing pollution.

2 Materials

2.1 Expansive Soil

The expansive soil used in the experiment was taken from a construction site in Shannan New District,
Huainan City, Anhui Province, China. The soil sample was brown and greyish-yellow. The raw materials for
the test are exhibited in Fig. 1. According to the Chinese Standard for Geotechnical Testing Method (GB/T
50123-2019), the physical parameters of test soil were determined by a series of laboratory tests, as presented
in Tab. 1. The particle grading curve obtained by the sieve analysis and the particle composition of test soil is
provided in Fig. 2 and Tab. 2. As illustrated in Fig. 3, the X-ray diffraction (XRD) result demonstrated that
the test soil was primarily composed of quantz and a small amount of albite, illite, and montmorillonite. The
main chemical properties of test soil measured by X-ray fluorescence spectroscopy (XRF) are listed in Tab. 3.

2.2 Additives

Polyacrylamide is divided into four types, namely anionic, cationic, non-ionic, and zwitterionic. In this
study, cationic polyacrylamide (CPAM), which is a copolymer of acrylamide and cationic monomers, was
used as the modifier. The cationic organic matter is connected with multiple N atoms and has a strong
positive charge. Due to its polymer effect, it can have sufficient ion exchange adsorption reaction with
montmorillonite and illite with a large cation exchange capacity [48,49]. The CPAM used in this research
is from Zhengzhou Senhai Water Treatment Co., Ltd., Zhengzhou, China. The main chemical parameters
of the additive are listed in Tab. 4.
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Figure 1: Test raw materials. (a) Undisturbed soil sample; (b) Grated soil sample; (c) CPAM sample

Table 1: Physical parameters of Huainan expansive soil

Density  Liquid Plastic Plasticity =~ Maximum dry ~ Optimum moisture ~ Free swelling
(g/em®)  limit (%) limit (%) index density (g/cm®)  content (%) ratio (%)
1.98 44.8 23.1 21.7 1.63 22.1 53.8
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Figure 2: Particle grading curve of expansive soil
Table 2: Particle gradation
Parameter Particle size
20<d 10<d<20 05<d<1.0 025<d<05 0.075<d<0.25 0.005<d=<0.075 d<0.005
Content (%) 4.2 5.5 15.8 17.3 29.7 11.9 15.6
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Figure 3: X-ray diffraction of expansive soil

Table 3: Chemical properties of expansive soil

Chemical composition

Content (%)

SiO,
ALO;
CO,
F6203
K,0
CaO
TiO,
MgO
SO;
NaZO
MnO
Cl

60.1927
16.0402
8.3374
6.8768
2.9221
1.4851
0.9991
0.9875
0.5842
0.5382
0.4296
0.1481
0.1109

Table 4: Chemical parameters of CPAM

Appearance Molecular Ion Solid PH Chemical Structural formula
weight (10 K) concentration content composition
(%) (%)
White 800 40 95 Acrylamide and ~ —e—E—c—E5-
powder, cationic monomers clonnz oolnn
granules eH,

+
HyC——N——CH,
cr
CH;
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3 Experimental Programs

The physical and mechanical properties were tested in accordance with the Chinese Standard for
Geotechnical Testing Method (GB/T 50123-2019), and the content of CPAM was the ratio of the mass of
CPAM to the mass of dry soil. The test steps are described as follows:

1. The soil was placed in an oven at 105 degrees Celsius for more than eight hours until it was dried
completely. Then, the dried expansive soil was ground and passed through a 0.5 mm sieve. The
optimal moisture content was used to weigh the test water. CPAM was added according to the
mass percentages of 0.2%, 0.4%, 0.6%, 0.8%, and 1%. Then, it was stirred evenly until dissolved
in water. The liquid-plastic limit and free swelling ratio index were determined when CPAM was
thoroughly mixed with the test soil.

2. The dried soil was passed through a 2 mm sieve, and the modifier was weighed according to the
above ratio and dissolved in water to mix the soil sample. Afterwards, it was put in a sealed bag
and cured for 24 h. According to the light compaction standard, cutting ring remolded samples
with a diameter of 61.8 mm and a height of 20 mm were prepared. The improved soil was made
into a cutting ring sample and placed in a uniaxial consolidation instrument, and a 25 kPa load
was applied. After the compression and deformation of the soil sample were stable, water was
injected into the water box, and the loaded swelling ratio test was performed. A water stability test
was conducted to observe the collapse of the soil sample without confinement. Due to the limited
length of the article, only the disintegration diagram of plain soil and 0.6% CPAM improved soil
in water were provided. During the direct shear test, the hand wheel rotation and dynamometer
readings were recorded. The handwheel speed was 4 r/min, and the normal vertical pressure
applied was 50 kPa, 100 kPa, 150 kPa, and 200 kPa.

3. The improved soil was packed into a cylindrical mold with a diameter of 50 mm and a height of
100 mm. All the samples were compacted at the optimum moisture content of 22.1% and dry
density of 1.98 g/cm®. The compaction coefficient of 0.9 was chosen for the production of soil
sample [50]. By the layered compaction method, each layer was shaved and compacted into five
layers. Three parallel samples were made for each proportion. The samples were wrapped with
plastic wrap and put into a sealed bag, enabling the moisture content to be maintained at the
curing period of 7 days and 14 days. Besides, the UTM4204 universal testing machine was used
in the test. It is controlled by strain during operation and can automatically record the stress-strain
curve, with the loading rate of 2 mm/min.

4. The plain soil and improved soil were made into small pieces and dried. Before the SEM test, the soil
sample was polished and then plated with gold for 180 s to enhance its conductivity. The acceleration
voltage of SEM analysis was set to 20 kV. Flex1000 scanning electron microscope manufactured by
Japan Co., Ltd., was used to observe the microstructure of CPAM solid particle, plain soil, and 0.6%
CPAM improved soil.

4 Test Results and Analysis

4.1 Liquid-Plastic Limit Test

As indicated in Fig. 4, the boundary moisture content index of the expansive soil significantly improves
after the addition of CPAM. With the increasing content of CPAM, the liquid limit and the plasticity index of
the improved expansive soil gradually decrease, and the plastic limit gradually increases. With the addition of
1% CPAM as an example, the liquid limit of the improved soil decreases by 6.4%, the plasticity index
decreases by 21.6%, and the plasticity increases by 7.8%. This is because the clay minerals
(montmorillonite and illite) in the expansive soil have considerable negative charges on the surface. This
can be closely related to the added cationic additives, which reduced the thickness of the adsorbed water
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film on the surface of the expansive soil particles. Then, the & potential [51] (the potential difference between
the sliding surface and the solution body, which reflects the charge of the colloidal particles) decreases. The
pore space of the soil mass between each particle size shrinks. The soil particles further approach each other
and become dense. The internal bound water of the expansive soil decreases. As a result, the liquid limit and
plasticity index decrease, and the plastic limit increases.
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Figure 4: Change of liquid-plastic limit

4.2 Free Swelling Ratio Test

Fig. 5 illustrates that when 0.2% CPAM is added, the free swelling ratio of the improved soil drops to
39.1%, making it no longer belongs to expansive soil, according to the Technical Code for Building in
Expansive Soil Regions (GB 50112-2013). Similar to traditional modifiers [52], the free swelling ratio
decreases with the increase of CPAM content at the beginning. However, the free swelling ratio begins to
increase again when the content exceeds 0.6%. This is because when the content is low, the adsorption
capacity of the active part of CPAM to clay under the action of electrostatic and hydrogen bonding
increases with the increasing content. However, when exceeding a content, the adsorption capacity will
reach saturation. It was discovered during the experiment that flocs had formed in the water when 0.6%
CPAM was stirred and dissolved in water. This floc weakens the adsorption and bridging effect between
CPAM and expansive soil. Consequently, the expansibility of the improved soil increases again. The
change curves of the two curing periods in Fig. 5 are close to coinciding since CPAM improvements are
conducted in solution without hydration reaction.

4.3 Loaded Swelling Ratio Test

It can be observed from Fig. 6a that the soil sample shrinks and deforms in the first 140 min under the
load of 25 kPa. After the deformation is stable, the soil sample expands rapidly in the next 80 min under the
water injection condition. The growth rate of the loaded expansion gradually decreases until it stabilizes. As
illustrated in Fig. 6b, the loaded swelling ratio decreases with the increasing CPAM content. Specifically,
considerable amino groups on the CPAM molecular chain can form hydrogen bonds with the oxygen and
hydrogen-oxygen layers on the mineral crystal surface. Consequently, a thin film is formed on the surface
of the expansive soil particles. This strong electrostatic effect weakens the negative electric repulsion
between the layers and prevents the infiltration of external water from increasing the interlayer spacing to
form expansion, reducing the loaded swelling ratio. It is noteworthy that the loaded swelling ratio
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increases again when the content of CPAM exceeds 0.8%. Because when the content of CPAM exceeds a
value, its adsorption on the surface of the clay reaches saturation, and excessive polyacrylamide causes
the swelling of the soil to increase again.
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Figure 5: Change of free swelling ratio
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Figure 6: Effect of CPAM on the loaded swelling ratio. (a) Aging diagram of loaded swelling ratio; (b)
Change of loaded swelling ratio

4.4 Water Stability Test

As presented in Fig. 7, the plain soil began to fall off in blocks at 0.5 h, floating bubbles increased, the
upper surface edge gradually lifted up, and cracks appeared. After 1 h, the collapse intensified, the upper edge
became loose and fell off, and the surface was covered with cracks. Then, the upper surface cracks moved
towards the middle basically stabilized after 4 h and disintegrated after 6 h. The 0.6% CPAM improved soil
began to loosen at the edge at 0.5 h, and cracks appeared on the upper surface edge for 1-4 h and gradually
extended to the middle. The edge loosening increased while no soil debris slipped. After 6 h, the crack width
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increased. The improved soil sample is intact as a whole because CPAM reacts with montmorillonite and
illite to form a covering film that connected and wrapped the soil particles. The hydrophilicity of the
improved soil is fundamentally changed, contributing to forming a reticular structure and making a closer
connection between the soil particles. This improved feature enhances the water stability of the soil,
beneficial to the construction of expansive soil embankments and slopes in rainy areas.

Figure 7: Disintegration diagrams in water. (a) Disintegration diagrams of plain soil; (b) Disintegration
diagrams of 0.6% CPAM improved soil

4.5 Direct Shear Test

Fig. 8 presents the stress-displacement curves of different contents. The shear strength under different
overburden pressures is listed in Tab. 5. The shear strength fitting curves and the test data summary are
exhibited in Fig. 9 and Tab. 6.

Fig. 8 indicates that the shear strength of expansive soil is related to the normal vertical pressure. The
peak strength of plain soil and improved soil increases with the increasing overburden pressure, and the
residual strength still meets this law. This is because the upper soil and the lower soil are squeezed to
produce relative displacement when the soil subjected to horizontal thrust, resulting in a large “bite” force
needing to be overcome. The greater the overburden pressure, the greater the bite force needing to be
overcome, and the greater the shear strength. Particularly, the stress-displacement curves first increase and
then decrease to be stable regardless of plain soil or improved soil. The soil particles can bypass another
part of the soil particles when the shear strength of the soil itself is greater than the bite force. At this
time, the integral structure of the soil becomes loose. A significant displacement occurs in the upper and
lower parts of the soil. Meanwhile, the shear resistance is weakened and the softening characteristics are
shown. The data in Tab. 5 demonstrate that the shear strength of the soil increases as the CPAM content
increases at the same overburden pressure. However, the increase in shear strength begins to slow down
when the content exceeds 0.6%. Under the overburden pressure of 150 kPa, the shear strength of 0.8%
CPAM is even lower than 0.6% CPAM, suggesting that there is an optimal content for CPAM.
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Figure 8: The relationship curves of shear stress-displacement under different CPAM contents. (a) 0%
CPAM content; (b) 0.2% CPAM content; (c) 0.4% CPAM content; (d) 0.6% CPAM content; (e) 0.8%
CPAM content; (f) 1% CPAM content



1950

JRM, 2021, vol.9, no.11

Table 5: Shear strength under different overburden pressures

Overburden pressure (kPa)

Shear strength under different CPAM content (kPa)

0% 0.2% 0.4% 0.6% 0.8% 1%
50 53.57 55.49 61.23 68.88 65.05 66.97
100 65.05 72.71 76.53 88.01 95.67 97.58
150 88.01 95.67 105.28 112.89 109.06 114.80
200 101.41 105.23 110.97 122.45 124.37 130.11
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Figure 9: Fitting curves for shear strength
Table 6: Summary of direct shear test data
Soil type Swelling Linear fit Shear strength index Compared to plain soil
potential  relationship o
equation c/kPa i/ Ac Ac Ap Ap
¢ ‘4
Plain soil Weak y=033x+35.60 3560 18.26 0.00 0.00 0.00 0.00
0.2% CPAM  None y=034x+39.25 3925 18.77 3.65 0.10 0.51 0.03
0.4% CPAM  None y=035x+43.95 4395 1939 835 0.23 1.13 0.06
0.6% CPAM  None y=037x+51.70 51.70 20.30 16.10 0.45 2.04 0.11
0.8% CPAM  None y=0.38x+50.75 50.75 20.81 15.15 043 2.55 0.14
1% CPAM None y=041x+4998 4998 2229 1438 0.40 4.03 0.22

As indicated in the fitted curves in Fig. 9, the shear strength and vertical pressure of the improved soil
were linearly related after the addition of CPAM. The data in Tab. 6 reveal that at the content of 0%—0.6%, the
cohesive force and internal friction angle of the improved soil sample increase with the increase of CPAM
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content. After the addition of CPAM, the cementation effect makes the connection between soil particles
closer and tighter. Consequently, the particle connection strength and the shear strength are enhanced.
Regarding the improvement effect, with the application of 200 kPa vertical pressure as an example, the
increase of cohesion of CPAM improved soil with the content of 0.2%, 0.4%, 0.6%, and 0.8% is 10%,
23%, 45%, and 43%, and the increase of internal friction angle is 3%, 6%, 11%, and 14%, respectively.
However, the internal friction angle continues to increase while the cohesive force tends to decrease when
the content exceeds 0.6%. From one perspective, the shear strength of the soil is determined by both the
internal friction angle and the cohesion. From another perspective, CPAM cannot greatly increase the
effect of improving the strength of expansive soil when the content is too high. Thus, it is confirmed that
there is an optimal content of CPAM. According to the Cullen formula T = ¢ + o tan ¢ in Soil Mechanics
and from an economic point of view, the content of 0.6% is a reasonable value.

4.6 Unconfined Compressive Strength Test

An unconfined compressive strength (UCS) test was conducted to further investigate the improvement
effect of CPAM content on the strength of expansive soil. The damage patterns of the specimens are
presented in Fig. 10.

(b)

Figure 10: Damage patterns under different curing periods. (a) Curing for 7 days; (b) Curing for 14 days

Stress-strain curves of different curing periods are shown in Fig. 11, and the growth law of the
unconfined compressive strength of improved soil is shown in Fig. 12.

The stress-strain relationship curves of the improved soil with the corresponding content of different
periods are exhibited in Figs. 11a and 11b. At the curing period of 7 days, the stress-strain curves of plain
soil, 0.2% CPAM and 0.4% CPAM present a strain hardening type, with significant plastic characteristics
and a yield platform. At the curing period of 14 days, the stress-strain curves of the improved soil are
different (only the elastic stage and the damage stage), the overall trend of curves starts to show a strain-
softening type after 0.6% content, and the strength of the improved soil reaches the peak and then
immediately decreases, presenting the characteristics of brittle damage.
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Figure 11: Typical stress-strain curves of improved soil under different curing periods. (a) Curing for
7 days; (b) Curing for 14 days

Fig. 12a shows the unconfined compressive strength of the improved soil at different curing periods with
different CPAM content. Fig. 12b exhibits the growth law of the unconfined compressive strength of the
improved soil at 7 days and 14 days in curing periods. Under different contents, the increasing law of
strength after curing for 7 days presents a wavy change pattern. The growth rate of strength increases
from 30.1% to 72.1% and then drops to 37.1%. With the increasing content, the unconfined compressive
strength of the improved soil first increases and then decreases, and 0.8% is the optimal content. The
strength-growth rate of the specimens at 14 days curing periods shows the same law as 7 days while
growth rates of 14 days relative to 7 days were 14.9%, 11.9%, 5.0%, 7.5%, and 7.7%, respectively,
which were not significant. This is because the reaction between CPAM and clay minerals occurs in the
form of ion exchange and does not involve hydration, which is different from lime, fly ash, and cement
improvement. Thus, the period of curing has little effect on the unconfined compressive strength.
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4.7 Micro-Analysis

A scanning electron microscope test was conducted to compare the microstructure changes of expansive
soil before and after improvement.

As indicated in Fig. 13, at a magnification of 500, the CPAM solid particles are tightly interconnected
with particles and wrapped around each other. When the magnification is 1000, local flocs are presented with
high viscosity and mutual adsorption. At 5000 magnification, particles are colloidal. This colloid enables the
molecules to present an adsorption and bridging effect. A covering film is formed on its surface when
reacting with clay minerals such as montmorillonite and illite. On the one hand, it promotes closer
interparticle connections, and on the other hand, it prevents the passage of external water from
penetrating the soil, reducing the hydrophilicity of expansive soil.
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Figure 13: SEM images of CPAM

The scanning electron microscope images of plain soil are illustrated in Fig. 14. After 500 times
magnification, the swelling clay consists of laminated intergranular associations and face-to-face
superimposed polymer in the form of scales, and this superimposition forms the organizing unit for the
swelling and shrinking effect. When the magnification is 1000, the shape of the surface clay is not only
flat and straight but also curved and wrinkled, and the edge shape is clear or fuzzy. Under 5000 times
magnification, the flaky distribution of particles is more clearly. These particles are curved and wrinkled
without edges. These are particles of montmorillonite or mixed layers of montmorillonite and illite,
contributing to the main cause of the expansion and shrinkage of expansive soil.
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Figure 14: SEM images of plain soil

Fig. 15 provides the SEM images of the 0.6% CPAM improved soil. Under 500 times magnification, the
arrangement of superimposed polymer is sparser. Therefore, the swelling pressure of the improved soil
becomes smaller after water immersion, reducing the degree of swelling and exhibiting expansion. When
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the magnification is 1000, the cementing effect of CPAM changes the connection of superimposed polymer
to side-angle or side-face-angle arrangement, which has a certain reticular structure. Under 5000 times
magnification, the number of curved lamellar particles (montmorillonite or mixed layers of
montmorillonite and illite) is reduced, explaining the decreasing swelling potential of the improved soil.
Moreover, the reticular structure forming between the particles could be more visually observed to further
improve the stability of the soil and enhance its strength.

(x500) ( x1000 ) ( %5000 )

Figure 15: SEM images of 0.6% CPAM improved expansive soil

5 Conclusions

CPAM weakens the negative electric repulsion between layers and prevents the expansion of the
interlayer space through the adsorption and electrostatic action generated by the polymer effect,
improving the strong hydrophilicity of clay minerals.

With the increasing CPAM content, the plastic limit of expansive soil increases, the liquid limit and
plasticity index decrease, and the free swelling ratio and the loaded swelling ratio both first decrease and
then increase.

The disintegration in the water of the CPAM improved soil cutting ring remolded sample is stable, and
the water stability is significantly better than that of plain soil, contributing to the construction of expansive
soil embankments and slopes in rainy areas.

The shear strength of plain soil and improved soil increase as the overburden pressure increases, and the
shear strength of improved soil increases with the increasing CPAM content. Meanwhile, the cohesion first
increases and then decreases, and the internal friction angle increases. The optimum content is 0.6%.

With the incorporation of CPAM, the stress-strain curve of expansive soil changes from stress-hardening
type to stress-softening type, indicating the characteristic of brittle damage. The unconfined compressive
strength first increases and then decreases. The content of the peak value (410.1 kPa) is 0.8%.

Scanning electron microscopic analysis reveals that plain soil is mainly composed of face-to-face
superimposed polymer with curved and wrinkled soil particles, and the CPAM changes the connection of
superimposed polymer to side-angle or side-face-angle arrangement, forming a reticular structure. This
structure can improve the bond strength between expansive soil particles and make the soil have higher
strength and deformation rate, demonstrated as the increase in shear strength and uniaxial compressive
strength.

Expansive soil improved with Cationic polyacrylamide has the advantages of saving time, less
construction amount, and environmental protection. The evaluation of the improved effect between
CPAM and traditional stabilizers still needs to be further studied and discussed in subsequent experiments.
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