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A New Damage Mechanics Based Approach for Integrity
Assessment of Plant Components

M. K. Samal1

Abstract: Safety analysis of critical components and the overall plant is a major
and important task in the field of mechanical engineering. Therefore, it is essential
to know the allowable loads and the corresponding failure behaviour (e.g., crack
initiation, growth and instability) of the component. The damage mechanics ap-
proaches which incorporate the microscopic processes of ductile fracture (i.e., void
nucleation, growth and coalescence) into the material constitutive behaviour has
been very successful in predicting the ductile crack propagation in specimens and
components irrespective of their geometry, loading types etc. The major drawback
of these models is the requirement of a pre-defined size of discretization for the
numerical treatment. Hence, these models are not capable of simulation of fracture
behaviour in several situations such as miniature specimens, thin films, ductile-
to-brittle transition regime (where the stable crack growth is of the order of few
microns before cleavage initiation), bi-material interface (requirement of different
discretization sizes across the interface), zones with steep stress gradients etc. In
this work, a new damage mechanics approach based on a nonlocal regularization
scheme has been developed and its advantages in tackling the above-mentioned
problems has been demonstrated through various examples.

Keywords: Nonlocal model; Damage mechanics; Rousselier’s model; Finite ele-
ment implementation; Ductile-to-brittle transition; Fracture toughness master curve

1 Introduction

Prevention of failure of pressurized and high-energy components and systems has
been an important issue in the design of all types of power and process plants.
Instead of the traditional fracture mechanics based approaches, it is now possi-
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ble to go for the detailed modeling of different fracture or material degradation
processes using local approaches [Rice and Tracey (1969); Rousselier (1987); Gur-
son (1977)]. There are two classes of local approaches, i.e., uncoupled and cou-
pled types. In the uncoupled type of models (e.g., Rice and Tracey’s model [Rice
and Tracey (1969)]), the material damage is evaluated from the local stress and
strain fields in a post-processing exercise. In the coupled type of models (popu-
larly known as continuum damage models), the effect of material damage is usu-
ally considered as an internal variable in the expressions representing the consti-
tutive behaviour of engineering materials (e.g., Rousselier’s [Rousselier (1987)]
and Gurson-Tvergaard-Needleman’s [Gurson (1977); Tvergaard and Needleman
(1984); Needleman and Tvergaard (1984)] model). These local damage models
have been used by many researchers to predict the load-deformation and fracture
resistance behaviour of different types of specimens and components [Kussmaul,
Eisele and Seidenfuss (1995); Pitard-Bouet, Seidenfuss, Bethmont and Kussmaul
(1999); Pavankumar, Samal, Chattopadhyay, Dutta, Kushwaha, Roos and Seiden-
fuss (2005); Eberle, Klingbeil and Schicker (2000)]. Numerical analyses based
on these local damage models, however, are often found to depend on the spatial
discretization (i.e., mesh size of the numerical method used). The increasingly
finer discretization grids can lead to earlier crack initiation and faster crack growth
[Bazant and Belytschko (1987); Aifantis (2001); Geers, de Borst, Brekelmans and
Peerlings (1998); Peerlings, De Borst, Brekelmans, and Geers (2002); Reusch,
Svendsen and Klingbeil (2003); Reusch, Svendsen and Klingbeil (2003); Svendsen
(1999); Samal, Seidenfuss, Roos, Dutta and Kushwaha (2008); Samal, Seidenfuß
Roos, Dutta, Kushwaha (2007); Rettenmeier (2009); Roos, Schuler, Silcher, See-
bich and Eisele (2005); Seidenfuss and Roos (2004)]. The major drawback of these
models is the requirement of a pre-defined size of discretization for the numerical
treatment. Hence, these models are not capable of simulation of fracture behaviour
in several situations such as miniature specimens, thin films, ductile-to-brittle tran-
sition regime (where the stable crack growth is of the order of few microns before
cleavage initiation), bi-material interface (requirement of different discretization
sizes across the interface), zones with steep stress gradients etc.

In this paper, the author has regularized the Rousselier’s model with the help of
a nonlocal damage parameter, the evolution of which is related to the local void
volume fraction through a diffusion type equation. This damage diffusion equation
has been discretized alongwith the stress equilibrium equation using finite element
method. In order to predict the cleavage fracture probability in the DBT region,
Beremin’s model for cleavage fracture [Beremin (1983)] needs to be coupled with
the continuum damage mechanics model for ductile fracture. When simulating the
crack tip stress field at a lower temperature (when stress gradients are large) us-
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ing finite element (FE) method, one needs to use a very fine discretization, which
cannot be used for the classical (or local) damage mechanics model as the dis-
cretization size is pre-defined for a material (which is typically of the order of
0.2mm). This order of FE discretization is too coarse to accurately capture the low
temperature crack tip stress field and hence the Weibull parameters are unable to
predict the fracture toughness transition curve when the classical damage mechan-
ics or elasto-plastic models are combined with the Beremin’s model. Many times,
an empirical variation of Weibull parameters with temperature has been suggested
in literature [Seebich (2007); Gao, Ruriggieri and Dodds (1998); Gao, Dodds, Tre-
goning, Joyce and Link (1999); Gao, Dodds, Tregoning and Joyce (2001); Gao
and Dodds (2005); Petti and Dodds (2005)] for prediction of the fracture tough-
ness transition curve [Wallin, K. (1991); Wallin, K. (1991); ASTM-E 1921-05
(2005); Eisele (2006)] along with the use of elasto-plastic analysis for calcula-
tion of Weibull stress. However, the problem lies in the inability to model small
amounts of ductile crack growth (before unstable cleavage fracture) in the FE anal-
ysis. Again, the minimum amount of stable crack growth that can be simulated is
of the order of one element size. In the experiments, it is usually observed that the
average stable crack growth (before instability) is of the order of 0.2 mm at -20
deg. C and hence to simulate very small amounts of crack growth (of the order
of one-tenth of 0.2 mm), one requires mesh sizes of the order of 0.02 mm. It is
now clear that the local damage models cannot be used for these mesh sizes and
hence the use of nonlocal formulation has been investigated in this work. The pa-
per is organised in seven sections. The ability of local damage models to simulate
structural response for various geometry and loading conditions have been demon-
strated in Section-2. The disadvantages of these models to predict the response in
several other situations have been outlined in Section-3. The concept of nonlocal
regularization scheme adopted in this work is described in Section-4 followed by an
outline of its numerical implementation in a finite element framework in Section-5.
Several examples have been presented in Section-6 to demonstrate the advantages
of the new nonlocal formulation over the local one followed by conclusions and
scope of future research in Section-7.

2 Local damage model and simulation of structural response for various ge-
ometry and loading conditions

The microscopic processes of ductile fracture involve the stages such as void nucle-
ation, growth and coalescence. This can be observed experimentally by preparing
specimens for observation in scanning electron microscope (SEM) from the re-
gions near to the crack tip in case of a fracture mechanics specimen or near to
the region of cup-cone fracture in case of a tensile specimen. An axi-symmetric
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round tensile specimen from the material SA333 Gr.6 (which is used as primary
heat transport piping material of Indian pressurized heavy water reactors) was pre-
pared and loaded in tension till fracture. Small discs were machined from regions
near to the fracture surface and these were suitably polished for SEM observation.
The distinct process of nucleation of voids (around inclusions and second phase
particles) in this material can be observed from Fig. 1(a). The voids start growing
under the influence of plastic strain and hydrostatic stress as shown in Fig. 1(b) and
the voids coalescence by rupture of adjoining ligaments as seen in Fig. 1(c).

 

 

 

 

 

       (a) Void nucleation         (b) Void growth     (c) Void coalescence 
 

Figure 1: Scanning electron microscope images of the microscopic stages of ductile fracture process 
as observed in a low alloy steel (SA333 Gr.6 carbon steel) 

Figure 1: Scanning electron microscope images of the microscopic stages of ductile
fracture process as observed in a low alloy steel (SA333 Gr.6 carbon steel)

Though cumbersome, these SEM images can be even used to quantify the void frac-
tions and their evolution with loading. A combination of suitable FE analysis and
SEM data can provide estimates of the micro-mechanical parameters used in the
damage models (as discussed in the following paragraphs). In order to incorporate
these microscopic stages of ductile fracture in the material constitutive models, a
representative volume element is developed as demonstrated in Fig. 2. This RVE is
the gateway for the bridging the length-scale from the microscopic scale to the con-
tinuum scale. This is done through an internal state variable ‘f’ which is denoted
as the ductile void volume fraction (as this represents the volume of the void to
the volume of the unit cell). The state variable ‘f’ is incorporated into the material
yield criterion (e.g., in case of Rousselier model) as

ϕ =
σeq

1− f
+Dσk f exp

(
−p

(1− f )σk

)
−R(εeq) = 0 (1)

whereσeq is the von-Mises equivalent stress,D and σk are the material constants, p
is the mean hydrostatic pressure and R(εeq) is the material resistance (i.e., stress-
strain curve), which is a function of equivalent plastic strain εeq. This yield criterion
of Eq. (1) falls into the class of porous metal plasticity criteria.

The essence of this model is that it reduces to the classical von-Mises criterion
when the void volume fraction ‘f’ is zero (i.e., a perfect continuum). On the other
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      (a)      (b)    (c) (d)     (e)    (f) 

Figure 2: Schematic representation of the processes voids nucleation, growth and coalescence and its incorporation into 
the representative volume element (RVE) as an internal state variable. (a) Debonding of the particle from matrix nucle-
ating a void, (b) Cracking of a particle nucleating a void, (c) Ligament rupture between two particle in the shear-band 
causing void coalescence, (d) Interaction of smaller voids with a dominant void, (e) Stable crack growth in the ductile 
matrix, (f) Representation of the damage in (e) with an equivalent continuum RVE with void volume fraction ‘f’ as an 
internal state variable 

 

Figure 2: Schematic representation of the processes voids nucleation, growth and
coalescence and its incorporation into the representative volume element (RVE) as
an internal state variable. (a) Debonding of the particle from matrix nucleating a
void, (b) Cracking of a particle nucleating a void, (c) Ligament rupture between
two particle in the shear-band causing void coalescence, (d) Interaction of smaller
voids with a dominant void, (e) Stable crack growth in the ductile matrix, (f) Repre-
sentation of the damage in (e) with an equivalent continuum RVE with void volume
fraction ‘f’ as an internal state variable

hand, the yield surface shrinks to a point when the void volume fraction ‘f’ becomes
unity representing the complete loss of material stiffness as there is no material in
the RVE. The other essence of this model is that the yielding of the material also
becomes dependent upon the state of hydrostatic stress because of the presence
of voids and the material stress carrying capability reduces exponentially with in-
crease in void volume fraction ‘f’ and positive hydrostatic stress. In reality, the
stress carrying capability of the RVE falls drastically after the void volume fraction
exceeds a critical value ‘fc’, called the critical void volume fraction representing
the void coalescence. The micro-mechanical parameters required for the analysis
are: (a) initial void volume fraction ‘f0’, (b) critical void volume fraction for coales-
cence ‘fc’, (c) final void volume fraction for fracture ‘f f ’, (d) void volume fraction
at saturated condition of nucleation ‘fn’, (e) mean strain for void nucleation ‘εn’,
(f) standard deviation for void nucleation strain ‘sn’, (g) magnitude of numerical
discretization (lc). As discussed earlier, these can be determined from a combined
metallographic study and FE analysis. The details can be found in Ref. [Pavanku-
mar, Samal, Chattopadhyay, Dutta, Kushwaha, Roos and Seidenfuss (2005)].

The advantage of these models is that the process of crack initiation and growth are
implicit in the formulation as the damage is coupled to the state of stress. There
is no need to assume an initial crack to start the analysis (which is the requirement
when the fracture mechanics methods are applied to carry out structural safety anal-
ysis). Moreover, the micro-mechanical parameters are dependent only upon the
material and hence, these are transferable across different geometry and loading
conditions unlike the fracture mechanics parameters such as JIC and J-R curves. In
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Figure 3: Comparison of response predicted for a notched tensile (NT) specimen
with experiment

 

 Figure 4: Comparison of response predicted for a compact tension (CT) specimen
with experiment

order to demonstrate the points discussed in this section, let us look at the results
from simulations from such a model using the Rousselier’s yield criterion as spec-
ified in Eq. (1). In Fig. 3, an axi-symmetric notched tensile specimen of material
Ste460 is loaded in tension and the load-diametral contraction response is recorded.
The local damage model is used to predict the response of the specimen and this
is compared in Fig. 3. It can be observed that the damage model is able to pre-
dict the point of load drop (due to initiation of cup-cone fracture) very accurately.
The model is subsequently used to predict the fracture resistance behaviour of a
standard compact tension (CT) specimen from the same material. As the material
remains same, the same micro-mechanical parameters have been used in the simu-
lation and the predicted fracture resistance (J-R) curve has been compared with that
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of experiment in Fig. 4. The correspondence between experimental and simulated
J-R curves is very good. In order to demonstrate the ability of the damage me-
chanics models to predict the response of actual plant components such as straight
pipes and pipe bends, simulations are also carried out in 3D domain with different
loading configurations as shown in Fig. 5 and 6 respectively. In Fig. 5, a straight
pipe with 8-inch nominal diameter with a 120 degree through-wall circumferen-
tial crack is loaded in four-point bending. These pipes are common in the primary
heat transfer circuit of Indian pressurized heavy water reactors. The material is a
low alloy carbon steel SA333Gr.6. In Fig. 6, a 90o bent pipe (elbow) made of the
same material and of same 8-inch nominal bore with circumferential through-wall
crack at the extra-dos location is loaded with closing end-moments. The predicted
load-displacement curves for both the components are compared with those of ex-
periment and the results of elasto-plastic analysis (without damage in the material
constitutive equations). The elasto-plastic material model is not able to consider the
effect of stiffness degradation due to crack growth and hence, the predicted loads
are higher for all the applied displacements. However, the predictions of damage
mechanics model are very close to those of experiments. Hence, these models can
be safely used for a realistic safety analysis.

 
 Figure 5: Comparison of response predicted for a straight pipe with circumferential

through-wall crack (loaded in four point bending) with experiment

3 Limitations of local damage models

It has been mentioned in the previous section that the local damage models can
predict the response during crack growth accurately with a set of micro-mechanical
parameters. However, we also need to restrict the smallest size of numerical dis-
cretization to a particular value, i.e. ‘lc’. This discretization size is of the order of
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Figure 6: Comparison of response predicted for a 90o bent pipe (elbow) with cir-
cumferential through-wall crack at the extra-dos location (loaded with closing end-
moments) with experiment

0.2 to 0.4 mm for typical pressure vessel and piping materials as used in nuclear
and thermal power plants. However, this poses a limitation from the point of mesh
refinement in order to obtain better and converged results in many cases involving
steep stress gradients. Many other situations can also be cited where such a require-
ment is inadequate for the analysis such as, simulation of miniature specimens, thin
films, simulation of fracture resistance behaviour in the ductile-to-brittle transition
regimes (where the stable crack growth is of the order of few microns before cleav-
age initiation), and simulation of crack growth in the bi-material interface (require-
ment of different discretization sizes across the interface due to the existence of
different material properties) etc.

The inability of the local damage models is emphasized here with some examples.
Fig. 7 shows the load-CMOD (crack mouth opening displacement) response of
a standard 1T compact tension (CT) specimen as predicted by the local damage
model when three different sizes of FE mesh are used in the crack propagation re-
gion (i.e., 0.4, 0.2 and 0.1 mms respectively). The actual experimentally obtained
response is also shown in Fig. 7 for comparison. It is obvious that the predictions
of the local damage model show pathological mesh size dependence. Another ex-
ample of such a limitation of the local damage model is shown in Fig. 8. In this
figure, the fracture toughness as obtained from experiment using standard 1T CT
specimens tested at various sub-zero temperatures are plotted as a function of tem-
perature. One can see a considerable scatter in the data over the whole temperature
range of the ductile-to-brittle transition (DBTT) region. Both the mean value and
scatter of the fracture toughness data increases with increase in temperature.

This is due to the existence of two competing mechanisms, i.e., unstable cleavage
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 Figure 7: Predicted load-CMOD response of a compact tension specimen with a
local damage model with different FE mesh sizes

fracture and stable crack growth in the DBTT regime. Moreover, the stable crack
growth (before failure by unstable cleavage) is of the order of 200 microns only at
-20 deg. C, whereas this of the order of few microns at -60 deg. C and below (Fig.
8). The local damage models cannot be applied to simulate the crack growth of the
above-mentioned magnitudes as the minimum mesh size (i.e., the dimension of a
single element) is above this range. Elasto-plastic analysis cannot predict the stress
and strain field correctly due to the non-consideration of damage evolution. In order
to elaborate this point, results have been obtained from analysis of the 1T CT spec-
imens with local damage models at various temperatures in the transition regime
and these have been compared with the experimental data in Fig. 8. As can be seen
from the data, the results of simulation are much off from the experimental mean
and scatter values. Hence, this motivates the consideration of a mesh-independent
damage model for structural safety analysis.

4 Concept of nonlocal regularization

As discussed in the previous section, the results of analysis using a local dam-
age model are dependent on the size of discretization used in the numerical treat-
ment. Due to the onset of damage, material softening takes place and this changes
the nature of the governing differential equation (e.g., loss of ellipticity for elasto-
static problems and loss of hyperbolicity for elasto-dynamic problems [Peerlings,
De Borst, Brekelmans, and Geers (2002)]). When the microscopic aspect of mate-
rial damage is considered, it can be realized that damage development in a micro-
structure is not strictly a point-function. It depends upon the state of stress, strain
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 Figure 8: Inability of elasto-plastic and local damage models to predict fracture

toughness transition curve in the DBTT regime

and damage of the surrounding regions also due to the underlying micro-structure
(i.e., grain boundary, dislocations, dislocation sources and obstacles etc.). More-
over, there are phenomena involving motion of dislocations which drive the plastic
deformation and damage accumulation due to dislocation pile-up at the obstacles
etc. which are not explicitly represented in continuum mechanics formulations.
Hence, we need a regularization technique where the damage development in a
material point will be coupled to the state of damage of surrounding points in a
region with a characteristic dimension, which depends upon the material.

Such a scheme is outlined in Fig. 9. Figure 9 shows the importance of consider-
ation of influence of surrounding points on the damage development at a material
point. The weight given to the points nearer to the point under consideration should
higher and it diminishes exponential with distance from the above point. Such a
weightage scheme is shown in Fig. 9 which is the Gaussian weight function Ψ.
The increment of the nonlocal variable in a material point ~x, i.e. the increment of
nonlocal void volume fraction ḋ, is mathematically defined as a weighted average
of the increment of the local void volume fraction ḟ in a domain Ω [Fig. 9], i.e.,

ḋ (~x) =
1

Ψ(~x)

∫
Ω

Ψ(~y;~x) ḟ (~y)dΩ(~y) (2)

where~y is the position vector of the infinitesimally small volume dΩ. In this work,
the nonlocal treatment is performed on the damage rate and not on the damage. This
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 Figure 9: Definition of the nonlocal variable an integral of local void volume frac-
tion ‘f’ over the shaded characteristic region with a Gaussian function as weight

has been done in order to make it convenient for use in the subsequent incremental
nonlinear FE formulation of the problem. The function Ψ(~y;~x) is the Gaussian
weight function given by

Ψ(~y;~x) =
1

8π3/2l3 exp

(
−|~x−~y|2

4l2

)
(3)

and the normalisation factor is the integral of the Gaussian weight function, i.e.,

Ψ(~x) =
∫
Ω

Ψ(~y;~x)dΩ (4)

The length parameter l determines the size of the volume, which effectively con-
tributes to the nonlocal quantity and is related to the scale of the microstructure.
The above integral nonlocal kernel holds the property that the local continuum is
retrieved if l→ 0. By expanding ḟ (~y) in Taylor’s series around the point x, we get

ḟ (~y) = ḟ (~x)+ ∂ ḟ
∂xi

(yi− xi)+ 1
2!

∂ 2 ḟ
∂xi∂x j

(yi− xi)(y j− x j)

+ 1
3!

∂ 3 ḟ
∂xi∂x j∂xk

(yi− xi)(y j− x j)(yk− xk)

+ 1
4!

∂ 4 ḟ
∂xi∂x j∂xk∂xl

(yi− xi)(y j− x j)(yk− xk)(yl− xl)+ ...

(5)
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where Einstein’s summation convention applies to the indices i, j,k and l. Substi-
tuting Eq. (5) into Eq. (2), we get

ḋ (~x) = ḟ (~x)+Clength∇
2 ḟ (~x)+dlength∇

4 ḟ (~x)+ ... (6)

where the Laplacian operator is defined by ∇2 = ∑
i

∂ 2

∂x2
i

and ∇4 =
(
∇2
)2etc. The gra-

dient parameters Clength and dlengthhave the dimensions of length to an even power
and the odd derivatives of Eq. (5) vanish due to the nature of the Gaussian weight
function of Eq. (3) when substituted in Eq. (2). Taking the Laplacian of Eq. (6),
we obtain

∇
2ḋ (~x) = ∇

2 ḟ (~x)+Clength∇
4 ḟ (~x)+dlength∇

6 ḟ (~x)+ ... (7)

Substracting Clengthx Eq. (6) from Eq. (7), we obtain Eq. (8) when the terms
containing ∇4 ḟ (~x)and other higher order terms are neglected.

ḋ− ḟ −Clength∇
2ḋ = 0 (8)

The above Eq. (8) is the diffusion equation for damage and the increment of the
nonlocal variable ‘d’ is linked to the increment of local void volume fraction ‘f’
though a characteristic length parameter ‘Clength’ and the Laplacian of increment
of nonlocal damage ‘d’. This is an implicit description of damage diffusion and it
needs to be solved along with the mechanical equilibrium equation as discussed in
the following section.

5 Numerical implementation in a finite element framework

For numerical simulations, a nonlocal form of the material yield surface has been
constructed from the classical Rousselier’s model [2] as shown in Eq. (9) below.
In this yield function, the void volume ‘f’ is replaced by the nonlocal material
damage‘d’ as

ϕ =
σeq

1−d
+Dσkd exp

(
−p

(1−d)σk

)
−R(εeq) = 0 (9)

The equilibrium equation in the continuum to be solved along with the damage
diffusion equation (8) is written as

∇.σ + fb = 0 (10)

The associated boundary conditions are

σ .n|
Γ f

= fm (11)
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u|
Γu

= u0 (12)

∇ḋ.n
∣∣
Γd

= 0 (13)

where σi j is the Cauchy stress tensor and fb is the body force per unit volume
and fm is the applied mechanical traction at the surface. Eq. (11) is the traction
or force boundary condition, n|

Γ f
is the normal to the boundary Γ f , Eq. (12) is

the geometric or essential displacement boundary condition and Eq. (13) is the
Neumann or force boundary condition for the damage degree of freedom and n|

Γd

is the normal to the boundary Γd of the domain Ωt+∆t . In our analysis, we employ
an incremental procedure and use the updated Lagrangian formulation to express
the equilibrium configuration of the body. Assuming additive decomposition of
total strain increment into elastic ε̇e and plastic ε̇ p parts, we can write

ε̇ = ε̇
e + ε̇

p (14)

The yield function can be written in terms of mean hydrostatic and deviatoric parts
of stress tensor and other field variables as

ϕ (p,q,Hα ,d) = 0 (15)

where p and q are the hydrostatic pressure and von Mises equivalent stress respec-
tively and are defined as

p =−1
3 σ : I

q =
(3

2 s : s
)1/2 (16)

Hα is internal state variable such as hardening, I is the kronecker-delta or second
order indentity tensor, s is the deviatoric part of stress tensor σ . The increase in
void volume fraction (due to combined void nucleation and growth process) during
plastic deformation in the ductile fracture process can be written as a functionF ,
i.e.,

F (p,q,Hα ,d) = ḟ = ḟgrowth + ḟnucleation = (1−d) ε̇
p : I +A(εeq) ε̇eq (17)

where ε̇ p is the increment in plastic strain tensor ε p, I is the tensor equivalent
to Kronecker-Delta function, ε̇eq is the increment in equivalent plastic strain of
the matrix material and A is the void nucleation constant which obeys Gaussian
distribution (as a function of εeq) and can be expressed as

A(εeq) =
fN

sN
√

2π
exp

(
−1

2

(
εeq− εN

sN

)2
)

(18)
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The constitutive behaviour of the new material model can be finally obtained in
the following forms (i.e., increment of stress tensor and increment of void fraction
potential) as functions of increment of total strain tensor and damage variable

∂σ = Cep : ∂ε +Ced : ∂d (19)

and

∂F = Cde : ∂ε +Cdd : ∂d (20)

where the material tangent stiffness matrices can be defined as

Cep = 2G q
qtr J′+K

(
1−mpl

)
II + 4

3 G
(

1− q
qtr − 3

2 mqn

)
nn−2GmqlnI−KmpnIn

Ced =−2Gmqdn−KmpdI
Cde = Cd11

(
mplI +mpnn

)
+Cd12

(
mqlI +mqnn

)
+Cd13n+Cd14I

Cdd = Cd11mpd +Cd12mqd +Cd15

(21)

In the above expression, J is the fourth order unit tensor and J′ = J− II
3 . The details

of the derivation and the co-efficients of Eq. (21) can be found in Ref. [Samal,
Seidenfuss, Roos, Dutta and Kushwaha (2008)]. For implementation of the above
model in a finite element framework, the weak forms of the governing equations
are expressed in the updated Lagrangian setting as

t+∆tR =
∫

t+∆t Ω

t+∆t
fbiδuidt+∆t

Ω+
∫

t+∆t Γ f

t+∆t
tsiδuidt+∆t

Γ f (22)

and∫
Ω

δ ḋ
(
ḋ− ḟ −Clength∇

2ḋ
)
.dΩ = 0 (23)

respectively. Expressing the generalised displacement, strain and damage vectors
at any material point inside the finite element in terms of the generalized nodal
variables (û and ˆ̇d) as [Fig. 10]

u = Nuû, t + ∆te = Buû
ḋ = Nd

ˆ̇d, ∇ḋ = Bd
ˆ̇d

(24)
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 Figure 10: An arbitrary region mapped into 4-noded master element with damage
as an extra nodal degree of freedom

where Nu and Nd are the shape function matrices for the displacement and nonlo-
cal damage variable, Bu and Bd are matrices containing the derivatives of the shape
function Nu and Nd respectively. Expanding Eqs. (22) and (23), using consistent
material matrices from Eqs. (21) and substituting the expressions for u, t+∆te, ḋ and ∇ḋ
from Eqs. (24), we get the following equations

δ (∆û)T
(∫

Ω

BT
u CepBu.dΩ

)
∆û+

(∫
Ω

BT
NL

t+∆tσBNL.dΩ

)
∆û+

(∫
Ω

BT
u

t+∆tσBNL.dΩ

)
+
(∫

Ω

BT
u CedNd .dΩ

)
ˆ̇d−
∫
Ω

NT
u fbdΩ−

∫
Γ

NT
u tsdΓ


= 0 (25)

δ
ˆ̇dT



(∫
Ω

NT
d Nd .dΩ

)
ˆ̇d−
(∫

Ω

NT
d CdeBu.dΩ

)
û

−
(∫

Ω

NT
d CddNd .dΩ

)
ˆ̇d +
(∫

Ω

BT
d ClengthBd .dΩ

)
ˆ̇d

+
∫
Ω

NT
d

t+∆t ḋ dΩ−
∫
Ω

NT
d

t+∆t ḟ dΩ+
∫
Ω

BT
d Clength

t+∆t∇ḋ dΩ

= 0 (26)

where ts is the surface traction and is given as ts = σ . n|
Γ f

(Cauchy’s traction law),
t+∆tσ is the matrix and t+∆tσ is the vector containing Cauchy’s stress components
at time t + ∆t and BNL is the nonlinear strain-displacement transformation matrix.
For arbitrary value of δ (∆û)T and δ

ˆ̇dT , the terms inside the brackets of Eqs. (25)
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and (26) should be zero and hence these equations reduce to the set of finite element
algebraic equations, which can be written in convenient (matrix) form as

A
([

Kuu +KNL Kud
Kdu Kdd

]{
∆û
∆d̂

})
= A

({
f ext
m − f int

m
− f int

d

})
(27)

where A is the assembly operator which is used to assemble to element stiffness
matrices and the matrices and force vectors of all the elements in the domain Ω. The
domain and boundary of each element are represented by Ωe and Γerespectively.
Hence the element level stiffness and force vectors can be written as

Kuu =
∫

Ωe
BT

u CepBu.dΩ

KNL =
∫

Ωe
BT

NL
t+∆t

σBNL.dΩ

Kud =
∫

Ωe
BT

u CedNd .dΩ

Kdu =−
∫

Ωe
NT

d CdeBu.dΩ

Kdd =
∫

Ωe
NT

d Nd .dΩ−
∫

Ωe
NT

d CddNd .dΩ+
∫

Ωe
BT

d ClengthBd .dΩ

f ext
m =

∫
Ωe

NT
u fbdΩ+

∫
Γe

NT
u tsdΓ

f int
m =

∫
Ωe

BT
u

t+∆t
σ .dΩ

f int
d =

∫
Ωe

NT
d

t+∆t
ḋ.dΩ−

∫
Ωe

NT
d

t+∆t
ḟ .dΩ+

∫
Ωe

BT
d Clength∇

t+∆t
ḋ.dΩ

(28)

where the left superscript ′t + ∆t ′refers to the quantities at the end of current time
step [and the values are at the previous iteration process (i−1)] of the incremental
nonlinear finite element analysis. When the iteration process converges, the values
of the variables at iteration steps i and (i−1)also converge. The assembled global
FE equations are solved for the global degrees of freedom when we specify the
required boundary and loading conditions. It may be noted that the assembled (i.e.,
global) internal damaged force vectors of the elements becomes a null vector. The
stiffness terms Kud , Kdu and Kdd in the element stiffness matrix are contributions
of the new nonlocal formulation.

6 Results and Discussion

In order to demonstrate the efficacy of the nonlocal damage model as discussed
in the previous section, we provide several examples in this section and discuss
the results. The first example is the demonstration of the mesh-independent nature
of the solutions. The standard 1T compact tension specimen is simulated again
with the new model with different sizes of discretization in the crack propagation
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region. The material of the CT specimen is DIN 22NiMoCr3-7 which is a pressure
vessel steel material. The results of the numerical simulation for all the mesh sizes
are shown in Fig.11 along with the experimental data. It can be observed that the
results of the new model are mesh-independent and they are also very close to the
experimental data. There are other advantages of the nonlocal model. One such
example is the consideration of symmetric boundary conditions in the analysis.
These boundary conditions are widely used by analysts by taking advantage of the
different symmetry in the component geometry, loading and boundary conditions
in order to reduce the cost and time of computation.
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 Figure 11: Predicted mesh-independent load-CMOD response of the CT specimen

by the nonlocal model

The results of analysis should not be dependent upon such an assumption which is
a mathematical representation of the actual physical domain. In the forthcoming
discussion, it has been demonstrated that the results of analysis with local damage
model violates such as assumption. Fig. 12(a) shows the axi-symmetric FE mesh
of a flat plate with a hole at the centre and loaded in tension. The analysis is carried
out considering plane strain condition of loading. The FE mesh with symmetric
boundary condition at the centre is shown in Fig. 12(b). When the symmetric
mesh is used, the crack propagation is restricted to the bottom layer of elements
in the FE mesh of Fig. 12(b). As the model is symmetric about the central line
passing through the hole, this represents a symmetric crack propagation along two
element layers (one at the top half and the other at the bottom half). The same
should be predicted if we choose to use the full model without symmetric boundary
conditions, i.e., mesh of Fig. 12(a).
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               (a)                (b) 

 Figure 12: (a) FE mesh of half of the flat tensile specimen with hole at the centre,
(b) FE mesh with symmetry boundary conditions

However, the results of analysis for the full model with the local formulation are
shown in Fig. 13, which clearly shows that the crack path is asymmetric and still
along one element layer and hence, it is against our earlier expectation. However,
the nonlocal model preserves the symmetric nature of the crack propagation path as
this loading is symmetric as can be seen from Fig. 14. Hence, the nonlocal models
have a clear advantage over the local formulation. The difference in the nominal
stress vs %age hole opening behaviour for both cases is shown in Fig. 15 and the
results are same for the nonlocal model for both the cases, whereas it is different
for the local model.

The other example is the prediction of load-CMOD response of different sizes of
compact tension specimen ranging from 1T (1 inch thickness) to 4T (4 inch thick-
ness). Experimental data are available for the first two sizes, i.e., 1T and 2T. With
all the parameters fixed for the material, the load-CMOD response is predicted for
all the three specimen sizes. The results are shown in Fig. 16 along with the exper-
imental data. It can be observed that the nonlocal model is not only able to predict
the response with different mesh sizes as shown in Fig. 15, it is also able to predict
the geometric effect of specimen size on the load-CMOD response very accurately.
Hence, the parameter transferability issue is also valid for the nonlocal formulation.
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  (a)               (b) 

 Figure 13: (a) Prediction of crack path in the flat tensile specimens using local
damage model, (b) enlarged view near the central region

 

 

 

 

 

 (a)               (b) 

 Figure 14: (a) Prediction of crack path in the flat tensile specimens using nonlocal
damage model, (b) enlarged view near the central region



146 Copyright © 2010 Tech Science Press SL, vol.3, no.2, pp.127-153, 2010

0 20 40 60 80
0

200

400

600

800

one-fourth (symmetric) model: nonlocal
half model: nonlocal
one-fourth (symmetric) model: local
half model: local

no
m

in
al

 s
tre

ss
 / 

M
P

a

hole opening / %  
Figure 15: Nominal stress vs %age hole opening behaviour of the flat tensile spec-
imen with hole at centre (effect of symmetric modeling with local and nonlocal
models)
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response of CT specimen with the help of nonlocal model
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The next example is regarding the prediction of fracture toughness variation with
temperature in the DBTT region. The results presented are for the pressure vessel
steel DIN 22NiMoCr3-7. The standard 1T CT specimen has been analysed with
the new nonlocal formulation at different temperatures and the results are shown in
Fig. 17.
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Figure 17: Comparison of predicted fracture toughness variation in the DBTT
regime for the standard CT specimen with experiment and master curve

It is now very clear that the nonlocal model is able to predict the fracture toughness
scatter and mean values across the whole DBTT temperature range very accurately.
This is due to the ability to use very fine mesh and predict the micron-scale stable
crack growth before unstable fracture by the process of cleavage. The results are
also compared with the predictions of the master curve which is an empirical equa-
tion. However, one needs to know the value of transition temperature T0 in order to
plot such a curve. This value of transition temperature in the master curve is also
dependent upon the specimen type, geometry and loading conditions and it is also
different in case of actual components with varying geometry, loading and crack
configurations. It is not possible to know the value of T0 in advance for the com-
ponent geometry of interest, which is a major limitation of this empirical master
curve approach. However, a conservative estimate of T0 is usually used for safety



148 Copyright © 2010 Tech Science Press SL, vol.3, no.2, pp.127-153, 2010

evaluation which may not be optimum. These nonlocal models are based on phys-
ically and microscopically motivated damage processes and as these are based on
material constitutive formulations; they do not have such limitations as discussed
above. Hence, the model should be able to predict the fracture toughness variation
across the DBTT regime for different specimen types and loading conditions which
will be demonstrated in the following paragraphs.

Fig. 18 shows the results of the nonlocal model for the scatter in fracture toughness
values in the testing of a 2T compact tension specimen in the DBTT regime.
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Figure 18: Comparison of simulated (with nonlocal damage damage) scatter of
fracture toughness with experiment in the transition temperature region for a 2T
CT specimen. * stands for the value of KJC which is not corrected for specimen
size effect

The predictions are very close to those of experiment. Another specimen type (i.e.,
a standard single-edged cracked specimen loaded in three-point bending as shown
in Fig. 19) is considered here for the demonstration.

The results of the local model are shown in Fig. 19, whereas the results of the
nonlocal model are presented in Fig. 20. It is again observed that the nonlocal
model is able to predict the scatter in fracture toughness very accurately irrespective
of specimen type and geometry. The local damage models are clearly inadequate
for this purpose of safety analysis due to their inability to handle varying mesh
sizes.
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Figure 19: Inability of elasto-plastic and the local damage models to predict frac-
ture toughness transition curve in the DBTT regime for a standard 1T three point
bend specimen

7 Conclusions

In this work, a scheme for nonlocal regularization of the damage mechanics con-
stitutive equations was presented. It was demonstrated that such a scheme is neces-
sary in order to carry the safety analysis task in situations involving simulation of
sub-millimetre crack growths, small specimens, steep stress gradients etc. Though
the local damage models have been used effectively to predict the ductile crack
growth behaviour of different types of specimens and components, the issue of us-
ing a constant mesh size limits its applications in many other situations. With this
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Figure 20: Comparison of predicted fracture toughness variation in the DBTT
regime for the standard 1T three point bend specimen with experiment and mas-
ter curve

new model, the analysts will have an effective tool for efficient and reliable safety
analysis. The future task will be the extension of these models for simulation of
response in other loading conditions such as low-cycle fatigue and creep.
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