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Estimating Changes in SHM Performance Using
Probability of Detection Degradation Functions
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Abstract: Structural Health Monitoring (SHM) has been proposed by many re-
searchers as a way to reduce maintenance cost and increase availability of aircraft
fleets. But long term exposure to the aircraft environment can have a degrading ef-
fect on the performance of a given SHM system. Predictable performance of SHM
systems after extended exposure to aircraft environmental factors is key to the ef-
fective implementation of SHM on aircraft fleets. This study shows how existing
NDE reliability techniques can be extended to model changes in SHM system per-
formance due to extended exposure to the aircraft environment. Degradation coef-
ficients are added to the traditional probability of detection, POD(a), formulations
described in MIL-HDBK-1823. A POD(a,n) surface is then derived to account
for the effects of an environmental factor on SHM system performance. Example
degradation coefficient values are derived using experimental results.

Keywords: Structural Health Monitoring, Probability of Detection, Sensor Dura-
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1 Introduction and Background

Durability of a Structural Health Monitoring system is critical to its viability as a
tool to reduce the cost and burden of recurring aircraft structural inspections. Many
studies have addressed the installation of SHM systems as a means to improve or
replace the current inspection paradigm on legacy and future aircraft [Boller (2000);
Boller (2001); Goggin, et al. (2003); Ikegami and Haugse (2001); Malkin, et al.
(2007)]. But while SHM technologies continue to advance, SHM systems have
yet to gain a foothold on the flightline of an aging aircraft fleet. The good safety
record of the current inspection paradigm, combined with uncertainties in SHM
affordability, capability and maintainability, contribute to the lack of widespread
SHM implementation [Achenbach (2007); Derriso, et al. (2007)].
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Several lines of research [Kuhn, et al. (2009); Kessler (2005); Blackshire, et al.
(2007)] have shown that various aircraft environmental factors can have a signifi-
cant impact on the performance of certain SHM sensors. These impacts must be
quantified, modeled and taken into account if subsequent SHM signals analysis is
to be accurate for the remaining life of a given aircraft. The object of this research
is show to how existing methods of determining nondestructive evaluation (NDE)
reliability can be modified and combined with experimental results to estimate the
impact of aircraft environmental factors on SHM system performance.

2 NDE Reliability Using MIL-HDBK-1823

The NDE reliability method described in MIL-HDBK-1823 [Department of De-
fense (1999)] defines experimental and analytical requirements to build probability
of detection, POD(a), curves for a range of crack sizes. One type of experimental
data used to build POD(a) curves is described as “a vs ahat” data, where ahat rep-
resents the measured response of the NDE system for a given crack size a. A con-
trolled experiment using known crack sizes is performed to determine ahat values,
and the “a vs ahat” data is transformed so that a linear regression of the experimen-
tal data has normally distributed residuals ε with constant variance [Berens (1989);
Spencer (2007)]. It has been shown that taking the natural logs of the a vs ahat data
often provides the required residual distribution [Department of Defense (1999);
Berens (1989)]. This regression line is then used with a threshold detection value
(ath, the value below which the NDE signal is indistinguishable from noise) and the
system response distribution for a given crack size, g(ahat |a), to build the POD(a)
curve. The probability of detection of a given crack size is the portion of the g(ahat |
a) distribution that lies above the threshold detection value.

Figure 1 shows the components used to build a POD(a) curve experimentally. Notes
1 and 2 show the transformed a vs ahat data plotted with the regression line; note 3
shows the g(ahat | a) distribution; and note 4 shows the probability of detecting the
crack size a.

The equation of the regression line shown in Figure 1 has the form:

ln(ahat) = β0 +β1 ∗ ln(a)+ ε (1)

with β0 and β1 being the intercept and slope parameters fit to the experimental
data, and ε being the normally distributed residuals described earlier. Since ε is
distributed normally, solving for ε and dividing by the variance of the residuals
(represented as δ in [Department of Defense (1999)]), results in a standard normal
distribution representing the NDE system response distribution for a given crack



Estimating Changes in SHM Performance 3Figure 1 shows the components used to build a POD(a) curve experimentally.  Notes 1 and 2 show the transformed 
a vs ahat data plotted with the regression line; note 3 shows the g(ahat | a) distribution; and note 4 shows the 
probability of detecting the crack size a. 

 
 

Figure 1. Components used to build a POD(a) curve from experimental data (chart from [Department of Defense 
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POD(a) curves are then built applying equation (3) to a range of crack sizes and plotting crack size against POD.  
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Figure 1: Components used to build a POD(a) curve from experimental data (chart
from [Department of Defense (1999)], comments from authors

size:

g(ahat |a) =
ln(ahat)−β0−β1 ln(a)

δ
∼ n (0,1) (2)

The probability of detecting crack size a then becomes the probability of the NDE
system response at the given crack size being greater than the threshold value:

POD(a) = P(ln(ahat) > ln(ath)) = Φ

(
β0− ln(ath)+β1 ln(a)

δ

)
(3)

POD(a) curves are then built applying equation (3) to a range of crack sizes and
plotting crack size against POD. Φ(z) is a standard normal distribution.

3 Incorporating SHM Degradation Information Into POD(a)

While MIL-HDBK-1823 provides a starting point to describe SHM probability of
detection, serious issues surround the direct application of NDE POD(a) techniques
to SHM systems. Particularly, the changes a SHM system itself will undergo after
installation is a significant concern. The traditional formulation of NDE reliability
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given above assumes proper NDE system set-up, calibration and testing prior to the
NDE inspection. These steps may not be directly applicable to an installed SHM
system. Probability of detection of an installed SHM system can and will change
depending on how the system withstands its operating environment. Methods to
account for these changes must be determined for SHM to be viable over the long
term.

Assuming that an installed SHM system can be modeled in the same manner as a
traditional NDE technique at the time of installation, as seen by Cobb [Cobb, et
al. (2009)], the POD(a) formula given in equation (3) holds for a “new” SHM sys-
tem. At some point after installation the POD will have changed, and a notional
second test to redefine of the a vs ahat relationship would change the POD(a) curve
accordingly. If these changes in the a vs ahat relationship can be identified and
predicted, a direct link to changes in POD(a) can be made. For example, assume
at some point after installation, SHM sensor degradation results in a uniform 20%
signal reduction for each crack size (due, for example, to transmit or receive sig-
nal loss). In effect, if a second a vs ahat test were performed, the reduced signal
would result in data points “translating” down against the given crack sizes. Figure
2 shows the original data, “degraded” data and regression line for a vs ahat data
provided in MIL-HDBK-1823. Figure 3 shows the resulting shift in the POD(a)
curve, decreasing the probability of detecting cracks less than approximately 0.01
inches.

 

Figure 2: Reducing the received signal by 20% translates the data points at each
crack size
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Figure 3: The 20% sensor signal degradation shifts the POD(a) curve

The translation of the data points observed in Figure 2 and the POD(a) curve shown
in Figure 3 can be attributed to a change in the intercept of the regression equation
(β0 in equation (3)). This change can be modeled by using a multiplier (call it αd)
with the original regression intercept β0. Changes to αd have the same effect on the
POD(a) curve as a translation of the entire data set due to sensor degradation.

But changes in sensor performance may affect the a vs ahat relation in ways other
than simple translation. A second possibility is that sensor degradation will increase
the “noise” in the SHM signal, effectively raising the threshold detection value. In
this case, the regression line shown in Figure 1 will not change, but the threshold
detection line will rise to a higher value, decreasing POD(a). Figure 4 shows the
POD(a) shift due to a 20% increase in threshold detection value.

In addition to changes in the regression line intercept and threshold detection value,
changes to the regression slope and residual standard deviation may all result from
changes in SHM sensor performance. It is proposed to use changes in these POD(a)
parameters to model changes in SHM system performance after installation.

4 Introducing the POD(a) Degradation Model

The proposed POD(a) degradation model uses multipliers called “Degradation Co-
efficients” to modify the original POD(a) model given in equation (3), based on the
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Figure 4: The 20% increase in threshold detection value shifts the POD(a) curve

effects of sensor degradation. The model has the following form:

POD(a)Degraded = Φ

(
(β0 ∗αd)+(β1 ∗ γd)∗ ln(a)− ln(ath ∗ρd)

δ ∗ψd

)
(4)

with degradation coefficients αd , γd , ρd , and ψd ranging from zero to one, and mod-
ifying regression intercept, regression slope, threshold detection value and standard
deviation of the regression residuals, respectively. Changing each degradation co-
efficient has a different effect on the POD(a) curve due to the nature of its corre-
sponding POD(a) parameter.

5 Incorporating SHM Sensor Degradation Into the POD(a) Degradation
Model

To apply the POD(a) degradation model, the form of the sensor degradation must
be defined. Previous experiments by the author [Kuhn, et al. (2009)] showed a type
of SHM sensor attached to simulated aircraft structure can be susceptible to signal
degradation due to cyclic strain. Figure 5 shows the average SHM sensor response
from undamaged structure from zero to 510 000 strain cycles at 1700 micro-strain.
The best fit power equation for sensor response is also given.

For illustrative purposes, since no original POD(a) data exists for the type of SHM
sensor tested, the data shown in Figure 5 can be combined with the example data
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Figure 5: SHM sensor response degradation due to cyclic strain [Kuhn, et al.
(2009)]

provided in MIL-HDBK-1823 to show how an existing POD(a) curve can be mod-
ified to account for known sensor degradation.

Assuming the signal degradation shown in Figure 5 results in a corresponding sig-
nal loss for each crack size, the original regression line shown in Figure 2 will
“translate” down based on the response fit equation given in Figure 5:

SHM Sensor Response = 105.8∗ (# strain cycles in thousands)−0.015 (5)

This fit equation can then be used to specify a value of αd in thePOD(a) degradation
model. Normalizing equation 5 gives the values of αd based on the number of
cycles at 1700 micro-strain:

αd = (# strain cycles in thousands)−0.015 (6)

Table 1 shows the values of αd for various numbers of cycles, and Figure 6 shows
the corresponding shift in the POD(a) curve.

Taken to the next level in this context, the probability of detection curve for the
notional SHM sensor now depends not only on crack size, but also on the number
of cycles (n) at 1700 micro-strain. In effect, the POD(a) degradation model allows
the combination of an original POD(a) curve with a known sensor degradation
model. The combination in this example gives probability of detection based on
crack size and number of cycles: POD(a,n). Figure 7 shows the resulting POD
surface.
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Table 1: αd values based on sensor degradation

Thousands of Cycles
at 1700 micro-strain

Degradation Coeffi-
cient αd

0 1
50 0.9430
100 0.9333
200 0.9236
500 0.9110

 

Figure 6: The POD(a) degradation model shows POD(a) curve shifts due to sensor
degradation

6 Conclusion

Predictable performance of SHM sensors after extended exposure to the aircraft
environment is key to viable SHM systems. This study shows that existing NDE
reliability techniques can be extended to model the changes in SHM system per-
formance caused by the degradation of SHM sensors in the aircraft environment.
The probability of detection degradation model derived in this study adds degrada-
tion coefficients to the standard probability of detection model described in MIL-
HDBK-1823. These coefficients, when based on experimental data, can account
for changes in SHM sensor performance, and allow the extension of the traditional
POD(a) curve into to a POD(a,n) surface, reflecting the environmental factor’s im-
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Figure 7: A POD “surface” is formed when SHM sensor degradation is taken into
account

pact on SHM POD.
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