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ABSTRACT

In underground mine environments where various hazards exist, such as tunnel collapse, toxic gases, the applica-
tion of autonomous robots can improve the stability of exploration and efficiently perform repetitive exploratory
operations. In this study, we developed a small autonomous driving robot for unmanned environmentalmonitoring
in underground mines. The developed autonomous driving robot controls the steering according to the distance
to the tunnel wall measured using the light detection and ranging sensor mounted on the robot to estimate its
location by simultaneously considering the measured values of the inertial measurement unit and encoder sensors.
In addition, the robot autonomously drives through the underground mine and performs environmental moni-
toring using the temperature/humidity, gas, and particle sensors mounted on the robot. As a result of testing the
performance of the developed robot at an amethyst mine in Korea, the robot was found to be able to autonomously
drive through tunnel sections with∼28m length,∼2.5m height, and∼3mwidth successfully. The average error of
location estimation was approximately 0.16 m. Using environmental monitoring sensors, temperature of 15–17◦C,
humidity of 42%–43%, oxygen concentration of 15.6%–15.7%, and particle concentration of 0.008–0.38 mg/m3

were measured in the experimental area, and no harmful gases were detected. In addition, an environmental
monitoring map could be created using the measured values of the robot’s location coordinates and environmental
factors recorded during autonomous driving.
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1 Introduction

There are various risk factors in underground mine sites, such as rockfall, tunnel collapse,
collision between workers and equipment, toxic gases, and many human accidents. According to
statistics from the Centers for Disease Control and Prevention (CDC), between 2010 and 2015,
approximately 12,230 safety accidents have occurred at the U.S. underground mine sites, of which
121 include deaths [1,2]. In the mining industry, various efforts are being adopted to prevent
these risk factors. Goodman et al. [3] suggested a tunnel design method that considers the effects
of jointed rock masses in underground mine tunnels. Abdellah et al. [4] performed a stability
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evaluation of the intersection point during the development process of an underground mine.
Wang et al. [5] analyzed toxic gas accidents that occur in underground coal mines.

Recently, various studies on information communication technology (ICT)-based underground
mine safety management systems are being conducted. There have been studies to prevent colli-
sions between workers and equipment using Bluetooth beacons [6–9], radio-frequency identifica-
tion (RFID) [10,11], and wireless access points (APs) [12,13] in an underground mine environment.
In addition, there have been studies to measure environmental factors in underground mines
using open-source hardware such as Arduino [14–17] and Raspberry Pi [18,19]. Studies have
also been conducted to vividly visualize the workplace of underground mines or perform safety
training using augmented reality (AR) [20,21] or virtual reality (VR) [22–26] technologies. A safety
management system using artificial intelligence (AI) technology such as machine learning has also
been developed [27,28].

Recently, studies have been conducted using autonomous driving robots to explore workplaces,
transport roads, and accident sites in underground mines. Autonomous driving robots are used
to perform exploration tasks while recognizing their own location in underground mine tun-
nels [29–33], or to perform tunnel mapping tasks to evaluate the shape and geological stability of
the tunnels [34,35]. Representatively, Bakambu et al. [36] developed an autonomous driving robot
that can perform path planning and obstacle avoidance in an underground mine environment, and
created a 2D map for the underground mine shaft. Ghosh et al. [37] created a three-dimensional
tunnel map for underground mines using a rotating light detection and aging (LiDAR) sensor
and verified its performance through field experiments. Kim et al. [38] developed a LiDAR
sensor-based autonomous driving robot and quantitatively evaluated the driving accuracy through
driving tests at an underground mine site. Neumann et al. [39] developed an autonomous driving
robot based on a robot operating system (ROS) equipped with inertial measurement unit (IMU),
LiDAR, and camera sensors, and performed 3D mapping work of underground tunnels.

Various studies have also been conducted to measure environmental factors in underground
mines using autonomous robots and environmental sensors. Baker et al. [40] developed ‘Ground-
hog’, an autonomous robot equipped with LiDAR sensors, camera sensors, gyro sensors, and gas
sensors, and carried out environmental monitoring work at abandoned underground mines. Zhao
et al. [41] developed an autonomous driving robot “MSRBOTS” that can detect toxic gases such
as methane gas, carbon monoxide, and hydrogen sulfide in an underground mine environment,
and conducted field experiments on underground mines. Günther et al. [42] developed a system
that can measure temperature, humidity, and gas concentration in underground mine shafts using
autonomous robots and transmit them remotely.

However, previous environmental monitoring studies using autonomous robots in underground
mines have limitations in that autonomous driving functions can be used only in some areas,
and the robots need to be controlled remotely in most areas. In addition, environmental factors
of underground mines cannot be identified because no analysis or visualization of the acquired
environmental data was performed. In particular, it is difficult to predict the location of the
environmental data because the environmental data and location information of robots were not
used together [42]. As such, in previous studies, there has never been a case where autonomous
driving, location estimation, and environmental monitoring work were conducted simultaneously.

In this study, we developed an unmanned environmental monitoring system using an
autonomous robot and environmental sensors for underground mines and created an environmen-
tal map for underground mines using the location information of the autonomous robot, the
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environmental monitoring data, and the geographic information system (GIS). Location informa-
tion of the autonomous driving robot was obtained using IMU, LiDAR, and encoder sensors,
and the temperature, humidity, and concentration of gas in the atmosphere were measured using
environmental sensors. This paper details the development of an environmental monitoring system
for an autonomous driving robot and the results of a field experiment conducted using the
developed system.

2 Methods

2.1 Hardware Configuration for Environmental Monitoring System
2.1.1 Hardware Configuration

Fig. 1 shows the hardware configuration of the autonomous driving robot for environmen-
tal monitoring developed in this study. The autonomous driving robot measures environmental
factors using three types (temperature/humidity, gas, and particle) of environmental sensors, and
performs autonomous driving and position estimation using three types (LiDAR, IMU, Encoder)
of distance and angle sensors. All the sensors are connected to the laptop PC that acts as the
main controller. In addition, a remote controller, a motor controller, and a driving platform are
also connected to the main controller.

Figure 1: Overall structure of autonomous driving robot developed in this study

2.1.2 Mobile Robot Platform and Sensors
Tab. 1 shows the sensors and the mobile robot platform used in the autonomous robot devel-

oped in this study. The ERP-42 robot was used as the mobile robot platform [43]. The ERP-42
robot controls speed and steering using four wheels, connects the remote controller and Wi-Fi
communication, and communicates with the driving motor through RS232C. The autonomous
driving robot utilizes three types of sensors (IMU, Encoder, LiDAR) to perform autonomous
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driving and location estimation. To measure the robot’s three-axis pose, an IMU sensor that
combines the acceleration sensor, geomagnetic sensor, and gyroscope sensor with a Kalman filter
was used. The IMU sensor was used after performing the correction work, and it outputs the
pose data in the form of Euler angles of roll, pitch, and yaw. The driving distance of the robot
was measured using the encoder sensor, and it was calculated by applying the encoder and motor
gear ratio to the pulse output according to the rotation of the robot motor.

Table 1: Specifications of sensors and robot platform used in this study

Type Name Description Interface Further specifications

Robot
Platform

ERP-42 Size: 650 mm ×
470 mm × 158 mm
Max Speed: 8 km/h

RS232C
Wi-Fi

Steer: Ackerman Geometry type
Drive: All wheel differential gear

IMU
Sensor

EBIMU–9DOFV4 3 Axis Gyroscope +
Accelerometer +
Magnetometer
Error Roll/Pitch: ±0.2◦,
Yaw: ±0.5◦

UART Input voltage: 3.3 V∼7 V
Data format: Euler, Quaternion

Encoder
Sensor

IG-32
PGM 01TYPE

Encoder gear ratio: 61
Motor gear ratio: 13

RS232C Input voltage: 12 V

LiDAR
Sensor

LMS-111 Operating Range:
0.5∼20 m
Field of View: 270◦

TCP/IP Scanning frequency: 25 Hz/50 Hz

In addition, the autonomous driving robot’s main controller comprised an Intel core i7-9750H
CPU 4.50 GHz, 16 GB RAM, a notebook PC with Windows 10 specifications, and a remote-
control device with an Intel CPU N2600 1.60 GHz, 2 GB RAM, and a Windows 7 notebook
PC. ATMega128 was used as the lower controller, and the video of the webcam installed on the
front of the robot was transmitted to and recorded on a notebook PC. Fig. 2 shows the exterior
view of the autonomous driving robot used in this study. Three types of environmental detection
sensors (temperature/humidity, gas, and particle) and a webcam were placed in front of the robot,
and LiDAR sensors were placed on the top of the robot.

2.1.3 Sensor Configuration for Environmental Monitoring
Fig. 3 shows the temperature and humidity sensor (Fig. 3a), gas sensor (Fig. 3b), and particle

sensor (Fig. 3c) used in this study. To measure temperature and humidity, an Arduino DHT-
11 sensor-based SEN11301P module, an open-source hardware, was used [44], and an Arduino
Uno board was used to connect the SEN11301P module to the PC. Honeywell’s GasAlertMax
XT II model was used to measure hydrogen sulfide (H2S), carbon monoxide (CO), oxygen (O2),
and combustible gases [lower explosion limit (LEL)] [45]. To measure the particle concentration
in the air, a digital dust monitor 3443 model of KANOMAX was used [46]. Tab. 2 shows
the detailed specifications of the environmental sensors used in this study. Each environmental
measurement sensor uses its own dedicated software to calibrate and interpolate noise and missing
data (gas sensor: BW technologies fleet manager II software [47], dust sensor: digital dust monitor
3443 software [48], and temperature and humidity sensor: Arduino IDE software designed for
pre-calibration [49]).



CMES, 2021, vol.127, no.3 947

Figure 2: View of autonomous driving robot and sensors used in this study

Figure 3: Environmental sensors used in this study. (a) Temperature & humidity sensor, (b) Gas
sensor, (c) Particle sensor

2.2 Software Configuration for Environmental Monitoring System
2.2.1 Software Configuration

The environmental sensors used in this study are connected to the main controller, a notebook
PC via USB communication, and store the robot’s location information and environmental data in
1 s using LabVIEW software. Fig. 4 shows the overall structure of the autonomous driving robot-
based environment mapping system developed in this study. This system performs autonomous
driving and location estimation using LiDAR, IMU, and encoder sensors, and calculates the
robot’s pose and location information in real time. In addition, it measures environmental factors
using temperature/humidity, gas, and particle sensors, and stores data. The location information
of the robot calculated using the location estimation sensors and the environmental data measured
using the environmental sensors are sorted according to time and converted into one-point data
that is sequentially converted into line and surface data to create an environment map.
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Table 2: Specifications of environmental sensors used in this study

Specifications Temperature/humidity
sensor

Gas sensor Particle sensor

Model SEN-11301P Gas alert max XT II Digital dust monitor
model 3443

Measuring element Temperature, Humidity H2S, CO, O2,
Combustible gas (LEL)

Particle concentration

Manufacturer Seeed studio BW technologies KANOMAX
Dimensions (mm) 40 × 20 × 8 13.1 × 7.0 × 5.2 162 × 60 × 109
Weight (g) 10 g 1300 kg 328 g
Operating voltage 3.3/5 V 6 V 100–240 V
Operating
temperature

−20∼60◦C 5∼40◦C −20∼−50◦C

Operating
humidity

5%∼95% 10%∼100% <95%

Detection range Temperature: −40∼80◦C
Humidity: 0%∼100%

H2S: 0–200 ppm
CO: 0.001∼10 mg/m3

O2: 0%∼30% vol
LEL: 0%∼100% LEL

0∼1000 ppm

Accuracy Temperature: ±0.5%
Humidity: ±2%

N/A ±10%

Figure 4: System architecture of environmental mapping system developed in this study
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2.2.2 Autonomous Driving and Location Estimation Method
Fig. 5 shows the flowchart of the autonomous driving algorithm. The autonomous driving

robot measures the distance to the front using the LiDAR sensor and determines the obstacles
in the direction of driving. It also calculates the distance difference between the left- and right-
side tunnel walls to recognize the centerline of the road and recognizes the robot’s driving
position using two driving threshold values (Min.Threshold, Max.Threshold). According to dis-
tance difference thresholds, robot’s driving states are classified as BR (Big Right), SR (Small
Right), N (Normal), SL (Small Left), and BL (Big Left). Fig. 6 shows the classification of states
according to the robot’s driving position. The robot measures the distances to the left and right
walls, calculates the difference, and determines the state class. For example, when the robot is
driving close to the right wall, the distance to the left wall is measured to be considerably greater
than that to the right wall, which is then determined as BR. The robot automatically drives along
the centerline of the road through classified driving positions and distance differences. Tab. 3
shows the calculation of the steering angle for returning from the current robot’s driving position
to the centerline of the road, depending on the distance between the left- and right-side tunnel
walls [38].

Figure 5: Procedure for controlling the autonomous driving robot’s steering and stop functions in
underground mines

Fig. 7 shows the dynamic model of the autonomous driving robot developed in this study. In
the xy-plane, the robot has a velocity of Vx and Vy along the x- and y-axes. The distance from
the location at the previous time (tk−1) to the location at the current time (tk) is represented by
d(tk−1), and the heading angle of the robot is represented by α(tk) (Fig. 7a). In the xz-plane, the
robot has a velocity of Vx and Vz along the x- and z-axes; the robot’s pitch angle is represented
by β(tk) (Fig. 7b). The pose and driving distance of the autonomous robot were calculated as
location coordinates using Eqs. (1)–(3), where x(tk+1), y(tk+1), and z(tk+1) represent the robot’s
x-, y-, and z-coordinates at time (tk+1), respectively. At (tk+1), the heading and pitch angles are
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determined using the LiDAR and IMU sensors. Additionally, d(tk) represents the moving distance
input from the encoder sensor [30].

x(tk+1)= x(tk)+d(tk) · cos(β(tk)) · cos(α(tk)) (1)

y(tk+1)= y(tk)+d(tk) · cos(β(tk)) · sin(α(tk)) (2)

z(tk+1)= z(tk)+d(tk) · sin(β(tk)) (3)

Figure 6: Conceptual diagram of the robot’s driving states determined by the difference between
distances to the left and right walls

Table 3: Equations for calculating the steering value (Y) according to the distance difference (X)
at five positions

Position X (Distance difference) Y (Steering value)

BR X←Max.Threshold Y =−Max.Steering

SR −Max.Threshold ≤X←Min.Threshold Y= −Max.Steering · (X−Min.Threshold)
2

(Min.Threshold−Max.Threshold)2

N −Min.Threshold ≤X ≤Min.Threshold Y = 0

SL Min.Threshold <X ≤Max.Threshold Y= Max.Steering · (X−Min.Threshold)
2

(Max.Threshold−Min.Threshold)2

BL X >Max.Threshold Y =Max.Steering

IMU, encoder, and LiDAR sensors were used to estimate the location of the autonomous
robot in the underground mines. Fig. 8 shows the overall system architecture of the location
estimation algorithm for the autonomous driving robot. Raw data received from the accelerometer,
gyroscope, and magnetometer were fused using a Kalman filter to calculate the robot’s three-
dimensional pose of the robot. The robot’s heading value was calculated by recognizing the wall of
the tunnel with the distance data measured using the LiDAR sensor and calculating the rotation
angle of the robot. The robot’s 3D pose calculated using the IMU sensor and the robot’s heading
angle calculated using the LiDAR sensor were fused according to the rotation angle of the robot,
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and then applied together with the travel distance input from the encoder sensor to estimate the
location of the autonomous robot.

Figure 7: Dynamic model of the autonomous driving robot used in this study in the (a) xy-plane
and (b) xz-plane

Fig. 9 represents the processing diagram of the data processing algorithm of the IMU sensor.
Gyroscope, magnetometer, and accelerometer are processed with Kalman filter and converted
to orientation matrix. U, V, and W are fixed frames of the IMU sensor in x, y, and z axes.
g represents gravity acceleration, while aUgravity, aVgravity, aWgravity represents gravity acceleration
vectors in the U, V, and W axes. aUcentripetal, aVcentripetal, aWcentripetal denotes centripetal in the
direction of U, V, and W, wU , wV , wW , and VU , VV , VW , denote the angular and linear velocities
in the U, V and W axes [50].

To perform autonomous driving, data acquisition from sensors, and location estimation,
LabVIEW2018 software (National Instruments) was used, which is a graphical programming
language that enables intuitive programming; therefore, it is effectively used in robot control and
signal instruments. Fig. 10 shows a part of the block diagram of the programming code for the
autonomous driving algorithm and data acquisition from the IMU sensor. The autonomous driv-
ing robot’s position is classified into five driving states, with Max.Threshold and Min.Threshold
as the boundaries. In each driving state, the distance to the left and right walls is calculated, and
the steering angle, which enables driving along the center line of the tunnel, is output (Fig. 10a).
When an obstacle is detected, the robot is set to stop, and the autonomous driving mode is
switched to the remote-control mode through a remote controller. In addition, for the IMU
sensor, 3-axis raw data and pre-calibrated roll, pitch, and yaw data received from the gyroscope,
accelerometer, and magnetometer are output in 0.005 s increments (Fig. 10b).

2.3 Creating Environmental Map Using GIS
In this study, ArcGIS, a geographic information system (GIS) software, was used to create an

environmental map. Fig. 11 shows the flowchart used to create an environment map in ArcGIS
software using the robot’s location information and environmental data. First, the position of
the robot and the acquired data were matched by sorting the robot’s location information and
environmental data according to the acquisition time. The matched data were merged into one
data using the [Join] function. Using the [XY to Line] function, the environmental data values,
including location information, were converted from point data into line data having a range,
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and using the [Buffer] function, line data were converted into plane data having a range. When
converting line data into plane data, each side was extended by 1.5 m to the left and right
by reflecting the width of the underground mine shaft. Because each plane data represented
the robot’s driving path, the robot’s heading could also be reflected when implementing the
[Buffer] function.

Figure 8: Overall system architecture of the data processing algorithm for location estimation

In this study, the buffer function was used instead of the spatial interpolation technique
because the autonomous driving robot acquired data at close intervals. Additionally, environmental
factors were expressed in different colors according to the range to visualize changes and distri-
butions in environmental factors. A 2D map of the underground mine shaft surveyed with a 2D
LiDAR sensor was visualized simultaneously.
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Figure 9: Processing diagram of IMU sensor’s data to estimate the robot’s pose and location

2.4 Field Experiment
2.4.1 Experiment Area

In this study, field experiments were conducted on an abandoned amethyst mine located in
Korea (35◦32′43′′ N, 129◦5′37′′ E). Among the total mine sites, some areas with a length of
approximately 28 m, a height of approximately 2.5 m, and a width of approximately 3 m were
selected as the test area. The experimental area was classified in 10-s increments according to the
robot’s driving time, and the entire area was classified into six sections (A–F). Fig. 12 shows the
entire mine tunnel (Fig. 12a), classified driving section (Fig. 12b), driving path and the start and
end points (Fig. 12c) of the field experiment area. In the experimental area, both the left and right
walls are within the measurement range of the LiDAR sensor and includes four curved points.

2.4.2 Experiment Method
When the autonomous driving robot starts by receiving a start signal from a remote con-

troller, it performs autonomous driving and location estimation using IMU, LiDAR, and encoder
sensors. It also measures the temperature, humidity, and concentration of hydrogen sulfide, carbon
monoxide, oxygen, combustible gases, and particles using environmental sensors. The exterior
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driving image of the robot and the screen of the notebook PC were recorded. The estimated
location, pose data, and environmental factor data were saved in units of 1 s. After the experiment
was completed, the stored location and environmental data were sorted over time to match
the environmental factor values according to the robot’s location. In addition, we measured the
actual coordinates and driving paths of real robots by recording and analyzing the appearance
of the robot’s driving path and evaluated the accuracy of the location estimation method by
comparing them with estimated location coordinates. The actual location and estimated location
are calculated using the root mean square error (RMSE) method, as shown in Eq. (4).

RMSE =
√√√√

n∑
i=1

(actual value−measured value)2

n
(4)

Figure 10: Block diagram of the programming code for (a) autonomous driving and (b) IMU
sensor data acquisition

3 Results

Fig. 13 shows the developed autonomous driving robot estimating the location and measuring
environmental data and its driving directions while autonomous driving through the under-
ground mine shafts at 20, 40, and 60 s. It was confirmed that the robot successfully performed
autonomous driving in all sections, and it took approximately 61 s to drive through the exper-
imental area. The autonomous driving robot was able to visualize the robot’s driving path by
performing location estimation using sensors in real time.
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Figure 11: System architecture of environmental mapping system developed in this study

Figure 12: Conceptual diagram of the field experiment area (a) in an underground mine environ-
ment, (b) classified driving section, and (c) the start and end points
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Figure 13: Field experiment scenes and estimated driving path of the autonomous driving robot
at (a) 20 s (b) 40 s, and (c) 60 s

Tab. 4 shows the robot’s estimated and actual x- and y-coordinates and the environmental
data measured while the robot is driving through the field experiment area. While the autonomous
robot drove approximately 30 m, 61 locations and environmental data were measured and stored.

The underground mine where the field experiments were conducted was measured at temper-
atures of approximately 15–16◦C and humidity of approximately 42%–43%. No other gases (CO,
H2S, LEL) except oxygen was detected during the field test. Fig. 14 shows the graph of changes
in environmental data over time. The temperature graph (Fig. 14a) shows a maximum difference
of 2◦C, and the humidity graph (Fig. 14b) shows a maximum difference of 1%, indicating an
almost constant flow. In contrast, the particle graph (Fig. 14c) shows a relatively large difference.

The particle concentration of 0.293 mg/m3 was measured at approximately 38 to 51 s after the
robot’s departure, and the relative concentration was 190 when the lowest particle concentration
generated in the experimental area was converted to 1. It was expected that smoke or particles
from the movement of people or equipment would have occurred at that time. The O2 concentra-
tion graph (Fig. 14d) shows a change of approximately 1◦C, indicating an almost constant flow
similar to the temperature and humidity graphs.
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Table 4: Measured robot location and environmental data from the field experiment

No. Section Estimated X
coordinate
(m)

Estimated Y
coordinate
(m)

Actual X
coordinate
(m)

Actual Y
coordinate
(m)

Temperature
(◦C)

Humidity
(%)

Particles
concentration
(mg/m3)

O2
concentration
(%)

1 A 0.01 0.00 0.01 0.00 16 43 0.008 15.7
2 0.26 0.02 0.15 0.00 15 42 0.016 15.7
3 0.73 0.09 0.50 0.07 16 43 0.012 15.6
4 1.29 0.15 1.10 0.14 16 43 0.01 15.7
5 1.82 0.13 1.54 0.14 16 43 0.008 15.7
6 2.35 0.09 1.98 0.07 16 43 0.018 15.7
7 2.82 0.03 2.50 0.05 16 43 0.016 15.7
8 3.30 −0.10 3.02 −0.07 16 43 0.012 15.7
9 3.77 −0.26 3.60 −0.18 16 43 0.014 15.7
10 4.29 −0.43 4.02 −0.33 16 43 0.014 15.7
11 B 4.77 −0.59 4.55 −0.47 16 43 0.012 15.7
12 5.29 −0.79 5.09 −0.70 16 43 0.01 15.7
13 5.79 −1.02 5.58 −0.93 16 43 0.132 15.7
14 6.27 −1.26 6.00 −1.23 16 43 0.012 15.7
15 6.74 −1.55 6.45 −1.50 17 42 0.012 15.7
16 7.12 −1.86 7.00 −1.72 16 43 0.012 15.7
17 7.41 −2.17 7.39 −2.10 17 42 0.01 15.7
18 7.74 −2.50 7.60 −2.40 16 43 0.01 15.7
19 8.11 −2.83 8.10 −2.72 16 43 0.008 15.7
20 8.49 −3.11 8.45 −3.04 17 42 0.01 15.7
21 C 8.93 −3.34 8.90 −3.25 16 43 0.014 15.7
22 9.40 −3.53 9.43 −3.55 16 43 0.01 15.7
23 9.95 −3.71 9.88 −3.75 17 42 0.014 15.7
24 10.38 −3.82 10.33 −3.81 16 43 0.014 15.7
25 10.90 −3.94 10.82 −3.92 16 43 0.01 15.7
26 11.49 −4.03 11.45 −4.01 17 42 0.01 15.7
27 12.33 −3.96 12.09 −3.95 16 43 0.01 15.7
28 12.83 −3.88 12.54 −3.84 16 43 0.012 15.7
29 13.34 −3.76 13.05 −3.75 17 42 0.01 15.7
30 13.85 −3.64 13.55 −3.60 17 42 0.014 15.7
31 D 14.37 −3.54 14.08 −3.55 17 42 0.012 15.7
32 14.87 −3.44 14.50 −3.43 17 42 0.034 15.7
33 15.38 −3.38 15.09 −3.38 17 42 0.012 15.7
34 15.89 −3.36 15.62 −3.33 16 43 0.042 15.7
35 16.40 −3.32 16.25 −3.23 17 42 0.014 15.7
36 16.89 −3.29 16.60 −3.17 17 42 0.114 15.7
37 17.40 −3.29 17.22 −3.15 17 42 0.01 15.7
38 17.89 −3.33 17.69 −3.13 17 42 0.206 15.7
39 18.41 −3.39 18.22 −3.20 17 42 0.38 15.7
40 18.87 −3.46 18.60 −3.29 17 42 0.134 15.6
41 E 19.37 −3.59 19.19 −3.45 17 42 0.104 15.6
42 19.87 −3.74 19.71 −3.66 17 42 0.258 15.6
43 20.49 −3.92 20.18 −3.81 17 42 0.178 15.6
44 20.90 −4.09 20.71 −4.05 17 42 0.272 15.6
45 21.35 −4.34 21.23 −4.36 17 42 0.052 15.6
46 21.79 −4.58 21.56 −4.57 17 42 0.156 15.6
47 22.24 −4.84 22.01 −4.82 17 42 0.09 15.6

(Continued)
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Table 4 (continued).

No. Section Estimated X
coordinate
(m)

Estimated Y
coordinate
(m)

Actual X
coordinate
(m)

Actual Y
coordinate
(m)

Temperature
(◦C)

Humidity
(%)

Particles
concentration
(mg/m3)

O2
concentration
(%)

48 22.66 −5.14 22.38 −5.08 17 42 0.336 15.6
49 23.03 −5.46 22.78 −5.43 17 42 0.11 15.6
50 23.41 −5.79 23.15 −5.89 17 42 0.056 15.6
51 F 23.85 −6.14 23.56 −6.23 17 42 0.01 15.6
52 24.27 −6.47 23.99 −6.55 17 42 0.028 15.6
53 24.67 −6.80 24.43 −6.90 15 42 0.02 15.6
54 25.09 −7.13 24.79 −7.06 17 42 0.02 15.6
55 25.53 −7.42 25.29 −7.32 17 42 0.01 15.6
56 26.01 −7.66 25.77 −7.43 15 42 0.008 15.6
57 26.52 −7.90 26.19 −7.64 17 42 0.01 15.6
58 27.06 −8.10 26.69 −7.84 17 42 0.09 15.6
59 27.58 −8.20 27.25 −7.94 17 42 0.016 15.6
60 28.07 −8.27 27.90 −8.03 17 42 0.014 15.6
61 28.58 −8.31 28.45 −8.11 17 42 0.038 15.6

Figure 14: Graphs showing environmental data. (a) Temperature, (b) Humidity, (c) Particle con-
centration, (d) O2 concentration
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In this study, the location of the autonomous driving robot was measured in real time using
LiDAR, IMU, and encoder sensors, and the driving path was estimated by storing these data over
time. In addition, the actual driving path of the robot was assessed by recording the appearance
of the robot driving from the outside and analyzing it. Fig. 15 compares the estimated driving
path and the actual driving path of the robot while driving through the field experiment area
for unmanned environmental monitoring. The autonomous driving robot showed a relatively large
error in some sections where the rotation angle was large, but the overall accuracy of location
estimation was high. When compared quantitatively, RMSEs of approximately 0.11 m along the
x-axis and 0.22 m along the y-axis were noted. Tab. 5 shows the RMSEs of location estimation
and the average, standard deviation of environmental data at each section.

Figure 15: Comparison of the driving path created by the autonomous driving robot’s location
estimation method and the actual driving path

Fig. 16 shows the environment map created using the environmental data and GIS while the
autonomous driving robot is driving. Because the location information and particle concentration
of the autonomous driving robot were visualized simultaneously, it was possible to intuitively
check the change in the particle concentration according to the driving path of the robot.

It was confirmed that the particle concentration partially increased in the area of 5 m along
the Y-axis of the experimental area, and the particle concentration gradually increased from
approximately 18 m to the maximum in the area of 19 m, and remained at a high concentration
until the area of 24 m.
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Table 5: Location estimation accuracy and environmental data of field experiment at each section

Value Section

A B C D E F

Location estimation RMSE 0.18 0.14 0.08 0.18 0.17 0.23
Temperature (◦C) Average 15.90 16.30 16.40 16.90 17.00 16.64

Standard deviation 0.32 0.48 0.49 0.30 0 0.81
Humidity (%) Average 42.90 42.70 42.60 42.10 42.00 42.00

Standard deviation 0.32 0.48 0.49 0.30 0 0
Particle concentration (mg/m3) Average 0.01 0.02 0.01 0.10 0.16 0.02

Standard deviation 0 0.04 0 0.11 0.09 0.02
O2 concentration (%) Average 15.69 15.70 15.70 15.69 15.60 15.60

Standard deviation 0.03 0 0 0.03 0 0

Figure 16: Particle concentration map at the study area created using the measured data and GIS

4 Conclusions

In this study, a small autonomous driving robot that can perform unmanned environmental
monitoring in underground mines was developed using location estimation sensors and environ-
mental detection sensors. Three types of sensors (IMU, LiDAR, and encoder) were used to
estimate the location of the robot, and three types (temperature/humidity, gas, and particle) of
environmental sensors were used to measure environmental factors. As a result of conducting
field experiments on underground mines using the developed system, the location estimation
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method showed errors of approximately 0.22 m along the x-axis and 0.11 m along the y-axis.
Temperature, humidity, O2, and particle concentration were measured to be almost constant, and
the concentration of harmful gases was not measured. In the case of particle concentration, it was
measured at a maximum of 0.293 mg/m3; it was confirmed from the created environmental map
that a large number of particles were generated in the 18–24 m section of the experimental section.

Because the global positioning system (GPS) cannot be used in underground mine environ-
ments, it is difficult to recognize the location, and the communication environment for remotely
operating devices is also limited. However, the autonomous driving robot developed in this study
could efficiently collect location information from the measurement points of environmental data
by using location estimation sensors and also conduct exploration autonomously without inter-
vention by workers. In addition, because the location information and environmental data were
used together to create an environmental map, the environmental information of the underground
mine could be effectively visualized.

The developed small autonomous driving robot can be used in areas where road conditions
are relatively stable. However, in the case of an actual underground mine environment, as there
exist areas where the road conditions are not stable, its utilization is limited. Therefore, to expand
the utilization of the autonomous driving system developed in this study, it would need to be
applied to large-scale equipment such as mining transport trucks and loaders [51–54].
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