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Abstract: With the increasing of civil aviation business, flight delay has become 
a key problem in civil aviation field in recent years, which has brought a 
considerable economic impact to airlines and related industries. The delay 
prediction of specific flights is very important for airlines’ plan, airport resource 
allocation, insurance company strategy and personal arrangement. The influence 
factors of flight delay have high complexity and non-linear relationship. The 
different situations of various regions and airports, and even the deviation of 
airport or airline arrangement all have certain influence on flight delay, which 
makes the prediction more difficult. In view of the limitations of the existing delay 
prediction models, this paper proposes a flight delay prediction model with more 
generalization ability and corresponding machine learning classification algorithm. 
This model fully exploits temporal and spatial characteristics of higher dimensions, 
such as the influence of preceding flights, the situation of departure and landing 
airports, and the overall situation of flights on the same route. In the process of 
machine learning, the model is trained with historical data and tested with the latest 
actual data. The test result shows that the model and this machine learning 
algorithm can provide an effective method for the prediction of flight delay. 
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1 Introduction 
With the rapid development of China’s civil aviation industry, the impact of flight delays has become 

increasingly prominent. According to the Statistical Bulletin on the Development of the Civil Aviation 
Industry of China in 2019, the cumulative passenger transport volume in 2019 was 65,993,420,000 people, 
an increase of 7.9% over the previous year. 49,662,000 sorties were completed in the whole year, and 1.352 
billion passenger throughputs were completed at civil aviation airports. But the frequency and severity of 
flight delay is not optimistic, the average normal rate of all flights in the country is only 81.65%. 

The causes of flight delays are currently more difficult to explain due to multiple and repetitive factors, 
such as weather, airport takeoff or landing management, airline management, air traffic, air traffic control, 
passenger reasons, and so on [1]. For airports, flight delays will result in the disruption of limited airport 
resource allocation arrangements such as limited routes, runways, aprons and so on, which will increase the 
pressure on Airport security, operation and resource scheduling. For airlines, flight delays will result in 
increased operating, maintenance and human costs, which will seriously affect costs and profits. For 
passengers, flight delays cause irreparable losses to personal travel arrangements or business travel. For 
insurance companies, flight delay prediction is very important for the pricing and operation of travel 
insurance and flight delay insurance. The classification predication of flight delays in this paper will help 
to improve the above problems. 
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The generalization ability of flight delay prediction model and the multidimensional and complex 
factors that affect flight delay make flight delay prediction a challenging task [2]. How to construct effective 
features from original data plays an important role in machine learning system. Other factors, such as 
weather, delays in upstream flights, the conditions of departure and landing airport are dynamic and play 
an important role in highlighting feature selection in accurate predictions. 

This paper conducts model training, validation and testing using flight information of different airports 
and routes in China from 2016 to 2017. The data processing is detailed in Part 5. Through the analysis of 
specific business scenarios, we abstract weather impact, departure and landing airport management and 
resource impact factors as quantitative features by establishing high-dimensional features that are in line 
with business reality, thus further improving the accuracy of delay prediction. Machine learning uses 
gradient-lifting XGBoost and GBDT methods and compares them with traditional machine learning 
classification models. Finally, the actual data of 59105 different airports and routes sampled in October 
2020 are used to test the multi-classification prediction model, which achieves 88.11% multi-classification 
accuracy with 5 minutes, 15 minutes and 30 minutes delay of planned landing time, and has good portability 
and generalization ability. 

This paper has innovations in the following aspects: 
1. Using gradient boosting machine learning algorithm with more extensive training data to construct 

a prediction algorithm with stronger generalization ability, which is not limited to specific airports or routes; 
2. Combined with the actual business scenario analysis, the high-dimensional training features are 

abstracted from the airport resources and management, aviation management information and weather factors. 
In addition to the time dimension, the feature engineering adds space dimension of air route analysis; 

3. In this paper, the multi classification delay prediction is carried out, and has achieved good result. 
The effect of delay regression analysis is not satisfactory, and the classification prediction of delay is more 
practical in many business scenarios. 

2 Related Work 
In the past decade, domestic and foreign scholars mainly focus on the analysis of flight delay factors, 

the establishment of delay propagation model and the solutions to alleviate the delay. 
In the field of flight delay prediction, according to the existing literature research methods can be 

roughly divided into three categories, inferential prediction model based on statistical theory, prediction 
method based on simulation and empirical model, and delay prediction model based on machine learning. 
This section will briefly describe the first two methods, and focuse on the current situation of prediction 
research based on machine learning method. 

Based on the statistical theory, an inferential prediction model can be established. Based on the actual 
historical sample data, the characteristics of the sample data are analyzed by statistical theory, thus the 
statistical model is continuously fitted, approximated and optimized. The commonly used methods and 
models are regression analysis, Bayesian network, Caiman filtering, etc. Li et al. [3] analyzed the complex 
factors affecting the delay, and established a Bayesian network model based on statistical methods to predict 
the delay of downstream flights. 

The prediction method based on simulation and empirical model is used to simulate aircraft operation 
model, flight delay propagation model and airport management scheduling model. The key variables are 
connected with the whole simulation model system to predict the flight delay time in each simulation scenario. 

The delay prediction method based on machine learning, through the data processing of a large number 
of actual historical samples, extracting key features, and then put the results into the machine learning 
algorithm for model establishment. And finally, through the model to achieve flight delay prediction. This 
method needs a lot of data to fit the model. When the correlation between the factors is complex or nonlinear, 
it will be better to use machine learning method to study. The machine learning method commonly used in 
prediction research is supervised learning. 
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In the process of machine learning, a prediction model is established based on a set of marked training 
data. Through the feature vector obtained from a large number of data input, the regression or classifier 
parameters are continuously fitted to make the model achieve the expected performance. It is the most 
common learning method to solve the regression or classification problems. The common algorithms 
include artificial neural network, support vector machine, decision tree, etc. Fig. 1 shows a training process 
of supervised learning model. 

 
Figure 1: Training process of supervised learning model 

Engin et al. [4] used artificial neural network to predict flight delay directly. Only a specific airport 
was selected, and the prediction accuracy was about 90% when aircraft type information was considered. 
Reboll et al. [5] used the random forest algorithm to predict the delay between 2 and 24 h, established the 
air traffic network model and took the delay state as the influence variable of delay. When the delay 
threshold was set at 60 min, the average error of 100 network sections was 19%. Navoneel et al. [6] used 
common machine learning classifiers, random forest, gradient lifting classifier and support vector machine 
to predict flight delay of several large airports in the United States. The accuracy of delay prediction was 
79%. Choi et al. [7] also used decision tree, random forest and other algorithms with adding weather factors 
to the feature engineering for prediction, and the accuracy rate of random forest was 80%. Etani [8] used 
the classification model of random forest, added weather data and flight data as training features, and made 
correlation analysis. The prediction accuracy for punctual arrival of flights reached 77%. 

3 Model Description 
3.1 Algorithm Introduction 

In this paper, the prediction model is essentially a classification task. Due to the complexity of mapping 
between features and prediction tags, ensemble learning method is proposed to train and construct the model. 
Ensemble learning is to construct multiple classifiers (weak classifiers) to predict the data set, and then use 
a certain strategy to integrate the prediction results of multiple classifiers as the final prediction results [9]. 
In this paper, boosting serial mode is used for training base classifier. There is a certain dependence between 
each base classifier. Its basic idea is to stack the base classifiers layer by layer. When each layer is trained, 
it will give a higher weight to the wrong samples of the previous base classifier. When testing, the final 
result is obtained by weighting the results of each classifier. 

Different from bagging classifier, the latter has no strong dependence among base classifiers and can be 
trained in parallel. The prediction result is decided by all parallel classifiers, such as random forest algorithm. 

The base classifier uses cart regression tree model to complete the construction of the whole tree by 
continuously splitting the features [10]. For example, the current tree node is split based on the j-th 
eigenvalue. Let the sample whose eigenvalue is less than s be divided into left subtree, and the sample larger 
than s is divided into right subtree. Formula expression is shown in Eq. (1). 
R1(j,s)=�x|x(j)≤s� and R2(j,s)= �x|x(j)＞s�                (1) 
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Its essence is to divide the sample space on the feature dimension, which is very complex. For the 
objective function L=∑ �yi-f(xi)�

2
xi∈Rm

 of each cart tree, the best segmentation feature and the optimal 
segmentation point s are solved, i.e., Eq. (2), then a base classifier is finally determined. 

min
j,s

�min
c1

∑ (yi-c1)2
xi∈R1(j,s) + min

c2
∑ (yi-c2)2

xi∈R2(j,s) �                                  (2) 

Next, for the integration relationship of the base classifiers, we can use the concatenation method, each 
time let the next weak classifier to fit the residual error of the error function to the predicted value (the residual 
is the error between the predicted value and the real value) [11]. For example, in GBDT (gradient boosting 
decision tree) algorithm, when we define the prediction loss function of each weak classifier as the mean 

square error function l�yi,y
i�= 1

2
�yi-y

i�2. It will calculate the negative gradient result as - �∂l�yi,y
i�

∂yi �=�yi-y
i�. 

Therefore, when the mean square loss function is selected as the loss function, the value of each fitting is 
(Real value- Value predicted by the current model), i.e., residual. In this case, the variable is “the value of the 
current prediction model”. That is to say, we have to calculated the negative gradient. 

Finally, the scores of multiple weak classifiers are accumulated to get the final prediction, and each 
iteration is based on the existing ensemble model, adding a tree to fit the residual between the prediction 
results of the integrated model and the real value, which has a good effect on the prediction classification. 

Like the traditional boosting tree model, XGBoost algorithm also adopts residual learning method to 
improve the model. The difference is that the selection of split nodes of weak classifier is not necessarily 
based on the least square loss. Similarly, when we want to predict the score of a sample, according to the 
features of the sample, it will fall on the corresponding leaf node in each tree, and each leaf node 
corresponds to a score. Finally, the score corresponding to each tree is added up to get the predicted value 
of the sample [12]. The expression is shown in Eq. (3), wq(x) is the score of leaf node q, and f(x) is the 
expression of one of the regression trees. 

∙y�=ϕ(xi)=� fk(xi)
M

k=1
 

where F=∙�f(x)=wq(x)� �q:Rm→T,w∈R
∥n
T �                                              (3) 

Xgboost objective function is defined as L(t)=∑ l �yi,y�i
(t-1)+ft(xi)�+Ω(ft)n

i=1 . The first part is used to 
measure the difference between predicted score and true score. The second part is regular term, which can 
control the number of leaf nodes and node scores to prevent over fitting. Next, we will determine the ft 
function that minimizes the objective function. The idea of XGBoost is to approximate it with its Taylor 
second-order expansion at ft = 0 . So the objective function is approximated to 
L(t)≃∑ �l�yi,y�

(t-1)�+gift(xi)+ 1
2

hift
2(xi)�n

i=1 +Ω(ft) , where gi  is the first derivative and hi  is the second 
derivative. Because the residual of the prediction score of the first T-1 tree has no effect on the optimization 
of the objective function, the first part can be directly removed. At the same time, each sample ultimately 
falls in the leaf node, and the samples of the same leaf node can be combined. The simplification formula 
is as Eq. (4). 

L(t)≃∙��gift(xi)+
1
2

hift
2(xi)�+Ω(ft)

n

i=1

 

=∙∑ �giwq(xi)+ 1
2

hiwq(xi)
2 �+γT+λ 1

2
∑ wj

2T
j=1

n
i=1                               (4) 

For the fixed structure, the optimal weight of leaf node can be calculated, see Eq. (5). And then the 
objective function can be obtained. After the nodes and weights are determined, the next tree can be fitted 
or the fitting process is finished. 

wj
*=- Gj

Hj+λ
  L=- 1

2
∑ Gj

2

Hi+λ
+γTB

T
j=1                              (5) 
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Both GBDT and XGBoost algorithms are fitted by boosting integration, and continue to learn through 
residual error, which have good effects in classification tasks. 

3.2 Parameter Adjustment 
Since both GBDT and XGBoost use cart regression decision tree, the algorithm parameters are basically 

derived from the decision tree. In order to prevent over fitting or under fitting state, in this paper, n_estimators, 
learning_rate, max_depth and other important parameters are brought into the selection model, and the 
GridSearchCV function grid search method in scikit-learn package is used. In this method, the parameters are 
adjusted according to the step size within the specified parameter range, and the parameters with the highest 
accuracy in the verification set can be found from all the parameters [13]. The results of best parameters with 
grid search are shown in the Tab. 1 below. 

Table 1: The results of best parameters with grid search 

Hyper-parameters Value Hyper-parameters Value 
‘learning_rate’ 0.09 ‘n_estimators’ 500 
‘max_depth’ 11 ‘min_samples_split’ 9 
‘min_samples_leaf’ 10 ‘min_samples_split’ 14 

GridSearchCV function can ensure that the parameters with the highest accuracy can be found within 
the specified parameter range [14], but this is also the defect of grid search. This method requires traversing 
the combination of all possible parameters, which is time-consuming in the case of large data sets and multi 
parameters. 

3.3 An Overview of Feature Selection of Models 
When the parameters of the model and algorithm are determined, we need to select a feature subset 

from all the features, so that the constructed model has better effect and stronger generalization ability. 
Selecting an optimal subset from all features or constructing more abstract features can make the best 
performance in training and testing data for certain evaluation criteria. The detailed feature selection and 
feature extraction process is in the fourth and fifth parts. 

4 Data Processing and Feature Establishment 
Before applying the algorithm to our dataset, we need to perform a basic preprocessing. Data 

preprocessing is to transform the data into a format suitable for our analysis, and also to improve the quality 
of data. The obtained data sets are incomplete, noisy and inconsistent. This paper obtains the data sets of 
Chinese flights from 2015 to 2017 from the public flight information. The dataset consists of 19 columns 
and 328291 rows. The original data of flight information is shown in the Tab. 2. 

Table 2: The original data of flight information 
Airport of 
departure 

Airport of 
landing 

Flight 
number 

Planned 
departure time 
(×10^9) 

Planned arrival 
time (×10^9) 

Actual takeoff 
time (×10^9) 

Actual 
arrival time 
(×10^9) 

Aircraft 
number 

AKU URC CZ6919 1.4518656 1.4518704 1.451865 1.451869 1 
HRB NKG AQ1040 1.4541333 1.4541438 1.454134 1.454144 2 
NKG KMG MU2719 1.4525550 1.4525661 1.452556 1.452565 3 
HGH AVA GJ8733 1.4529846 1.4529936 1.452985 1.452995 4 
KHN TNA JD5145 1.4529975 1.4530038 1.452998 1.453003 5 

Firstly, the missing data value is processed. The key information (such as flight departure and landing 
time) in many rows of data is missing or empty, which cannot be estimated or approximately filled, and can 
only be discarded. Use the dropna() function in the pandas package to clean up the dataset and delete rows 
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and columns from null values that contain key information. After preprocessing, the key attributes of 1716 
data are null, and the number of rows is reduced to 326575. 

Then the time data is processed. Machine learning algorithm can’t learn the feature of second, which 
is a serious interference to the prediction model. According to the planned take-off and arrival time, the 
planned flight time is calculated as a feature, which can indirectly reflect the route distance [15]. The 
planned departure and arrival dates are calculated to match the local weather and airport information. The 
flight month, departure time and arrival time are calculated as the features of model. The arrival delay time 
is calculated as the target value of delay and the delay time of the preceding flight. 

Then we extract more features. According to the flight delay propagation model, the influence of 
preceding flights on downstream flights is the most direct embodiment. By screening the same aircraft 
number, the aircraft is sorted by time. If the arrival airport of the upstream flight on the same day is the 
departure airport of the downstream flight, then we consider that the two flights are adjacent flights. For 
the flight data with later time, the feature of preceding flight delay is filled by the arrival delay time of the 
earlier flight data. In this paper, the mean filling method is used for the flights with missing preamble delay. 

According to the analysis of actual business scenarios, in order to characterize the impact of departure 
and landing airport and flight delay propagation on the same route, three more abstract features are extracted: 
the overall average delay of the same route, the average delay of the same route 2 h before the target flight 
landing, and the average delay of landing airport 2 h before the target flight landing. The specific analysis of 
the three characteristics is in the fifth part. Using the grouby() function to group the preprocessed information, 
judge the scheduled arrival time of flight, and calculate the average delay of flights within 2 h. Extract flight 
information and flight nature according to flight number. The first two digits of the flight number are the 
airline information of the flight. The flight with the last letter of the flight number is a supplementary flight. 
The flight number has three digits for domestic flights and four digits for international flights. 

Finally, the local weather and airport information match with flight information. Code the special 
weather and mark the flights with special events in the planned time. 

The general flow chart of data processing and feature establishment is shown in Fig. 2 below. 

 
Figure 2: Flow chart of data processing and feature establishment 

5 Feature Selection and Extraction Combined with Business Analysis 
When using machine learning algorithm to build the model, it is to fit the learning model continuously 

through the characteristics of samples and corresponding labels. The importance of feature selection is self-
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evident. When the sample data features are less, we should even consider adding features. In fact, many 
features are often redundant. In this section, in addition to using the conventional method to filter features, 
the real business scenarios are analyzed, which abstracts the features difficult to quantified into higher 
dimensional statistical features, and tries to add spatial features. 

5.1 Feature Selection of Embedded Method 
After using gradient boosting algorithm, we use embedded method for feature selection. The weight 

coefficients of each feature are obtained by the trained model, and the filter selection is carried out according 
to the coefficient weight. Of course, chi square test and maximum information coefficient (MIC) can also 
be used to evaluate the feature parameters, so as to filter the parameters with low correlation. Rutuja et al. 
[16] analyzed the factors influencing flight delay and the degree of influence on flight delay through the 
“selecting K best” method test, and obtained the most significant 12 features. 

Embedding method is to carry out feature selection process and algorithm training at the same time. 
Firstly, the algorithm and model of machine learning are used for training to learn which features contribute 
the most to the accuracy of the model [17]. The weight coefficient of each feature represents the importance 
of the feature to the model, so as to find the most useful feature for the model accuracy. Compared with the 
filtering method, the embedding method has a more direct and better effect on improving the effectiveness 
of the model. The process of feature selection is shown in Fig. 3. 

 
Figure 3: The process of feature selection 

     
           Figure 4: The importance distribution of the initial feature set 

From the fourth part of data processing and feature establishment, 18 preliminary features are extracted 
and generated according to the original data. When the number of features is large and all kinds of features 
contribute to the model, it is difficult to define the effective critical screening value by filtering method. 
Using the method “feature_ importances” in scikit-learn package to score and evaluate the features, the 
importance of feature contribution to the model is calculated. Fig. 4 shows the importance distribution of 
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the initial feature set. The blue histogram is the feature importance distribution of GBDT model, and orange 
is the feature importance distribution of XGBoost model. 

From the analysis of the importance of features, it can be seen that under the two algorithms, some 
features contribute little to the prediction model, such as airline company, take-off and landing temperature 
and weather. At the same time, the original data set is further analyzed. The special circumstances data of 
take-off and landing airports are very incomplete and easy to have a great impact on the prediction. The 
two features are screened out at the same time for the features with low correlation, we select them out and 
put others back into the model for training and fitting. Fig. 5 shows the distribution of importance after 
feature selection. Tab. 3 shows the prediction accuracy of the model on the test set using different feature 
sets. The blue histogram is the feature importance distribution of GBDT model, and orange is the feature 
importance distribution of XGBoost model. According to Tab. 3, GBDT algorithm and XGBoost algorithm 
have obvious improvement in accuracy after feature selection. 

 
Figure 5: The distribution of importance after feature selection 

Table 3: Comparison of model accuracy 

Algorithm 
Before feature selection After feature selection 

Accuracy of training set Accuracy of test set Accuracy of training set Accuracy of test set 
GBDT 80.58% 78.52% 83.12% 80.44% 

XGBoost 78.09% 78.06% 79.34% 79.91% 

5.2 Feature Extraction with Business Analysis 
In the process of fitting model with machine learning algorithm, the processing of data and features is 

the basis of the whole process. Processing the original data and extracting effective features will achieve 
better results. In many cases, even if the algorithm selection or parameters are not optimal, it can still 
achieve good results. In this paper, the time attribute is divided into multiple dimensions, such as year, 
month, day, and hour of takeoff and landing, so as to avoid misleading the model through learning the trend 
of delay by seconds. At the same time, the classification attributes such as departure airport, arrival airport, 
departure weather, arrival weather, flight number, departure temperature, arrival temperature and airlines 
are coded. 
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According to the actual situation of business analysis, the impact of bad weather of departure and 
landing airport is the main reason for flight delay. However, the weather factors for takeoff and landing are 
mainly visibility, low-level cloud conditions, thunderstorm area distribution, strong crosswind and so on, 
as well as the high-altitude weather factors in the flight route. These factors are not directly obtained from 
local weather data. Even in some high-altitude thunderstorm areas, due to the strict restriction of civil 
aviation lines, there is little room for detour and gyration, which will lead to flight delays. At the same time, 
we consider a series of follow-up conditions caused by bad weather, such as runway icing, ponding, etc. 
Such delay factors cannot be extracted directly from simple data [18]. 

Similarly, in the analysis of the delay caused by the allocation of airport resources, there is no fixed 
quantitative arrangement statistics for runway, apron, corridor bridge and basic support of flight transit. In 
the actual operation, manual decision has great influence. Yao et al. [19] established a flight delay 
propagation prediction model, considering the critical resources of the aircraft, crew and the airport. They 
proposed that the impact of airports or flight resources on flight delays is not a simple and fixed linear 
model. In extreme cases, the resources occupied by the upstream delayed flights may even lead to the delay 
of the three downstream flights, so a simple delay model cannot be used for resource utilization assessment. 
In the process of model training, we cannot simply construct the features by using the airport resources 
before the flight landing, otherwise it is easy to generate more noise for the training. 

According to the above business analysis and reference, this paper obtains three higher latitude features 
based on a large amount of data analysis in feature engineering: Average flight delay of the same route 
(Feature A), Average delay of flights on the same route 2 h before landing (Feature B), and Average delay 
of flights at the same landing airport 2 h before landing (Feature C). For the three features, we use two 
different algorithms for training and testing, each with the same parameters. The comparison results are 
shown in Tab. 4. 

Table 4: Comparison of prediction results of models with different new features 

New features used 
GBDT XGBoost 

Accuracy of 
training set 

Accuracy of 
test set 

Accuracy of 
training set 

Accuracy of 
test set 

No new features 83.12% 80.44% 79.34% 79.91% 
Feature A 84.32% 80.96% 80.72% 80.60% 
Feature B 84.49% 81.08% 80.80% 80.56% 
Feature C 84.24% 80.53% 80.58% 81.23% 

Feature A and Feature B 85.68% 81.92% 81.95% 81.36% 
Feature A and Feature C 84.69% 80.98% 80.85% 80.54% 
Feature B and Feature C 85.58% 81.51% 81.74% 81.14% 

Feature A and Feature B and Feature C 86.74% 82.87% 82.81% 82.48% 

After adding new features in Tab. 4, the accuracy of the two algorithms has been significantly 
improved. Among them, GBDT algorithm has high sensitivity to single addition of feature B, and the 
accuracy rate is improved by about 1%. When adding multiple features, adding three new features can 
improve the accuracy by about 2%. XGBoost model has the biggest improvement for single feature C. 
When three new features are added, the accuracy can be improved by about 2.5%. 

6 Result Analysis 
After preprocessing and feature extraction, 75% of the original data are selected for training model 

and 25% for test. From the fifth part, we can see that the accuracy of 82.87% and 82.48% is obtained on 
the test set of GBDT and XGBoost. In order to further verify the prediction and generalization capability 
of the algorithm and model, we used GBDT model to test the actual data of 295525 different airports and 
different routes sampled in October and November 2020. The prediction task is still a multi classification 
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of 5 min, 15 min and 30 min delay with planned landing time. 
The training accuracy of training set and test set are 88.28% and 88.11%, respectively, and the 

prediction confusion matrix of test set is shown in Tab. 5. 

Table 5: The prediction confusion matrix 

Confusion matrix 
Prediction results 

Category 1 Category 2 Category 3 Category 4 

Actual data 

Category 1 15172 1489 239 40 
Category 2 1811 19627 1166 76 
Category 3 307 1171 12671 331 
Category 4 45 57 296 4607 

The multi classification evaluation indicators basically adopts the confusion matrix indicators of two 
categories, but it cannot be directly calculated in recall, precision and F1 score. For multi classification, 
these indicators can be divided into macro average and micro average. Macro average is to calculate all 
kinds of recall and precision indicators, and then average them to get the final value [20]. Micro average is 
to calculate the average values of TP, FP, TN and FN, and then calculate the overall recall and precision 
indicators. Here we use the macro average to calculate the evaluation indicators, as shown in Tab. 6. 

Table 6: Evaluation indicators of classification 

Evaluating indicators Value 
Precision 0.8106 

Recall 0.8042 
F1-score 0.8083 

 
Figure 6: ROC Curve and AUC 

In order to draw the ROC curve of multi classification, we recode the label of each test sample. The 
position of ‘1’ in the code indicates the sample category, and other positions are 0. If the classifier classifies 
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the samples correctly, the value of the position corresponding to 1 in the probability matrix P is larger than 
that of the position corresponding to 0. Based on these two points, the label matrix L and the probability 
matrix P are expanded by row, and two columns are formed after transposition. This method can directly 
get the final ROC curve after calculation, as shown in Fig. 6. The calculated AUC value is 0.9886, which 
proves that the prediction classification method has high authenticity. 

7 Conclusion 
This paper proposes a flight delay prediction algorithm based on gradient boosting machine learning 

classifiers. It fully excavates the more abstract features of the influence of the preceding flight, the situation 
of departure and landing airport, the overall situation of the same route flight, and can analyze and forecast 
the flight delay. The results of series experiments show that the algorithm can predict flight delay by 
classification with high accuracy, and has good reliability in analysis and prediction. 

The future research work includes the application of more advanced and appropriate preprocessing 
technology and artificial intelligence algorithm to obtain better performance. In this paper, we use the flight 
data covering all the airports in China, and have good generalization prediction ability after testing. 
Therefore, the model can also be trained with data from other countries in the future. More accurate 
forecasting models can be developed by using a mixture of complex models and many other models with 
appropriate processing capabilities, as well as using larger detailed data sets. The classification task can 
also be transformed into delay regression analysis, which can provide more accurate delay analysis and 
reference for airport resource arrangement, airline decision-making and personal travel. 
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