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ABSTRACT

Using palygorskite (PAL) as template, the PAL/TiO2/PANI nano-rods were synthesized by heterogeneous preci-
pitation and in-situ polymerization. The synthesized PAL/TiO2/PANI nanorods were used as a novel electro-
rheological (ER) fluid by mixing with silicone oil, which showed excellent ER effect. The yield stress of the
PAL/TiO2/PANI based ER fluid (15 vol%) reached 8.8 kPa under 4 kV mm−1 electric field. The dynamic
shear stress of the PAL/TiO2/PANI based ER fluid could maintain a stable level in the shear rate range of
0.1–100 s−1. Furthermore, the PAL/TiO2/PANI ER fluid exhibited excellent suspension stability.
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1 Introduction

Electrorheological (ER) fluid is a kind of intelligent material whose rheological properties can be readily
controlled using an external electric field, which is formed by dispersing polarizable particles in insulating
liquid [1,2]. Under the action of external electric field, the dispersed polarizable particles will attract each
other to form fibrous structure, which leads to the significant increase of viscosity, yield stress and shear
modulus of the suspension [3,4]. These changes are fast and reversible with the transformation of external
electric field. Therefore, ER fluid has a wide range of application prospects in many fields, especially in
automotive, aerospace and medical industries [5,6].

The performance of ER fluids is closely related to the polarization ability of dispersed particles, and the
shape of dispersed particles is an important factor [7]. One dimensional nanomaterials, such as nanowires and
nanotubes, are attractive new functional materials. The unique structural characteristics of one-dimensional
nanomaterials are that one direction is nano and the other is micron, which not only makes one-dimensional
nanomaterials show many novel properties, but also provides a coupling bridge between nano system and
micro system [8,9]. Titanium oxide (TiO2) and polyaniline (PANI) are considered to be the most
promising two kinds of electrorheological materials [10–15] due to the high dielectric constant of TiO2

and the adjustable conductivity of PANI. However, the one dimensional nano structure of TiO2 and
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PANI, especially the one-dimensional composite nano structure of TiO2/PANI, is very difficult to synthesize,
and the cost of preparation is very high.

In this paper, a novel one-dimensional PAL/TiO2/PANI nanocomposite was prepared by heterogeneous
precipitation of titanium oxide [16] and in-situ polymerization of Aniline [17], using the natural palygorkite
(PAL) rods with high aspect ratio and large surface area as the heterogeneous nucleation center. The physical
properties and ER characteristics of the obtained samples were investigated by SEM, TEM, XRD, IR, LCR
Tester and rheometer. The results showed that the PAL/TiO2/PANI particles were one-dimensional
nano-structure and the phases of coating TiO2 and PANI shells were amorphous. Compared with pure
TiO2 or PANI ER fluid, the polarization ability, electrorheological activity and suspension stability of
PAL/TiO2/PANI ER fluid were significantly improved.

2 Materials and Methods

2.1 Raw Materials
Ethanol(AR), ammonium hydroxide solution (25%∼28%, AR), tetrabutyl titanate (TBOT, > 98%),

aniline(An, AR), 38% hydrochloric acid (AR) and ammonium persulphate(APS, AR) were purchased
from Sinopharm Chemical Reagent Company, Shanghai, China. Palygorkite was provided by Oil-better
Limited Company, Xuyi, China.

2.2 Synthetize of PAL/TiO2 Nanoparticles
The PAL/TiO2 nanoparticles were prepared via the heterogeneous precipitation method [18]. 1.5 g PAL

powder was dispersed in 400 ml absolute ethanol, placed in ultrasonic cell crusher for 30 min, and mixed
with concentrated ammonia (2.30 ml, 28 wt%) to obtain PAL suspension. Then, 5 ml TBOT was added
to the PAL suspension, and the reaction was allowed to proceed for 24 h under continuous mechanical
stirring. After the reaction, the obtained milky white suspension was centrifuged, and the separated
product was washed with ethanol for three times. Finally, the obtained white powder was dried in
vacuum at 90�C for 20 h.

2.3 Synthetize of PAL/TiO2/PANI Composites
The PAL/TiO2/PANI composites were prepared by in-situ polymerization using the PAL/TiO2 as

carrier. 1.0 ml aniline monomer and 1 g PAL/TiO2 were dispersed in 100 ml 0.1 mol/L HCl solution in a
three-necked bottle. The mixtures were stirred with mechanical stirrers in ice water baths for 1 h to get a
uniform suspension. Afterward, 100 ml pre-cooled 0.1 mol/L HCl solution containing 2.0 g APS was
added by a peristaltic pump, and the reaction was allowed to proceed for 24 h under continuous
mechanical stirring. After the reaction, the obtained blackish green suspension was centrifuged, and the
separated product was washed with 50 wt% alcohol aqueous solution for three times. Finally, the
obtained blackish green powder was dried in vacuum at 90�C for 20 h.

2.4 Synthetize of Pure TiO2 and PANI
The pure TiO2 was prepared by the way of the above 2.2 without the addition of PAL and the PANI was

prepared by the way of the above 2.3 without the addition of PAL/TiO2.

2.5 Preparation of ER Suspensions
Firstly, the insulating liquid dimethyl silicone oil was dried in vacuum at 110�C for 2 h, then the

appropriate amount of powder material was added into the dimethyl silicone oil, and the ER suspensions
with different solid contents were obtained by grinding for about 20 min. The density of dimethyl
silicone oil is 0.940 g/cm3 and the dielectric constant is 2.5.
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2.6 Characterization
The microstructure and particle size of the samples were analyzed by SEM (Hitachi S4800) and TEM

(FEI Tecnai G2 F20). The X-ray diffraction patterns of the particles were measured on a Rigaku D/Max-A
diffractometer with CuKα radiation. The Infrared spectrum of samples was analyzed by Perkin Elmer system
2000 spectrophotometer. The dielectric properties of ER fluids in the frequency range of 50–105 Hz were
determined by LCR tester (HIOKI 3532). The electrorheology of the ER fluids at different DC electric
field was determined by a circular plate rheometer (Haake RS6000).

3 Results and Discussion

3.1 Material Characteristics
The morphologies and microstructure of the samples were characterized by SEM and TEM analysis as

shown in Figs. 1 and 2. It can be seen from Figs. 1a and 2a that the pure PAL was a rodlike fiber with a length
up to several micrometers and a width of 30∼50 nm. After introducing titanium oxide via the heterogeneous
precipitation coating method, it was obvious that the surface of nanorods became coarse, and titanium oxide
nanoparticles with a diameter of several nanometers were uniformly distributed on the surface of PAL
nanorods (Figs. 1b and 2b). The SEM and TEM images of the PAL/TiO2/PANI particles prepared by
in-situ polymerization using the PAL/TiO2 as carrier are shown in Figs. 1c and 2c. The results indicated
that the PAL/TiO2 particles had been successfully coated by PANI layers via the in-situ polymerization
process and the thickness of the shell was about 20 nm.

The X-ray diffraction patterns of the PAL, PAL/TiO2 and PAL/TiO2/PANI nanoparticles are shown in
Fig. 3. The peak positions at 2u values of 8.4, 13.9, 16.5, 19.8, 27.5, and 34.9 were correspondence to
the characteristic diffraction peaks of PAL [19,20]. By comparing the XRD patterns of the PAL,
PAL/TiO2 and PAL/TiO2/PANI, it is found that the three samples all have the diffraction characteristic
peaks of PAL, and the phase of coated TiO2 and PANI shell is amorphous. In addition, the diffraction
characteristic peaks of PAL decreases gradually with the increase of shell thickness.

Figure 1: The SEM images of the PAL (a), PAL/TiO2 (b), PANI and PAL/TiO2/PANI (c)

Figure 2: The TEM images of the PAL (a), PAL/TiO2 (b) and PAL/TiO2/PANI (c)
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The FT-IR spectra of the TiO2, PANI and PAL/TiO2/PANI are shown in Fig. 4. For the granular TiO2, the
broadband around 3400 cm−1 and the peak at 1630 cm−1 were associated with the vibrations of –OH, and
the absorption band of 500–800 cm−1 was attributed to the stretching vibrations of Ti-O [12]. For the
pure PANI, the bands at 1563 cm−1 and 1482 cm−1 were due to the stretching vibrations of quinonoid
and benzenoid rings respectively, the bands at 1296 cm−1 and 1241 cm−1 were due to the C-N stretching
mode for benzenoid ring and C=N stretching vibrations, while the bands at 1109 m−1 was assigned to a
plane bending vibration of C-H [15]. For the PAL/TiO2/PANI nanoparticles, the wavenumbers of
1040 cm−1 and 985 cm−1 could be attributed to the stretching vibrations of Si-O [21,22]. And all
the characteristic peaks of titanium oxide and polyaniline can be found in the FT-IR spectra of the
PAL/TiO2/PANI. This indicates that TiO2 and PANI are loaded on the surface of PAL by heterogeneous
precipitation coating and in-situ polymerization.

Figure 3: The X-ray diffraction patterns of the PAL, PAL/TiO2 and PAL/TiO2/PANI

Figure 4: The FT-IR spectra of the TiO2, PANI and PAL/TiO2/PANI
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3.2 Dielectric Properties
The dielectric properties and polarizability of the particles are the key factors affecting the ER effect.

Generally, a good ER effect requires a large dielectric constant difference Δε (Δε = ε100 Hz − ε100 Hz).
The dielectric spectra of the TiO2, PANI and PAL/TiO2/PANI ER fluids in the frequency range of 50–105

Hz are shown in Fig. 5. The results show that the PAL/TiO2/PANI ER fluid has the highest dielectric
constant difference Δε between 102 and 105 Hz. According to the mechanism of interface polarization
[23,24], the larger Δε indicates that the ER fluid can form strong interaction between the particles of ER
fluid under the action of external electric field and shear field, and maintain the high degree of chain
structure formed by the particles.

3.3 ER Performance
The yield stresses of the ER fluids containing PAL, TiO2, PANI, PAL/PANI, PAL/TiO2 and

PAL/TiO2/PANI nanoparticles under the action of different external electric field are shown in Fig. 6. The
corresponding leakage current densities are shown in Fig. 7. The results show that the conventional
granular TiO2 and PANI ER fluids exhibited good ER effect, which is consistent with the previous
reports [12,14]. The original PAL ER fluid showed poor ER activity due to its inconspicuous dielectric
constant and polarization capacity. As the TiO2 and PANI nanoparticles were formed on the surface of
the PAL rods, the ER activity of the PAL/TiO2/PANI nanoparticles ER fluid was significantly enhanced.
The yield stress of the PAL/TiO2/PANI nanoparticles ER fluid reached 8.8 kPa under 4 kV mm−1 electric
field, which was 2.75 times of the TiO2 ER fluid and 3.38 times of the PANI ER fluid. The enhancement
of the ER activity was due to the unique rodlike morphology of the PAL/TiO2/PANI nanoparticles.
Because the charge is concentrated near the end of anisotropic particles, the rod particles are easy to form
chain structure along the direction of electric field, and the fiber structure is easier to form between
electrodes. In addition, the head-to-head structure of two rod-shaped particles generates an enhanced local
electric field, which makes the induced dipole moment and the interaction between particles larger than
that of near-spherical particles [25]. Therefore, the one-dimensional suspension of PAL/TiO2/PANI
nanoparticles possesses high yield stress under the action of electric field.

Figure 5: The dielectric spectra of the TiO2, PANI and PAL/TiO2/PANI ER fluids
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The shear stress of the PAL/TiO2/PANI ER fluid under different electric fields and shear rates is shown in
Fig. 8. Without the external electric field, the PAL/TiO2/PANI ER fluid shows the traditional Newtonian fluid
behavior, the shear stress increases with the increase of shear rate. When the electric field is applied, the
PAL/TiO2/PANI ER fluid exhibits Bingham plastic behavior, which was the typical rheological
characteristic of an ER fluid [26,27]. Furthermore, the shear stress as a function of shear rate maintains a
stable level in the shear rate range of 0.1–100 s−1. The results show that the PAL/TiO2/PANI particles not
only have high electric polarization force, but also have fast polarization response rate, which makes the
particles effectively resist the damage of shear flow to the ER network structure and maintain the stability
of the particle network structure in the fluid.

Figure 6: The yield stresses of the ER fluids containing PAL, TiO2, PANI, PAL/PANI, PAL/TiO2 and
PAL/TiO2/PANI nanoparticles under the action of different external electric field. The concentration of
particles in ER fluid was 15 vol%

Figure 7: The leaking current density of the PAL, TiO2, PANI, PAL/PANI, PAL/TiO2 and PAL/TiO2/PANI
ER fluids under different external electric field. The concentration of particles in ER fluid was 15 vol%
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3.4 Suspension Stability
Suspension stability, especially sedimentation resistance, is one of the important indexes to evaluate

whether the material can be widely used, because the ER performance will decrease sharply with the
deposition of particles. The suspension stability of ER fluid was characterized by sedimentation ratio test
at room temperature. The time-dependent phase separation height between the particle rich phase and the
relatively clear oil-rich phase was recorded in a flask. The settling ratio is defined by the percentage of
the height of the rich phase relative to the total suspended height. The larger the sedimentation ratio, the
better the suspension stability. Fig. 9 shows the sedimentation ratio of ER fluids containing TiO2, PANI
and PAL/TiO2/PANI at room temperature. After 500 h, the sedimentation rates of TiO2 and PANI
suspensions were 55% and 67%, respectively, while that of rodlike PAL/TiO2/PANI suspensions was
98%. The enhancement of the suspended stability should be attribute to the distinctive rodlike
morphology of PAL/TiO2/PANI nanoparticles. The large aspect ratio is beneficial to the support between
fibrous particles and avoids the large agglomeration of particles. However, it is difficult to establish a
supporting role in spherical like particles.

Figure 8: The shear stress of the PAL/TiO2/PANI ER fluid under different electric fields and shear rates.
The concentration of particles in ER fluid was 15 vol%

Figure 9: The sedimentation ratios of ER fluids containing TiO2, PANI and PAL/TiO2/PANI with time at
room temperature
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4 Conclusions

The rod-like PAL/TiO2/PANI nanoparticles was prepared via heterogeneous precipitation and in-situ
polymerization process. Compared to conventional TiO2 or PANI ER fluid, the PAL/TiO2/PANI ER
fluid exhibited distinctly improved polarization capacity and ER activity. The yield stress of the
PAL/TiO2/PANI nanoparticles ER fluid reached 8.8 kPa under 4 kV mm−1 electric field, which was
2.75 times of the granular TiO2 ER fluid and 3.38 times of the granular PANI ER fluid. Furthermore, the
shear stress of the PAL/TiO2/PANI ER fluid could maintain a stable level over the whole shear rate range
of 0.1–100 s−1. The PAL/TiO2/PANI ER fluid also possessed better suspended stability compared to the
conventional granular TiO2 or PANI ER fluid. After standing for 500 h, the sedimentation ratio of the
PAL/TiO2/PANI suspension reached 98%.
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