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Abstract: Artificial intelligence aids for healthcare have received a great deal
of attention.Approximately onemillion patients with gastrointestinal diseases
have been diagnosed via wireless capsule endoscopy (WCE). Early diag-
nosis facilitates appropriate treatment and saves lives. Deep learning-based
techniques have been used to identify gastrointestinal ulcers, bleeding sites,
and polyps. However, small lesions may be misclassified. We developed a
deep learning-based best-feature method to classify various stomach diseases
evident in WCE images. Initially, we use hybrid contrast enhancement to dis-
tinguish diseased from normal regions. Then, a pretrainedmodel is fine-tuned,
and further training is done via transfer learning. Deep features are extracted
from the last two layers and fused using a vector length-based approach.
We improve the genetic algorithm using a fitness function and kurtosis to
select optimal features that are graded by a classifier. We evaluate a database
containing 24,000 WCE images of ulcers, bleeding sites, polyps, and healthy
tissue. The cubic support vector machine classifier was optimal; the average
accuracy was 99%.

Keywords: Stomach cancer; contrast enhancement; deep learning;
optimization; features fusion

1 Introduction

Stomach (gastric) cancer can develop anywhere in the stomach [1] and is curable if detected
and treated early [2], for example, before cancer spreads to lymph nodes [3]. The incidence of
stomach cancer varies globally. In 2019, the USA reported 27,510 cases (17,230 males and 10,280
females) with 11,140 fatalities (6,800 males and 4,340 females) [4]. In 2018, 26,240 new cases and
10,800 deaths were reported in the USA (https://www.cancer.org/research/cancer-facts-statistics/all-
cancer-facts-figures/cancer-facts-figures-2020.html). In Australia, approximately 2,462 cases were
diagnosed in 2019 (1,613 males and 849 females) with 1,287 deaths (780 males and
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507 females) (www.canceraustralia.gov.au/affected-cancer/cancer-types/stomach-cancer/statistics).
Regular endoscopy and wireless capsule endoscopy (WCE) are used to detect stomach cancer [5,6].
Typically, WCE yields 57,000 frames, and all must be checked [7]. Manual inspection is not easy
and must be performed by an expert [8]. Automatic classification of stomach conditions has been
attempted [9]. Image preprocessing is followed by feature extraction, fusion, and classification [10],
and image contrast is enhanced by contrast stretching [11]. The most commonly used features
are color, texture, and shape. Some researchers have fused selected features to enhance diagnostic
accuracy [12]. Recent advances in deep learning have greatly improved performance [13].

The principal conventional techniques used to detect stomach cancer are least-squares saliency
transformation (LSST), a saliency-based method, contour segmentation, and color transforma-
tion [14]. Kundu et al. [15] sought to automate WCE frame evaluation employing LSST followed
by probabilistic model-fitting; LSST detected the initially optimal coefficient vectors. A saliency/
best-features method was used by Khan et al. [16] to classify stomach conditions using a neural
network; the average accuracy was 93%. Khan et al. [7] employed deep learning to identify
stomach diseases. Deep features were extracted from both original WCE images and segmented
stomach regions; the latter was important in terms of model training. Alaskar et al. [17] estab-
lished a fully automated method of disease classification. Pretrained deep models (AlexNet and
GoogleNet) were used for feature extraction and a softmax classifier was used for classification.
A fusion of data processed by two pretrained models enhanced accuracy. Khan et al. [10] used
deep learning to classify stomach disease, employing Mask RCNN for segmentation and fine-
tuning of ResNet101; the Grasshopper approach was used for feature optimization. Selected
features were classified using a multiclass support vector machine (SVM). Wang et al. [18]
presented a deep learning approach featuring superpixel segmentation. Initially, each image was
divided into multiple slices and superpixels were computed. The superpixels were used to segment
lesions and train a convolutional neural network (CNN) that extracted deep learning features
and engaged in classification. The features of segmented lesions were found to be more useful
than those of the original images. Xing et al. [19] extracted features from globally averaged
pooled layers and fused them with the hyperplane features of a CNN model to classify ulcers.
Here, the accuracy was better than that afforded by any single model. Most studies have focused
on training segmentation, which improves accuracy; however, the computational burden is high.
Thus, most existing techniques are sequential and include disease segmentation, feature extraction,
reduction, and classification. Most existing techniques focus on initial disease detection to extract
useful features, which are then reduced. The limitations include mistaken disease detection and
elimination of relevant features.

In the medical field, data imbalances compromise classification. In addition, various stom-
ach conditions have similar colors. Redundant and irrelevant features must be removed. In
this paper, we report the development of a deep learning-based automated system employing a
modified genetic algorithm (GA) to accurately detect stomach ulcers, polyps, bleeding sites, and
healthy tissue.

Our primary contributions are as follows. We develop a new hybrid method for color-based
disease identification. Initially, a bottom-hat filter is applied and the product is fused with the
YCbCr color space. Dehazed colors are used for further enhancement. A pretrained AlexNet
model is fine-tuned and further trained using transfer learning. Also, deep learning features are
extracted from FC layers 6 and 7 and fused using a vector length-based approach. Finally, an
improved GA that incorporates fitness and kurtosis-controlled activation functions is developed.

https://www.canceraustralia.gov.au/affected-cancer/cancer-types/stomach-cancer/statistics
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The remainder of this paper is organized as follows. Section 2 reviews the literature. Our
methodology is presented in Section 3. The results and a discussion follow in Section 4.
Conclusions and suggestions for future work are presented in Section 5.

2 Proposed Methodology

Fig. 1 shows the architecture of the proposed method. Initial database images are processed
via a hybrid approach that facilitates color-based identification of diseased and healthy regions.
AlexNet was fine-tuned via transfer learning and further trained using stomach features. A cross
entropy-based activation function was employed for feature extraction from the last two layers;
these were fused using a vector length approach. A GA was modified employing both a fitness
function and kurtosis. Several classifiers were tested on several datasets; the outcomes were both
numerical and visual.

Figure 1: Architecture of proposed methodology

2.1 Color Based Disease Identification
Early, accurate disease identification is essential [20,21]. Segmentation is commonly used to

identify skin and stomach cancers [22]. We sought to identify stomach conditions in WCE images.
To this end, we employed color-based discrimination of healthy and diseased regions. The latter
were black or near-black. We initially applied bottom-hat filtering and then dehazing. The output
was passed to the YCbCr color space for final visualization. Mathematically, this process is
presented as follows.

Given �(x) is a database of four classes c1, c2, c3, and c4. Consider, X (i, j)∈�(x) is an input
image of dimension N×M×3, where N = 256, M = 256, and k= 3, respectively. The bottom hat
filtering is applied on image X (i, j) as follows:

Xbot (i, j)=X (i, j) · s−X(i, j) (1)
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where the bottom hat image is represented by Xbot (i, j), s is a structuring element of value 21,
and · is a closing operator. To generate the color, a dehazing formulation is applied on Xbot (i, j)
as follows [23]:

Xhaz (i, j)= (Xbot (i, j)−Light)
(MAX (t(x) , t0))

+Light (2)

Here, Xhaz (i, j) represents a haze reduced image of the same dimension as the input image,
Light represents the internal color of an image, t(x) is transparency and its value is between
[0, 1]. Then, YCbCr color transformation is applied on Xhaz (i, j) for the final infected region
discrimination. The YCbCr color transformation is defined by the following formula [24].⎡
⎢⎣
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⎤
⎥⎦=

⎡
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B

⎤
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Here, the red, green, and blue channels are denoted R, G, and B, respectively. The visual
output of this transformation is shown in Fig. 2. The top row shows original WCE images of
different infections, and the dark areas in the images in the bottom row are the identified resultant
disease infected parts. These resultant images are utilized in the next step for deep learning
feature extraction.

Figure 2: Visual representation of contrast stretching results

2.2 Convolutional Neural Network
A CNN is a form of deep learning that facilitates object recognition in medical [25], object

classification [26], agriculture [27], action recognition [28], and other [29] fields. Classification is
a major issue. Differing from most classification algorithms, a CNN does not require significant
preprocessing. A CNN features three principal hierarchical layers. The first two layers (convolution
and pooling) are used for feature extraction (weights and biases). The last layer is usually fully
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connected and derives the final output. In this study, we use a pretrained version of AlexNet as
the CNN.

2.2.1 Modified AlexNet Model
AlexNet [30] facilitates fast training and reduces over-fitting. The AlexNet model has five

convolutional layers and three fully connected layers. All layers employ the max-out activation
function, and the last two use a softmax function for final classification [31]. Each input is of
dimension 227×227×3. The dataset is denoted �, and the training data is represented by Acd ∈�.
Each Acd belongs to the real number R.

�
(1) = s

(
m(1)Acd +ρ(1)

)
∈R(1) (4)

Here s(.) denotes the ReLU activation function and ρ(1) denotes the bias vector. m(1) denotes
the weights of the first layer and is defined as follows:

m(1) ∈RF(1)×j (5)

where F denotes the fully connected layer. The input of the next layer is the output from the
previous layer. This process is shown in mathematical form below.

�
(2) = s

(
m(2)

�
(1) +ρ(2)

)
∈R(2) (6)

�
(3) = s

(
m(3)

�
(2) +ρ(3)

)
∈R(3) (7)

�
(n−1) = s

(
m(n−1)

�
(n−2) +ρ(n−1)

)
∈R(n−1) (8)

�
(n) = s

(
m(n)

�
(n−1) +ρ(n)

)
∈R(n) (9)

Here, �
(n−1) and �

(n) are the second last and last fully connected layers, respectively. More-
over, m(2) ∈RF(2)×F(1) and m(2) ∈RF(2)×F(1); therefore, �

(Z) denotes the last fully connected layer
which helps extract the high-level feature.

W (a) =
I∑

v=1

U(p, v) log(Q(p, v)) (10)

Here, W (a) denotes the cross-entropy function, U indicates the overall number of classes
v and p, and Q is predicted probability. The overall architecture of AlexNet is shown in Fig. 3.

Figure 3: Architecture of AlexNet model
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2.2.2 Transfer Learning
Transfer Learning [32] is used to further train a model that is already trained. Transfer

learning improves model performance. The given input is kt = jt1, y
t
1), . . . , (jtx, y

t
x), . . . ,

(
jtr, y

t
r
)} and

the learning task is J, Jt, (jtm, y
t
m) ∈ R. The target is go = je1, y

e
1), . . . , (jex, y

e
x), . . . ,

(
jem, y

e
m

)}, and

its learning task is Jg, (jer , y
e
r ∈ R, (m, r) where r � m and yK1 and ye1 are training data labels.

We fine-tuned the AlexNet architecture and removed the last layer (Fig. 4). Then, we added a
new layer featuring ulcers, polyps, bleeding sources, and normal tissue; these are the target labels.
Fig. 5 shows that the source data were derived from ImageNet and that the source model was
AlexNet. The number of classes/labels was 1,000. The modified model featured four classes (see
above) and was fine-tuned. Transfer learning delivered the new knowledge to create a modified
CNN used for feature extraction.

Figure 4: Fine-tuning of original AlexNet model

Figure 5: Transfer learning for stomach infection classification
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2.3 Features Extraction & Fusion
Feature extraction is vital; the features are the object input [33]. We extracted deep learning

features from layers FC6 and FC7. Mathematically, the vectors are F1 and F2. The original feature
sizes were N × 4096; 4,096 features were extracted for each image. However, the accuracies of
individual vectors were inadequate. Thus, we combined multiple features into single vectors. We
fused information based on vector length, as follows.

Flength=
∑

(F1 (length) , F2(length)) (11)

The resultant feature-length is N × 8192. This feature-length is large, and many features will
be redundant/irrelevant. We minimized this issue by applying a mean threshold function that
compared each feature to the mean. Mathematically, this process is expressed as follows.

Ffu=
{

Ffu (k) if Flength (i)≥m

Ignore Elsewhere
(12)

This shows that fused vector features ≥ m were selected before proceeding to the next
step. The other features are ignored. Then, the optimal features are chosen using an improved
GA (IGA).

2.4 Modified Genetic Algorithm
A GA [34] is an evolutionary algorithm applied to identify optimal solutions among a set

of original solutions. In other words, a GA is a heuristic search algorithm that organizes the
best solutions into spaces. GAs involve five steps: initialization/population initialization, crossover,
mutation, selection, and reproduction.

Initialization. The maximum number of iterations, population size, crossover percentage, off-
spring number, mutation percentage, number of mutants, and the mutation and selection rates are
initialized. Here, the iteration number is 100, the population size 20, the mutation rate 0.2, the
crossover rate 0.5, and the selection pressure 7.

Population Initialization. We initialize the size of the GA population (here 20). Every popula-
tion is selected randomly in terms of its fused vector and evaluated using a fitness function. Here,
the softmax function with the fine-k-nearest neighbor [F-KNN] method is used. Non-selected
features undergo crossover and mutation.

Crossover. Crossover mirrors chromosomal behavior. A parent is used to create a child. Here,
the uniform crossover rate is 0.5. Mathematically, crossover can be expressed as follows.

∂rs =CrosSoVer (P1, P2) (13)

P1 = uI1+ (1−u)× I2 (14)

P2 = u× I2+ (1−u)× I1. (15)

Here, P1 and P2 are the parents, which are selected, u is a random value that is initially
selected as 1. Visually, this process is shown in Fig. 6.
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Figure 6: Architecture of crossover

Mutation. To impart unique characteristics to the offspring, one mutation is created in each
offspring generated by crossover. The mutation rate was 0.2. Then, we used the Roulette Wheel
(RW) [35] method to select chromosomes. The RW is based on probability.

O= li∑
(li)

(16)

li = exp
(
−β1× yδ

Ol

)
(17)

In Eq. (16), the sorted population is yδ, the last population is Ol, and β1 is the selected
parent, which is 7. When the mutation is done, a new generation will be selected.

Selection andReproduction. Crossover and mutation facilitate chromosome selection by the RW
method. Thus, the selection pressure is moderate rather than high or low. All offspring engage in
reproduction, and then fitness values are computed. The chromosomes are illustrated in Fig. 7.
They were evaluated using the fitness function where the error rate was the measure of interest.
Then, the old generation was updated.

This process continues until no further iteration is possible. A vector has been obtained, but
remains of high dimensions. To reduce the length, we added an activation function based on
kurtosis. This value is computed after iteration is complete and used to compare selected features
(chromosomes). Those that do not fulfill the activation criterion are discarded. Mathematically, it
can be expressed as follows:

Kr=
K̃∑
i=1

(FGA (i)−μ)4 /K̃
s4

(18)

μ=
K̃∑
i=1

FGA (i)

K̃
(19)
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Fslc (i)=
{
For FGA (i)≥Kr then Selected

Otherwise, Discarded

}
(20)

The final selected vector is passed to several machine learning classifiers for classification. In
this study, the vector dimension in is N × 1726.

Figure 7: Demonstration of chromosomes

3 Results and Analysis

3.1 Experimental Setup
We used 4,000 WCE images and employed 10 classifiers: The Cubic SVM, Quadratic SVM,

Linear SVM, Coarse Gaussian SVM, Medium Gaussian SVM, Fine KNN, Medium KNN,
Weighted KNN, Cosine KNN, and Bagged Tree. Of the complete dataset, 70% was used for
training and 30% for testing (10 cross-validations). We used a Core i7 CPU with 14 GB of
RAM and a 4 GB graphics card. Coding employed MATLAB 2020a and Matconvent (for deep
learning). We measured sensitivity, precision, the F1-score, the false-positive rate (FPR), the area
under the curve (AUC), accuracy, and time.

3.2 Results
The results are shown in Tab. 1. The highest accuracy was 99.2% (using the Cubic SVM). The

sensitivity, precision, and F1-score were all 99.00%. The FPR was 0.002, the AUC was 1.00, and
the (computational) time was 83.79 s. The next best accuracy was 99.6% (Quadratic SVM). The
associated metrics (in the above order) were 98.75%, 99.00%, 99.00%, 0.002, 1.000, and 78.52 s,
respectively. The Cosine KNN, Weighted KNN, Medium KNN, Fine KNN, MG SVM, Coarse
Gaussian SVM, Linear SVM, and Bagged Tree accuracies were 97.0%, 98.0%, 96.7%, 98.9%,
98.9%, 93.3%, 96.9%, and 96.8%, respectively. The Cubic SVM scatterplot of the original test
features is shown in Fig. 8. The first panel refers to the original data and the second to the Cubic
SVM predictions. The good Cubic SVM performance is confirmed by the confusion matrix shown
in Fig. 9. Bleeding was accurately predicted 99% of the time, as were healthy tissue and ulcers;
the polyp figure was >99%. The ROC plots of the Cubic SVM are shown in Fig. 10.

Next, we applied our improved GA. The results are shown in Tab. 2. The top accuracy
(99.8%) was afforded by the Cubic SVM accompanied by sensitivity of 99.00%, precision of
99.25%, F1-score of 99.12%, FPR of 0.00, AUC of 1.00, and a time of 211.90 s. The second
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highest accuracy was 99.0% achieved by the Fine KNN, accompanied by (in the above order) val-
ues of 99.0%, 99.25%, 99.12%, 0.00, 1.00, and 239.08 s, respectively. The Cosine KNN, Weighted
KNN, Medium KNN, Quadratic SVM, MG SVM, Coarse Gaussian SVM, Linear SVM, and
Bagged Tree achieved accuracies of 99.0%, 99.5%, 98.7%, 99.6%, 99.6%, 96.2%, 98.3%, and 98.3%,
respectively. The Cubic SVM scatterplot of the original test features is shown in Fig. 11. The first
panel refers to the original data and the second to the Cubic SVM predictions. The good Cubic
SVM performance is confirmed by the confusion matrix shown in Fig. 12. In this figure, the four
classes are healthy tissue, bleeding sites, ulcers, and polyps. Bleeding was accurately predicted 99%
of the time, healthy tissue <99% of the time, and ulcers and polyps >99% of the time. The ROC
plots of the Cubic SVM are shown in Fig. 13.

Table 1: Classification accuracy of proposed optimal feature selection algorithm (testing fea-
ture results)

Classifiers Sensitivity (%) Precision (%) F1 score (%) FPR AUC Accuracy (%) Time (s)

Cubic SVM 99.00 99.00 99.00 0.002 1.00 99.20 83.79
Cosine KNN 97.50 97.25 97.37 0.010 1.00 97.00 97.30
Weighted KNN 98.50 98.25 98.37 0.005 1.00 98.00 46.28
Medium KNN 96.75 96.75 96.75 0.010 1.00 96.70 45.74
Fine KNN 99.00 99.00 99.00 0.002 0.99 98.90 46.57
Quadratic SVM 98.75 99.00 98.87 0.002 1.00 99.00 78.52
MG SVM 98.50 98.75 98.62 0.002 1.00 98.90 119.88
CG SVM 93.25 94.00 93.62 0.022 0.99 93.30 143.17
Linear SVM 96.75 97.00 96.87 0.010 0.99 96.90 85.43
Bagged trees 96.75 96.50 96.62 0.010 1.00 96.80 67.38

Figure 8: Scatter plot for testing features after applying GA
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Figure 9: Confusion matrix of cubic SVM for proposed method

Figure 10: ROC plots for selected stomach cancer classes using cubic SVM after applying GA
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Table 2: Classification accuracy of proposed optimal feature selection algorithm using training fea-
tures

Classifiers Sensitivity (%) Precision (%) F1 score (%) FPR AUC Accuracy (%) Time (s)

Cubic SVM 99.00 99.25 99.12 0.000 1.00 99.8 211.90
Cosine KNN 99.00 98.75 98.87 0.002 1.00 99.0 213.65
Weighted KNN 99.00 99.25 99.12 0.000 1.00 99.5 212.86
Medium KNN 98.75 98.50 98.62 0.005 1.00 98.7 208.01
Fine KNN 99.00 99.25 99.12 0.000 1.00 99.7 239.08
Quadratic SVM 99.00 99.25 99.12 0.000 1.00 99.6 225.06
MG SVM 99.25 99.25 99.25 0.000 1.00 99.6 394.25
CG SVM 96.00 96.25 96.12 0.012 0.99 96.2 542.29
Linear SVM 98.25 98.50 98.37 0.002 1.00 98.3 257.57
Bagged trees 98.25 98.00 98.12 0.005 1.00 98.3 163.80

Figure 11: Scatter plot of training features after applying GA

Figure 12: Confusion matrix of CUBIC SVM
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Figure 13: ROC plots for selected stomach cancer classes using cubic SVM after applying GA

3.3 Comparison with Existing Techniques
In this section, we compare the proposed method to existing techniques (Tab. 3). In a

previous study [7], CNN feature extraction, fusing of different features, selection of the best
features, and classification were used to detect ulcers in WCE images. The dataset was collected
in the POF Hospital Wah Cantt, Pakistan; the accuracy was 99.5%. Another study [9] described
handcrafted and deep CNN feature extraction from the Kvasir, CVC–ClinicDB, a private, and
ETIS-Larib PolypDB datasets. The accuracy was 96.5%. In another study [15], and LSST tech-
nique using probabilistic model-fitting was used to evaluate a WCE dataset; the accuracy was
98%. Our method employs deep learning and a modified GA. We used the private dataset of the
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POF Hospital, and the Kvasir and CVC datasets to identify ulcers, polyps, bleeding sites, and
healthy tissue. The accuracy was 99.8% and the computational time was 211.90 s. Our method
outperforms the existing techniques.

Table 3: Proposed method’s accuracy compared with published techniques

Method Year Dataset Accuracy (%)

Khan et al. [7] 2019 WCE 99.5
Majid et al. [9] 2019 Kvasir, CVC-ClinicDB, and ETIS-LaribPolypDB 96.5
Kundu et al. [15] 2020 WCE 98
Our proposed method 2020 WCE 99.8

4 Conclusion

We automatically identify various stomach diseases using deep learning and an improved
GA. WCE image contrast is enhanced using a new color discrimination-based hybrid approach.
This distinguishes diseased and healthy regions, which facilitates later feature extraction. We fine-
tuned the pretrained AlexNet deep learning model by the classifications of interest. We employed
transfer learning further train the AlexNet model. We fused features extracted from two layers;
this improved local and global information. We removed some redundant features by modifying
the GA fitness function and using kurtosis to select the best features. This improved accuracy and
minimized computational time. The principal limitation of the work is that the features are of
high dimension, which increases computational cost. We will resolve this problem by employing
DarkNet and MobileNet (the latest deep learning models [36,37]). Before feature extraction,
disease localization accelerates execution.
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