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Abstract: In recent years, more and more attention has been paid to the research 
and application of graph structure. As the most typical representative of graph 
structure algorithm, breadth first search algorithm is widely used in many fields. 
However, the performance of traditional serial breadth first search (BFS) 
algorithm is often very low in specific areas, especially in large-scale graph 
structure traversal. However, it is very common to deal with large-scale graph 
structure in scientific research. At the same time, the computing performance of 
supercomputer has also made great progress. China’s self-developed 
supercomputer system Sunway TaihuLight (SW) has won the top 500 list for 
three consecutive times. The huge computing performance of supercomputer is 
the key to solve this problem. It can be seen that if we use the computing power 
of supercomputing to solve the problem of large-scale graph structure traversal, 
the efficiency of graph structure traversal will be greatly improved. This paper 
expounds how to realize the breadth first search algorithm of graph structure on 
the Sunway TaihuLight, and achieved some results. In this way, MPI and thread 
library called athread of SW platform are used, and the traversal performance is 
improved dozens of times through the above related technologies and some 
partition methods of graph structure. 
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1 Introduction 
With the development and application of high-performance computer technology, it has become very 

difficult to improve the performance only by improving the frequency of single core. Parallel computing 
has become one of the key technologies to ensure the operational efficiency of large-scale computing 
applications. However, the parallelization of serial code is a very complicated task. Graph structure 
traversal algorithm, as a very common algorithm, has been used in many aspects, such as social network 
discovery, DNA sequence research, urban road planning and so on. However, the traditional serial graph 
structure traversal algorithm has low performance especially when dealing with some large graph 
structure data. How to parallelize the graph structure traversal algorithm is particularly important.  

In this paper, according to some existing BFS parallel algorithm, and combined with Sunway 
TaihuLight platform to make corresponding improvements [1–4], so that BFS algorithm can run 
efficiently on Sunway TaihuLight platform. 

2 Sunway TaihuLight Supercomputer Platform 
Sunway TaihuLight is a supercomputer developed and installed in Wuxi National Supercomputing 

Center by china parallel computer engineering technology research center. 
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2.1 Sunway TaihuLight Architecture 
Sunway TaihuLight is a supercomputer developed by china. The Sunway TaihuLight is designed as 

a supercomputer with heterogeneous architecture use SW26010 processor, which comprise of connected 
40960 nodes, as show in Fig. 1, each node has one SW26010 processor [5]. 

The multi-core processor uses 64 bit autonomous Shenwei instruction system. The SW system with a 
peak performance of 12.54 GFLOPS, and a sustained performance of 9.3 GFLOPS. 

2.2 Sunway Processor 
The sw26010 processor contains four core groups (CGs). Core groups are connected by high-speed 

network on chip. The processor integrates 4 channels of memory and 8-channel pcie3.0 gigabit network 
card. Each core group contains a control core called management processing element (MPE) and a 
computing core array [6–8]. This array is an 8 × 8 array of 64 computing cores, called computing 
processing element (CPE) with a total of 260 cores. 

Both the management processing element and computing processing element are 64-bit RISC 
(Reduced Instruction Set Computing) Instruction architecture. Both MPE and CPE have (Level 1) L1 
instruction cached. MPE has L1 data cache and (Level 2) L2 data cache [9].  

 
Figure 1: sw26010 processor 

In order to use hardware resources efficiently, sw26010 processor’s CPE does not have L1 or L2 data 
cache, instead, each computing processing element has a local data memory (LDM), the LDM’s size is 64 
Kb. Each CPE can access its own LDM or directly access main memory, but the delay of accessing LDM 
is lower (several clock cycles), and the delay of accessing main memory is higher (hundreds of clock 
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cycles). Also [10–12], CPE can use Direct Memory Access (DMA) to read or write a large amount of data 
to main memory at one time to reduce the pressure of memory access. 

DMA supports reading or writing data asynchronously. Therefore, when using sw26010 
programming, asynchronous operation can be used to cover the communication time with computing time. 
Because of the heterogeneity of sw26010 [13], the program needs to run on MPE and CPE at the same 
time. We can use openACC or athread to utilize the CPEs. 

3 Problem Description  
3.1 Breadth First Search 

Breadth first search is a common graph search algorithm. Input the graph G (V, E) composed of 
vertex set V and edge set E and search starting point S. BFS algorithm first accesses S, then travel the 
points V1, V2, V3, . .. of S. Then according to V1, V2, V3 sequence, start to accesses the adjacency points of 
these points set, the algorithm ends when all the vertices in the graph are traveled [14–16]. 

Algorithm 1: Serial BFS 
1:  for v in V 
2:     π[v] ← –1 
3:  end for 
4:  π[s] ← s 
5:  F ← {s} 
6:  while F ≠ Ø 
7:    G ← Ø 
8:    for u connect to v 
9:      π[v] = u 
10:     insert(v) → G 
11:   end for  
12:   F ← G 
13: end while 

3.2 DataSet 
 The graph consists of two integers V, E and two 32-bit integer arrays v_pos and e_dst,  The 

length of v_pos is V + 1, The length of e_dst is E, where the first integer in v_pos is 0，the integer 
value of index v is e.  For a certain vertex i, we take the two values e1 and e2 in the array v_pos 
with indexes i and i +  1.  Then, in the e_dst array, all the values from index 𝑒𝑒1 to 𝑒𝑒2 are the 
vertices connected by vertex i. 

 
Figure 2: Storage of graph structure 

4 Parallelization 
4.1 Parallel By MPI 

At present, there are many successful researches on BFS algorithm parallelization, and inter layer 
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synchronous parallel is a common one [17]. This algorithm needs an upper queue and a lower queue. It 
looks for the vertices connected with the vertices in the upper queue, processes the state information, and 
adds them to the lower queue. After that, the vertices in the lower queue are put into the upper queue and 
the lower queue is cleared. After these operations, all processes need to be synchronized. 

In this algorithm, graph data G, visited state array and spanning tree are shared by multiple threads. 
During the search process, the thread will search for the vertices that have been accessed by other threads in 
the layer search, thus resulting in invalid search [18]. In Fig. 3, the thick line represents an invalid search 
because the vertex it refers to has been accessed by thread 1. This classic BFS algorithm starts from the 
visited vertices to find the unreachable vertices, which is called top-down search. After parallelization, the 
invalid search problem caused by repeated discovery has a great impact on the search performance. 

 
Figure 3: Invalid search 

Because of the storage method of graph structure, we can divide graph by vertex. In the multi-process 
parallel environment using MPI, each process divides a part of the vertices, and each process only maintains 
the information of the vertices which contains [19–21]. When the vertices that other processes need 
(traversed) are not in the process, MPI communication is needed to exchange information. 

For example, there is an undirected graph, G = {< 0,2 >, < 1,2 >, < 1,3 >}. We use two processes 
to traverse the graph in parallel. Process 0 has two vertices, 𝑉𝑉0 and 𝑉𝑉1, and process 1 has two vertices, 
𝑉𝑉2 and V3(Fig. 4). Among them, the circle indicates that vertex assigned by the process, and the state 
information of the vertex needs to be maintained. The rectangle indicates that the process does not contain 
this vertex, but will be connected to this vertex. In the process of graph parallel traversal, when a process 
traverses a circle vertex, the vertex state information can be directly processed by this process [22]. If a 
rectangle vertex is traversed, it is necessary to find which process the vertex belongs to, then 
communicate with that process, and then process the state information of the vertex. 

 
Figure 4: Graph divide 

In this algorithm, we need to find the vertex belongs to which process according to the partition of 
the current graph, each process needs a group of queues to store the traversed vertices. The number of 
queues is the same as the number of processes. After all vertices of the same layer of all processes are 
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processed, the vertex data in the corresponding queue is sent to the corresponding process through the all 
to all operation of MPI [23–24]. In this way, each process only receives its own vertex information. Then, 
the received vertex state is processed, and then it is added to the upper queue without repetition, and all 
processes start the next round of traversal. 

Algorithm 2: A round operation of one process 

1:   SendQueue[S] ← Ø 

2:   RecvQueue[S] ← Ø 

3:  for v in FS 

4:  u is connect to v 

5:  p = findOwner(u) 

6:  SendQueue[p] = u 

7:   end for 

8:  FS ← Ø 

9:   all to all send SendQueue to RecvQueue 

10:  merge RecvQueue to FS 

4.2 Parallel by Athread 
There are 64 computing cores in every CG. How to use these cores efficiently is the key to improve 

the efficiency of parallel BFS. Based on the previous parallel optimization of BFS using MPI, since one 
core group obtains some vertices of the graph, when searching the adjacent vertices of each vertex in 
upper queue, the search task should be assigned to multiple computing cores, that is, each computing core 
is responsible for the task of finding adjacent vertices for some vertices in the upper queue. 

 
Figure 5: FS queue divide 

Because there is no high-speed data cache in the computing core, instead, a 64KB LDM is used. For 
some larger graphs, the number of vertices in the upper queue is very large for each process. Even if it is 
divided into 64 copies(subFS), the amount of data will exceed 64KB. Therefore, when using LDM, it is 
necessary to divide v_pos into many batches, and copy batch data(batchFS) into LDM. Therefore, two 
buffers are needed on each computing core to store batchFS and e_dst data. In addition, due to the 
limited space of LDM, a queue is designed in each computing core to store the vertex data of the lower 
queue(FN). This queue stores tuple metadata (pid, vertex), where pid represents the number of the 
process to which the vertex belongs, and vertex is the vertex information. 

 How to use the slave processor efficiently will directly affect the acceleration effect of the 
algorithm. Because the local storage space of each slave processor is too small compared with a large 
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number of graph structure data, in the whole operation process, the local storage space of the slave 
processor will frequently exchange data with the main memory, that is, the main core frequently uses 
DMA process to copy batch data. 

For a core group, it has one control core and 64 computing cores. Each core contains a buffer queue in 
its LDM. When this queue is written back to main memory, there will be write conflicts. Because Sunway 
platform does not provide mutex operation on main memory, using semaphore will cause frequent thread 
hang and wake-up, which seriously affects efficiency. Therefore, we design 64 cache queues on the master 
to store the data written back by each computing core, and then the main core merge the data in this cache 
queue into the SendQueue according to the pid value. It is worth noting that the operation of merge the 
cache queue into SendQueue and traversing on computing core are performed simultaneously. 

Algorithm 3: Merge operation on master 

1:  while CPEs are alive 

2:    for f in FNi 

3:      for (pid, v) in f 

4:        append v to SendQueue[pid] 

5:      end for 

6:      clean f 

7:    end for 

8:  end while 
 
Algorithm 4: Parallel search on each computing core 

1:  subFS_ldm ← Ø 

2:  FN_ldm ← Ø 

3:  for batchFS in subFS 

4:    copy batchFS into batchFS_ldm 

5:    for i in batchFS_ldm 

6:      pA =  v_pos[i], pB =  v_pos[i +  1] 

7:      copy e_dst[pA] to e_dst[pB] into e_dst_ldm 

8:      for v in d_dst_ldm 

9:      p = findOwner(v) 

10:     append (p, v) to FN_ldm 

11:     if FN_ldm is full 

12:    copy FN_ldm to 𝐹𝐹𝐹𝐹𝑖𝑖 

13:     end if 

14:    end for 

15:  end for 
Note that the operation in Algorithm 4 line 12 and Algorithm 4 line 2 to line 7 represents the need for 

mutual exclusion between the main core and the computing core, which can be implemented by 
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semaphores in actual code. The purpose of designing multiple FN queues is to avoid mutual exclusion 
between computing cores, and the performance loss caused by mutual exclusion between single 
computing core and main core is within acceptable range. 

For the 6 line of Algorithm 3, computing core directly accessing v_pos on main memory with high 
delay, in addition, copying the value of e_dst repeatedly can seriously affect performance. Therefore, we 
can sort the values in batchFS_ldm. Then, when accessing v_pos, it will have great spatial locality. At 
the same time, the access to e_dst is also sequential.  

Therefore, this algorithm can be improved. The key to improve the performance is how to access the 
memory efficiently. Because the local memory of sw26010 is too small, and the function calls from the 
core will consume the stack memory, the memory left for storing the graph structure data is smaller. This 
small local storage space can be used as the cache in modern CPU (there is no data cache in sw26010 
processor). Therefore, in order to improve the hit rate of the manually implemented cache, we need to sort 
the data to make the data have good spatial locality. 

Combined with the characteristics of Sunway platform, we can manually create a cache to store 
v_ pos and e_ dst data. The improved algorithm is as follows: 

Algorithm 5: parallel search on each computing core(improved) 

1:  subFS_ldm ← Ø 

2:  FN_ldm ← Ø 

3:  for batchFS in subFS 

4:    copy batchFS into batchFS_ldm 

5:    sort batchFS_ldm 

6:    for i in batchFS_ldm 

7:      pA = cacheRead(v_pos[i]), pB =cacheRead(v_pos[i +  1]) 

8:      if pB To pB not in e_dst_ldm 

9:        copy e_dst[pA] to e_dst[pB] into e_dst_ldm 

10:      end if 

11:     for v in d_dst_ldm 

12:       p = findOwner(v) 

13:       append (p, v) to FN_ldm 

14:       if FN_ldm is full 

15:    copy FN_ldm to 𝐹𝐹𝐹𝐹𝑖𝑖 

16:     end if 

17:    end for 

18:  end for   

5 Conclusion 
We selected four typical data sets to test the performance of the algorithm. These four data sets cover 

protein related data sets, and road data sets in USA and Europe. The ratio of vertex number and pass of 
these data sets are different. In this way, the performance of parallel graph traversal algorithm to deal with 
different structure graph data is tested. The results show that, this paper presents the performance of 
parallel graph traversal algorithm in response to different structure graph data the parallel graph traversal 
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algorithm shown in the paper can achieve a good acceleration effect when dealing with various graph 
structures. In comparison, the acceleration effect of cage15 data set is satisfactory. For the data set with 
large graph scale, such as eurpos_osm, when the number of cores exceeds a certain extent, the 
acceleration effect increases slightly. 

In this optimization result test, a total of 4 examples are used for testing, and the information of 
vertex and edge of examples are as follows: 

Table 1: Use case 
Use cases Vertices Edges 

Freescale1 3428755 16945664 
cage15 5154859 94044692 

road_usa 23947347    57708624 
Europe_osm 50912018 108109320 

 

 

Figure 6: Conclusion 

According to the above performance record table, the graph structure parallel traversal algorithm for 
Sunway TaihuLight platform described in this paper has achieved certain optimization effect for four data. 
For the parallel optimization methods described in this paper, some problems still need to be solved, such 
as evenly distributing the FS queue according to the number of computing cores, and for some side nodes 
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in the graph (that is, the vertex is connected to many vertices) In this case, e_ dst_ldm queue will 
become large, and it is prone to the problems of insufficient LDM space and unbalanced load. 
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