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Overexpression of rice F-box phloem protein gene OsPP12-A13
confers salinity tolerance in Arabidopsis
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Abstract: Salinity is a serious challenge for agriculture production by limiting the arable land. Rice is a major staple food
crop but very sensitive to salt stress. In this study, we used Arabidopsis for the functional characterization of a rice F-box
gene LOC_Os04g48270 (OsPP12-A13) under salinity stress. OsPP12-A13 is a nuclear-localized protein that is strongly up-
regulated under salinity stress in rice and showed the highest expression in the stem, followed by roots and leaves. Two
types of transgenic lines for OsPP12-A13 were generated, including constitutive tissue over-expression using the
CaMV35S promoter and phloem specific over-expression using the pSUC2 promoter. Both types of transgenic plants
showed salinity tolerance at the seedling stage through higher germination percentage and longer root length, as
compared to control plants under salt stress in MS medium. Both the transgenic plants also exhibited salt tolerance at
the reproductive stage through higher survival rate, plant dry biomass, and seed yield per plant as compared to
control plants. Determination of Na* concentration in leaves, stem and roots of salt-stressed transgenic plants showed
that Na® concentration was less in leaf and stem as compared to roots. The opposite was observed in wild type
stressed plants, suggesting that OsPP12-A13 may be involved in Na* transport from root to leaf. Transgenic plants
also displayed less ROS levels and higher activities of peroxidase and glutathione S-transferase along with upregulation
of their corresponding genes as compared to control plants which further indicated a role of OsPP12-A13 in maintaining
ROS homeostasis under salt stress. Further, the non-significant difference between the transgenic lines obtained from the
two vectors highlighted that OsPP12-A13 principally works in the phloem. Taken together, this study showed that

OsPP12-A13 improves salt tolerance in rice, possibly by affecting Na* transport and ROS homeostasis.

Abbreviations
CAT: catalase
GFP: green fluorescent protein

GST: glutathione S-transferase
MDA: malondialdehyde

POD: peroxidase

ROS: reactive oxygen species
SOD: superoxide dismutase
Introduction

Salinity is among the major abiotic stresses that hamper plant
growth and productivity (Munns and Tester, 2008; Zafar
et al.,, 2020c). Industrial development and excessive use of
fertilizers are continuously increasing the land areas under
salt stress (Alzubaidi ef al., 1990; Han et al., 2015; Shrivastava
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and Kumar, 2015). In saline soils, the uptake of salts (mainly
Na" ions) by roots increases manyfold, and salts are
transported to the aerial parts of the plant, mainly leaves and
shoot (James et al., 2011; Byrt et al., 2014). Since leaves are
major photosynthetic organs, the accumulation of Na* ions
seriously affects the rate of photosynthesis and leads to cell
death in most cases (Chaves ef al., 2009; Kumar et al., 2017).
Thus, identification of the salt-tolerant varieties,
understanding the mechanisms of salinity tolerance and
identification of genes responsible for salt tolerance, will
provide the most durable and eco-friendly solutions to cope
with this major issue (Huang et al., 2008; Chaves et al., 2009;
Rahnama et al.,, 2011; Zafar et al., 2015; Zafar et al., 2020c¢).
Crops differ in their ability to tolerate salt stress, and rice
being a major staple crop is highly sensitive to salt stress
(Martinez-Atienza et al., 2007; Huang et al., 2008; Liu et al.,
2013). Salt stress usually causes the accumulation of Na* ions
in leaf cells, which affects various metabolic processes such as
protein synthesis and activation of key metabolic enzymes
(Munns et al., 2006; Munns and Tester, 2008). Plants manage
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to exclude the excessive Na* ions from the leaf and shoot to the
root cells to protect from cellular damage (Byrt et al,, 2007; Han
et al., 2018). Thus, Na* exclusion or recirculation from leaves
has been regarded as an important mechanism of salinity
tolerance in plants (Munns et al, 2006; Byrt et al, 2007;
Munns and Tester, 2008; Han et al., 2018). Several genes
have been identified from the model plant Arabidopsis
thaliana and the major crop wheat that regulate salinity
tolerance via Na® exclusion or recirculation from leaves
(Huang et al., 2008; James et al, 2011). Among these, Salt
Overly Sensitive (SOS) pathway genes, such as SOSI and
SOS2, play key roles in maintaining the ion homeostasis in
cells and contribute significantly to salt tolerance (Martinez-
Atienza et al., 2007; Cheng ef al., 2019). In addition, Na*/H"
antiporter genes have shown a potential role in salinity
tolerance in different crops, including Arabidopsis (Sottosanto
et al, 2007), kiwifruit (Tian et al, 2011), and mungbean
(Kumar et al, 2017). Thus, all these gene families play
important roles in salinity tolerance mainly by regulating Na*
transport and exclusion in leaves.

In addition to the Na* accumulation, salt stress also causes
oxidative damage to plants through the overaccumulation of
ROS in cells (Abogadallah, 2010; Abdelgawad et al, 2016;
Kumar et al., 2017). This oxidative damage induces membrane
lipid peroxidation and thus leads to cell death in different
tissues (Abdelgawad et al., 2016; Zafar et al., 2020b). However,
plants have a huge genetic variation to cope with this stress
under harsh climates, which depends on their antioxidant
defense system (Abogadallah, 2010; Zafar et al, 2020a). The
antioxidant enzymes such as superoxide dismutase (SOD),
catalase (CAT), peroxidase (POD), and glutathione
S-transferase (GST) have the ability to scavenge or detoxify the
ROS molecules in order to protect plants from oxidative
damage induced by environmental stresses (Abogadallah,
2010; Abdelgawad et al., 2016; Zafar et al., 2020a).

Fox box domain proteins are a large family with around
700 members in Arabidopsis and rice (Xu et al., 2009). Several
F-box genes have been shown involved in salinity tolerance
(Jain et al., 2007; Gonzalez et al., 2017; An et al., 2019). In
rice, a member of the F-box protein family, known as
MAIF1 (miRNAs regulated and abiotic stress induced), has
been shown to negatively regulate salt tolerance by affecting
root growth (Yan et al, 2011). In Arabidopsis, another
F-box protein, EST1, also negatively affects salinity tolerance
by regulating plasma membrane Na*/H" antiport activity
(Liu et al, 2020). Overexpression of another F-box gene,
OsMsr9, enhanced salinity tolerance in Arabidopsis and rice
by increased root and shoot growth, higher production of
proline, and less malondialdehyde (MDA) contents (Xu et
al., 2014). Similarly, overexpression of a wheat F-box gene
TaFBAI in tobacco enhanced drought and salinity tolerance
by regulating antioxidant, reactive oxygen species (ROS)
production, as well as Na* and K" levels in cells (Zhou et
al., 2014; Zhao et al., 2017b). A novel F-box gene, CaF-box,
in pepper has also been reported to play a role in multiple
abiotic stress tolerance, including salinity (Chen et al,
2014). A genome-wide analysis of F-box proteins in
Medicago truncatula identified several other functional
domains in the C-terminal region, such as LRR, Kelch, FBA,
and PP2, in addition to the conserved domains (Song et al,
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2015). These F-box genes are speculated to play a role in
salt and heavy metal stresses (Song et al., 2015). These
studies indicated a potential role of F-box genes in salinity
tolerance, and thus identification of new F-box genes in rice
would play important role in breeding salt-tolerant cultivars.

In this study, we have reported the role of a rice F-box
domain-containing protein OsPP2-A13 in salinity tolerance.
OsPP2-A13 was identified as a hub gene predicted to play a
major role in salt tolerance in rice (Zhu et al., 2019). We
showed that overexpression of OsPP2-A13 in Arabidopsis
ecotype Columbia-0 displayed enhanced salinity tolerance at
seedling and reproductive stages, probably by modifying
Na® transport from root to leaves. OsPP2-A13 affects the
expression of antioxidant-associated genes, which probably
caused higher antioxidant activities under salt stress and
ROS levels under normal range in transgenic lines.

Materials and Methods

Plant materials, growth conditions and stress treatments
Seeds of japonica rice cultivar Nipponbare were sown in Petri
plates under high moisture conditions at 37°C in the dark for
good germination (3-4 days). Uniformly germinated seeds
were transferred to Yoshida solution (Yoshida et al, 1971)
and grown for 4 weeks at 28°C with 70% relative humidity.
Leaf, stem, and root tissues were collected at this stage for
tissue-specific relative gene expression analysis. Then seedlings
were shifted to a new Yoshida solution having 150 mM NaCl
(Quan et al.,, 2018), and the samples were harvested at 0, 3, 9,
24, and 48 h of salt treatment for RNA isolation.

For the salt treatment of Arabidopsis thaliana at the
seedling stage, seeds were sown on half-strength Murashige
and Skoog (MS) medium and laid on 4°C for 3 days and
then shifted to a growth chamber at 22°C with a light
intensity of 120-150 pmol/m’s and relative humidity of
50%. After 10 days, seedlings were shifted to a new MS
medium with 200 mM NaCl. Root length was observed after
7 days of salt treatment, and data for root length were
recorded. For the estimation of germination percentage,
seeds were plated initially on MS medium with 200 mM
NaCl and germination rate was recorded after 5 days.

For salt stress at the reproductive stage, Arabidopsis plants
were grown in a growth chamber at the above-mentioned
conditions, and 250 mM NaCl solution was applied to four-
weeks old plants every three days interval. Leaf samples were
collected at this stage for various physiological assays
including Na™ concentration. The number of survived plants,
plant dry biomass, and seed yield per plant (mg) were
recorded at the time of complete maturity.

RNA isolation and real time PCR

RNA was isolated using the RNAprep Pure Kit (for Plants;
Tiangen) and quantified in NanoDrop. 1 pg total RNA was
reverse transcribed into cDNA using a first-strand ¢cDNA
synthesis kit (Takara). Quantitative real-time PCR was
performed using SYBR green master mix on an ABI7500
sequence detection system (Zhao et al., 2017a). OsActinl gene
was used as an internal control for rice (Zafar et al., 2020a),
and AtActin2 was used for Arabidopsis (Zhao et al., 2017a).
The primer sequences for all genes are listed in Suppl. Tab. 1.
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Phylogenetic analysis and gene structure

Protein sequence for rice OsPP12-A13 gene was retrieved from
Rice genome annotation project (http://rice.plantbiology.msu.
edu/) under locus name LOC_Os04¢g48270. The protein
sequences for ortholog genes of different species were
retrieved from NCBI via BLAST search against OsPP12-A13.
The amino acid sequences were aligned using CLUSTALX
software (Wang et al., 2018), and a phylogenetic tree was
constructed using MEGA 7 with 1000 bootstrap replicates
(Zafar et al., 2020b). The gene structure of the OsPP12-A13
gene was constructed using a gene structure display server
(Hu et al., 2014).

Vector construction and transgenics development

To construct a binary vector for gene overexpression in
transgenic plants, the coding sequence of OsPPI2-Al13
cDNA was amplified using a forward primer (5-
ATCGTCTAGAATGGGGGCGGGGG-3’, Xbal site is
underlined) and a reverse primer (5-ATCGGGTACC
TTACTTGCAGATTGTGC-3’, Kpnl site is underlined). The
PCR product was confirmed by sequencing. Then, the gene
fragment was digested with Xbal and Kpnl and cloned into
the plant binary vector ProkIl under the control of the
CaMV 35S and pSUC promoters to generate the 35S:
OsPP12-A13 and  pSUC:OsPP12-A13 constructs,
respectively. For pSUC::OsPP12-A13, the pSUC promoter
was first constructed into the ProkII vector. These
constructs were introduced into Agrobacterium tumefaciens
strain LBA4404 after sequencing and then transformed into
Arabidopsis ecotype Col-0 by the floral dipping method
(Zhang et al., 2006). Empty vectors were also introduced in
Arabidopsis as controls.

Subcellular localization

Localization of OsPP12-A13 protein was first predicted using
the WoLF PSORT database (www.genscript.com/tools/wolf-
psort). For experimental validation, the coding sequence
of OsPP12-A13 ¢cDNA was fused with GFP and cloned
into vector pBWA(V)HS-GLosgfp. This construct was
co-transformed along with the nucleus marker vector
pBWA(V)HS-Nucleus-mKate into Arabidopsis protoplasts
and observed under a confocal microscope. For the
negative control, an empty vector pBWA(V)HS-GLosgfp
containing only the GFP gene was transformed into
Arabidopsis protoplasts.

Determination of Na* concentration

Na' concentration from leaf, stem, and root tissues was
determined by the freeze-thawed method as described
earlier (Wu et al,, 2019). Plant samples were harvested and
frozen (-80°C) immediately for 60 min and then thawed
again, followed by squeezing to release cell sap. The cell sap
was centrifuged at 5000 x g for 10 min, and the supernatant
was collected. The 10 pL of supernatant was diluted to 25 mL
and used for Na* determination with a flame photometer.

Measurement of H,O, MDA and antioxidant activities

Quantitative measurement of H,O, was performed using a
spectrophotometric method as described earlier (Zafar et al,
2020a). Briefly, 0.1 g fresh leaves were harvested from
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Arabidopsis plants and extracted with 1 mL of 50 mM
sodium phosphate (pH 7.4) buffer and kept on ice for
20 min. The mixture was centrifuged at 12000 x g for 15 min
and quantified using a spectrophotometer. Measurement of
MDA, SOD, POD, CAT, and GST activities was performed
using the kits provided by Nanjing Jiancheng bioengineering
Institute, China (Zafar et al, 2020b). One unit of SOD
activity was defined as 1 g tissue, among which the inhibition
rate of SOD is 50%. One unit of CAT activity was estimated
as the amount of enzyme that decomposes 1 umol H,O, per
second in 1 g tissue. One unit of POD activity was defined as
an absorbance change of 0.01 per minute.

Electrolyte leakage assay

The relative electrolyte leakage was determined using the
following method (Bajji et al., 2002). Leaf segments of 1 cm
were harvested from selected plants and washed with
deionized water to clean out the solutes from the leaf surface.
The cut segments were then put into test tubes containing
20 mL deionized water, and electrical conductivity was
measured with an electrical conductivity meter.

Statistical Analyses

All the data were analyzed with the R software (www.
r-project.org). One-way analysis of variance was performed
by comparing each transgenic line to the vector control
plants. This was followed by the Tukey HSD test for mean
comparison. The error bars were calculated with data from
a single experiment.

Results

OsPP12-A13 is a salt responsive gene

F box proteins have been shown to play a role in diverse
processes, including response to environmental stresses (Jain
et al., 2007; Gonzalez et al., 2017; An et al., 2019). However,
its role under salinity stress has not been studied in most
crop species, including rice. Here, we studied one of rice
F box proteins, PHLOEM PROTEIN 2-LIKE A13 (OsPP2-
A13), which is predicted to work through phloem tissue and
may be involved in the transportation of Na® ions for
salinity tolerance (Zhu et al, 2019). We first investigated
whether OsPP2-A13 is responsive to salt stress. We applied
salt stress of 150 mM NaCl to rice seedlings for different
time durations from zero to 48 h and detected mRNA
abundance of OsPP2-A13. The quantitative real-time PCR
(qQRT-PCR) analysis showed that OsPP2-A13 expression was
strikingly induced under 150 mM NaCl, and the expression
increased proportionally with the duration of salt stress
(Fig. 1a). We further tested the tissue-specific expression of
OsPP2-A13 in different tissues of rice using qQRT-PCR. This
showed the highest relative expression in the stem, followed
by root and leaf, which have almost similar expression levels
(Fig. 1b). The lowest expression was observed in seed
tissues. These results indicate that OsPP2-AI3 is a salt
responsive gene and may have a role in salinity tolerance.

Evolutionary study and subcellular localization of OsPP12-A13
The protein sequence of rice OsPP12-A13 was obtained from the
Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/)
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FIGURE 1. Expression pattern and subcellular localization of OsPP2-A13.

(a) Relative expression of OsPP2-A13 under different time courses salt treatment in leaf, stem, and roots of rice. (b) Relative expression of OsPP2-A13
in different tissues of rice. (c) Phylogenetic tree from amino acid sequences of OsPP2-A13 and its orthologs in different species (Sorghum bicolor
(sorghum), Zea mays (maize), Brachypodium distachyon (Brachypodium), Arabidopsis thaliana (Arabidopsis), Vitis vinifera (grape), Glycine max
(soybean) and Citrus sinensis (orange)); gene codes are from NCBI. (d) Confocal microscopy images for subcellular localization of OsPP2-A13
protein. Arabidopsis protoplasts were co-transformed with constructs containing OsPP2-A13-GFP and mKate (upper row) or GFP alone (lower row).

under gene locus LOC_Os04¢48270. The OsPP12-A13 gene is
located on chromosome 4 of rice with a nucleotide length of
3362-bp and CDS of 915 bp. The gene structure analysis
showed that it has 3 exons and 2 introns (Suppl. Fig. Sla).
The OsPP12-A13 encodes a protein of 305 amino acids
having an F-box domain at the N terminal and a large
phloem protein 2 (PP2) domain near the C-terminal (Suppl.
Fig. S1b). The molecular weight of the protein is 33.7 kDa,
and the predicted isoelectric point (pl) is 7.18. To study the
evolutionary relationship of OsPP12-A13 with its orthologs
from other species, we retrieved the amino acid sequences of
its orthologs from different species, including monocots and

dicots. Phylogenetic analysis of protein sequences indicated
that all orthologs are evolutionarily related to each other, and
rice OsPP12-A13 was closer to monocot members (maize,
sorghum, and brachypodium) as expected (Fig. 1c). The
dicots were also closer to each other, with grape and soybean
clustered into one branch while the orange F-box ortholog
was in a clearly separate clade, which implies a high sequence
variation in orange (Fig. 1c).

To study the subcellular localization of OsPP12-A13 in
rice, we first predicted its location using available
bioinformatics tools. WoLF PSORT server (www.genscript.
com/tools/wolf-psort) ~ predicted that OsPP12-A13 is
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localized in the nucleus similar to its ortholog AT3G61060 in
Arabidopsis thaliana. For the experimental validation of this
result, we fused the OsPP12-A13 gene with green fluorescent
protein (GFP) and transformed it into Arabidopsis
protoplasts. We also transformed a vector containing mKate
protein into these protoplasts. Co-localization of GFP and
mKate signals under the confocal laser microscope
confirmed that OsPP12-A13 is a nuclear-localized protein
(Fig. 1d). For the negative control, we transformed an
empty vector into Arabidopsis protoplasts, which showed
GFP signals not only in the nucleus but also in the
cytoplasm and other organelles. These results confirm that
OsPP12-A13 is a nuclear-localized protein.

OsPP12-A13 increases germination percentage and root length
of seedlings in transgenic Arabidopsis plants under salt stress
Germination percentage and root length are the key traits
related to salinity tolerance in plants (Zafar et al., 2015). To
see if OsPP12-A13 can improve the germination percentage
and root length, we fused OsPP12-A13 under CamV35S
promoter and developed tissue constitutive overexpression
lines for model plant Arabidopsis thaliana (Suppl. Fig. S2a).
For the negative control, we transformed a vector
containing only the CamV35S promoter without the
OsPP12-A13 gene. We obtained nine positive homozygous
F3 lines for CamV35S-OsPP12-A13 plants and 15 lines for
CamV35S plants. Four positive overexpressing lines were
selected after qRT-PCR analysis for stress treatment and
other physio-molecular assays (Suppl. Fig. S3). Results
demonstrate that germination percentage was significantly
reduced to 40% under salinity stress of 200 mM NaCl in MS
medium for control plants (35s_VC, plants transformed
with a vector containing the CamV35S promoter but not
the OsPP12-A13 gene). However, constitutive overexpression
of OsPP12-A13 increased germination percentage up to 90%
under salt stress in transgenic Arabidopsis seedlings
(Fig. 2a). OsPP12-A13 has been described as a phloem
protein. To see if OsPP12-A13 works mainly in phloem
tissues, we further developed phloem specific over-
expression plants using the pSUC2 promoter (Truernit and
Sauer, 1995; Wippel and Sauer, 2012) fused with OsPP12-
A13 (Suppl. Fig. S2b). We obtained 17 positive homozygous
F3 overexpressing lines for pSUC2-OsPP12-A13 plants and
21 lines for pSUC2 plants. Four positive overexpressing lines
from both vectors were selected after qRT-PCR analysis for
further experimental evaluation (Suppl. Fig. S3). The
transgenic overexpressed plants (pSUC2-OsPP12-A13) also
improved the germination percentage up to 90% compared
to control plants (pSUC2_VC) having only pSUC2
promoter but not OsPP12-A13 (Fig. 2a).

To observe the effects of these overexpression constructs
on root length, we measured root length of 10 days old
seedlings grown in MS medium with and without 200 mM
NaCl, respectively. OsPP12-A13 overexpressing plants from
positive lines (CamV35S-OsPP12-A13 and pSUC2-OsPP12-
A13) significantly increased root length up to 2 folds under
salt stress compared with controls lines (CamV35S_VC and
pSUC2_VC) (Figs. 2b, 2c). These results demonstrate that
OsPP12-A13 improves salt tolerance via regulating root
length and improved germination percentage.
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OsPP12-A13 increases transgenic plants survival and seed yield
under salt stress

To observe the role of OsPP12-A13 in salt tolerance at later
growth stages, we evaluated plant survival, plant dry biomass,
and seed yield per plant by growing transgenic overexpression
plants in soil under control and salt stress (250 mM NaCl) at
the reproductive stage. Under salt stress, only less than 20% of
plants survived for either of the control plants (CamV35S_VC
or pSUC2_VC) (Fig. 3a). However, both the CamV35S-
OsPP12-A13 and pSUC2-OsPP12-A13 significantly increased
the rate of plant survival up to 90% under salt stress (Figs. 3a
and 3d). Plant dry biomass is also a good indicator of salt
tolerance. The plant dry biomass was significantly reduced
under salt stress in control plants (CamV35S_VC and
pSUC2_VC) (Fig. 3b). But both the constitutive and phloem
specific overexpression of OsPP12-A13 significantly increased
plant dry biomass under salt stress compared with controls
(Fig. 3b). Seed yield is the ultimate objective and the most
important trait for grain crops, including rice (Chun et al,
2020). We observed a significant increase in seed yield per
plant under salt stress in transgenic Arabidopsis plants
overexpressing OsPP12-A13 compared to their vector controls
CamV355_VC and pSUC2_VC (Fig. 3c). Based on these
results, we conclude that OsPP12-A13 positively regulates plant
survival, plant biomass, and seed yield under salt stress.
Furthermore, the similar responses of constitutive and phloem
specific overexpressing plants further support our conclusions
that OsPP12-A13 works mainly in phloem tissues.

OsPP12-A13 regulates salinity tolerance by affecting Na*
transport

Plants absorb salts mainly Na* ions from roots and translocate
them into aerial parts mainly leaf and stem. Under conditions
of high salinity in the soil, these salts are accumulated in
higher concentrations in leaf cells, which are toxic for cells
and leads to cell death (Munns and Tester, 2008). Thus,
protecting Na™ accumulation in leaf cells is a mechanism of
salinity tolerance by plants (Munns and Tester, 2008; Roy et
al., 2013; Byrt et al, 2014). To see if OsPP12-A13 may be
involved in regulating salinity tolerance by affecting Na*
transport, we measured the Na* concentration of leaf, stem,
and root tissues under control and salt stress conditions. Our
results showed that Na* concentration was significantly higher
in leaf and stem tissues in control vectors under salt stress;
however, Na* concentration in these tissues was significantly
less in OsPP12-A13 overexpressing plants as compared to
control vectors CamV35S_VC and pSUC2_VC (Figs. 4a, 4b).
We then measured Na® concentration in root tissues, which
indicated a significantly higher Na* concentration in OsPP12-
Al3 overexpressing plants as compared to vector control
plants CamV35S_VC and pSUC2_VC wunder salt stress
(Fig. 4c). These results demonstrate that OsPP12-A13 regulates
salinity tolerance in Arabidopsis, probably by limiting Na*
transport from root to leaf cells.

Electrolyte leakage is an indicator of cell membrane
stability, which is used as an important trait for stress
tolerance (Elbasyoni et al., 2017; Zafar et al., 2020a). To find
the role of OsPPI2-A13 in maintaining cell membrane
stability, we measured relative electrolyte leakage from leaf
tissues under salt stress. We observed a strikingly higher
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FIGURE 2. Overexpression of OsPP2-A13 improves germination and root length in transgenic Arabidopsis plants under salt stress.

(a) Statistical analysis for the quantitative data of germination percentage in transgenic Arabidopsis overexpression plants and vector control
plants. N = 50 seeds for each line. (b) Statistical analysis for the quantitative data of root length in transgenic Arabidopsis overexpression plants
and vector control plants. N = 30 plants for each line. Statistically significant values (p < 0.05) are shown using different letters (a and b) in bar
diagrams with one-way ANOVA following Tukey’s test. Error bars represent standard error. (c) Phenotypic analysis of root length of
transgenic Arabidopsis seedlings grown on MS medium with (Salt) and without (CK) 200 mM NaCl.

electrolyte leakage under salt stress in the control plants
CamV35S_VC and pSUC2_VC, showing higher damage to
cell membrane under stress (Fig. 4d). Nevertheless, the
electrolyte leakage was significantly less in transgenic plants
overexpressing OsPP12-A13 under both the constitutive and
phloem specific promoters, suggesting higher cell membrane
stability under salt stress to avoid tissue damage (Fig. 4d).

OsPP12-A13 maintains ROS homeostasis under salt stress

Abiotic stresses often lead to oxidative stress caused by the
overaccumulation of ROS (Zafar ef al, 2018b; Zafar et al.,
2020a). To examine whether OsPP12-A13 affects the ROS
levels, we measured cellular H,O, (hydrogen peroxide, the
most stable ROS species). Our results demonstrate that H,O,
level was significantly increased under salt stress in the
control plants (CamV35S_VC and pSUC2_VC); however, it
was considerably low in transgenic plants overexpressing
OsPP12-A13 under both CamV35S and pSUC2 promoters

(Fig. 5a). ROS usually leads to membrane lipid peroxidation,
which is measured in terms of malondialdehyde (MDA)
(Zafar et al., 2020b). Measurement of MDA contents showed
that MDA level was significantly higher under salt stress in
the control plants (CamV35S_VC and pSUC2_VC) (Fig. 5b).
In contrast, we observed significantly less MDA contents in
transgenic  plants  overexpressing OsPP12-A13 under
CamV35S as well as pSUC2 promoters (Fig. 5b), suggesting
that OsPP12-A13 protects plants from oxidative damage by
keeping lower ROS levels.

Enzymatic antioxidants such as CAT, SOD, POD, and
GST serve as important ROS scavengers in plant and animal
tissues (Di Meo et al., 2019; Zafar et al., 2020a). We thus
estimated the activities of these antioxidant enzymes to
understand the mechanism of ROS scavenging and balance
in transgenic plants. According to our results, activities of
CAT and SOD were significantly enhanced under salt stress
in both the control vectors as well as transgenic plants
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(a—c) Statistical analysis for the quantitative data of the number of survived plants, n = 100 plants for each line (a), plant dry biomass, n = 15
plants for each line (b) and seed yield per plant, n = 15 plants for each line (c) from transgenic Arabidopsis overexpression plants and vector
control plants grown in soil with and without NaCl stress of 250 mM. Statistically significant values (P < 0.05) are shown using different letters
(a and b) in bar diagrams with one-way ANOVA following Tukey’s test. Error bars represent standard error. (d) Phenotypic observation for
plant survival of transgenic Arabidopsis seedlings grown in soil with NaCl stress of 250 mM.

overexpressing OsPP12-A13 (Figs. 5¢, 5d). Since the activities
were increased irrespective of the OsPP12-Al13 gene, this
suggests that OsPP12-A13 has no role in the increased
activities of CAT and SOD, perhaps it could be due to
compensatory response by the plant under stress. On the
other hand, activities of POD and GST were significantly
increased in the transgenic plants overexpressing OsPP12-A13
under CamV35S as well as pSUC2 promoters, but not
significantly high in the control plants (Figs. 5e, 5f). These
results suggest that OsPP12-A13 maintains ROS homeostasis
in the plant under salt stress by regulating activities of POD
and GST specifically and protect tissues from oxidative damage.

OsPP12-A13 regulates ROS homeostasis by modulating the
expression of salt and stress responsive genes

To get insight into the underlying molecular mechanism of
OsPP12-A13 mediated salt stress tolerance, we investigated
the expression of stress-responsive and antioxidant-related

genes in Arabidopsis leaf (Martinez-Atienza et al., 2007;
Cheng et al, 2019; Zafar et al, 2020a). The Salt Overly
Sensitive (SOS) pathway plays a key role in maintaining ion
homeostasis in cells and contributes significantly to salt
tolerance (Cheng et al., 2019). Since SOS genes positively
regulate salt tolerance, we studied their expression in
response to salt stress in transgenic plants overexpressing
OsPP12-A13 compared to control plants. We observed
around 1.5-2.0- fold upregulation in the expression of
AtSOS1 and AtSOS2 genes compared to control plants
under salt stress (Fig. 6). AtNHXI and AtHNX2 genes play
important roles in vacuolar compartmentalization of Na*,
which is an important mechanism of salt tolerance (Yokoi et
al., 2002). We observed 2.5-3.6-fold upregulation in the
expression of AtNHXI and AtHNX2 genes compared to
control plants under salt stress (Fig. 6). Arabidopsis thaliana
high-affinity potassium transporter 1 (AtHKTI) regulates
salinity tolerance by limiting the transport of Na* from
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represent standard error.

roots to shoots (Rus et al., 2001; An et al., 2017). We observed
more than 3 folds upregulation in the expression of AtHKTI
in transgenic plants overexpressing OsPP12-A13 compared
to control plants under salt stress (Fig. 6). This suggests that
OsPP12-A13 affects the expression of AtHKTI and thereby
maintain low leaf Na* concentration in transgenic plants.
Next, we studied the expression levels of antioxidant-
related genes. We observed a slight upregulation in the
expression levels of AtSODI, AtSOD2, AtCATI, and
AtCAT3 genes in transgenic plants overexpressing OsPP12-
Al3 compared to control plants under salt stress (Fig. 6).
Unlikely, we observed a moderate upregulation in the
expression of AtPODI and AtPOD?2 in overexpressing plants
compared to control plants under salt stress (Fig. 6).
Notably, we observed a significant upregulation of up to
5 folds in the expression of ATGSTI and ATGST2 genes
under salt stress in the transgenic plants overexpressing
OsPP12-A13 compared to control plants (Fig. 6). These gene
expression profiles were almost consistent with the recorded
antioxidant activities (Fig. 5) and suggest that OsPP12-A13
regulate the expression of AtGSTI and AtGST2 genes and
maintain redox balance in transgenic plants under salt stress.

Discussion

OsPP2-A13 is salt responsive nuclear protein

Environmental stresses such as drought, heat, and salinity
pose a serious threat to global crop production (Zafar et al.,
2020c). The most sustainable and eco-friendly approach to
tackle this challenge is the development of climate-smart
varieties (Munns and Tester, 2008; Zafar et al, 2018b).

Salinity has been a key challenge for sustainable crop
production as it seriously affects crop yield, especially in rice
(Shrivastava and Kumar, 2015; Zafar et al, 2015;
Abdelgawad et al., 2016). Thus, identification of novel genes
regulating salinity tolerance from either wild species or
natural genetic variation will provide a useful genetic
resource to breed salinity tolerant cultivars in rice (Huang et
al., 2008; Rahnama et al., 2011; Quan et al, 2018). F-box
genes are a large family with several hundred members in
Arabidopsis and rice (Xu ef al., 2009). Overexpression of an
F-box gene OsMsr9 enhanced salinity tolerance in
Arabidopsis and rice by increased root and shoot growth,
higher production of proline, and less malondialdehyde
(MDA) contents (Xu et al., 2014). Similarly, overexpression
of another F-box gene, TaFBAI, in tobacco enhanced
salinity tolerance by regulating antioxidant, reactive oxygen
species (ROS) production and Na® and K" levels in cells
(Zhao et al., 2017b). These studies indicated a potential role
of F-box genes in salinity tolerance, and thus
identification of new F-box genes for their role in salt
tolerance would play important role in breeding salt-
tolerant rice cultivars. In this study, we have characterized
the role of a rice F-box phloem protein 2-LIKE Al3
(OsPP2-A13) in salinity tolerance. We first detected that
OsPP2-A13 is highly responsive to salt stress, and its
expression was highest in the stem, followed by roots and
leaves (Fig. 1). Transformation of OsPP2-A13 with GFP
tag into Arabidopsis protoplasts revealed that OsPP2-A13
is localized to the nucleus, similar to its Arabidopsis
ortholog AT3G61060. Since transcription factors are
known to regulate the expression of stress-responsive
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FIGURE 5. Analysis of ROS and antioxidants in transgenic Arabidopsis plants under salt stress.

Statistical analysis for the quantitative data of H,O, concentration (a), MDA (b), CAT (c), SOD (d), POD (e), and GST (f) from leaves of transgenic
Arabidopsis overexpression plants and vector control plants grown in soil with and without NaCl stress of 250 mM. Statistically significant values
(p < 0.105) are shown using different letters (a and b) in bar diagrams with one-way ANOVA following Tukey’s test. Error bars represent standard error.

CamV35S-OsPP2-A13/35s_VC | pSUC2-OsPP2-A13/pSUC2_VC

L1 L2 L3 L1 L2 L3
ATSOS1 23 1.9 1.89 2.67 1.86 2.24
ATSOS2 1.4 Dl 1.5 1.67 1.94 2.59
ATNHX1 3.6 25 2.9 2.24 1.56 2.35
ATNHX2 27 IR 2.5 2.33 1.77 1.64
ATHKTI 3.4 2.9 3.1 3.25 2.01 2.16
ATSODI 1.5 1.3 1.02 1.18
ATSOD2 12 1.4 1.16
ATPODI1 | 233 2.1 1.63 1.465 {57 1.52
ATPOD2 1.95 24 1.75 1.95 1.51 1.76
ATCATI | 098 1.23
ATCAT3 1.23 1.11 1.05
ATGSTI 3.7 3.8 4.01
ATGST2 395 | .

FIGURE 6. Expression fold-change of various Na* transport and
antioxidant-related genes under salt stress in Arabidopsis leaf.
qRT-PCR based expression fold change (transgenic overexpression
lines/vector control lines) of key genes involved in Na™ transport
and antioxidant activities in salt stress response. Values indicate
the mean of three biological repeats.

genes and are located in the nucleus (Zhang et al., 2013; Li et
al., 2017; Ali et al., 2018; Dai, 2019; Zhu et al., 2020), this
suggests that OsPP2-A13 may interact with some key

transcription factors and regulate salt-responsive genes to
impart salinity tolerance.

OsPP2-A13 regulates salinity tolerance probably via phloem
tissues
We showed with a number of evidences that overexpression of
OsPP2-A13 in Arabidopsis imparts salt tolerance at both
seedling and reproductive stages. We constitutively
expressed OsPP2-A13 under CamV35S promoter in
Arabidopsis and observed a significantly higher germination
percentage and root length in Arabidopsis seedlings grown
in MS medium with 200 mM NaCl (Fig. 2). Alongside, we
observed a significantly higher survival rate, dry biomass,
and seed yield per plant in transgenic CamV35S-OsPP2-A13
plants grown in soil with 250 mM NaCl (Fig. 2). Since root
length, survival rate, dry biomass and seed yield are the key
traits associated with salinity tolerance (Liu et al, 2013;
Farooq et al., 2015; Zafar et al, 2015), we conclude that
OsPP2-A13 improves salinity tolerance in Arabidopsis.
Phloem serves as an important medium for salinity
tolerance by translocating Na™ salts from leaves and shoot
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(place of higher Na™ concentration) to the root (place of low
Na® concentration) (Berthomieu et al., 2003; Kong et al.,
2012; Wu, 2018). Phloem played a key role in salinity
tolerance in several species, including maize, clover, and
sweet pepper (Tester and Davenport, 2003). Since OsPP2-
A13 is a phloem protein gene, we tested if OsPP2-A13 works
mainly via the phloem to improve salinity tolerance. We
expressed OsPP2-A13 under pSUC2 promoter (phloem
specific promoter) (Truernit and Sauer, 1995; Wippel and
Sauer, 2012) in Arabidopsis and evaluated salinity tolerance.
We found that pSUC2-OsPP2-A13 plants showed almost
similar results for the recorded traits, which proved that
OsPP2-A13 works mainly via the phloem to regulate salinity
tolerance. This suggests that OsPP2-AI3 restricts Na®
transport from roots to leaves, and phloem plays a central role.

Na® transport is an important mechanism of salinity
tolerance in plants (Wu, 2018). We therefore investigated if
OsPP2-A13 affects Na* transport from roots to leaves. Our
results showed that both the CamV35S-OsPP2-A13 and
pSUC2-OsPP2-A13 plants had significantly reduced Na*
concentration in leaf and stem tissues under salt stress
compared with control plants (Fig. 4). However, Na®
concentration was considerably higher in roots under salt
stress. Since a high concentration of Na* in roots is not
detrimental to the plant as compared to the leaf and stem
(Berthomieu et al., 2003; Kong et al., 2012; Wu, 2018), we
speculate that OsPP2-A13 regulates salinity tolerance mainly
by downregulating Na* transport from root to leaves. Thus,
OsPP2-A13 could serve as an important functional gene to
modulate salinity tolerance in breeding programs.

OsPP2-A13 protects from oxidative damage under salt stress

One of the most common and frequent responses to abiotic
stresses is the excessive production of ROS which often
leads to detrimental effects. The accumulation of ROS
beyond certain levels causes membrane lipid peroxidation,
cell death, reduced fertility, and poor seed setting
(Abogadallah, 2010; Abdelgawad et al., 2016; Zafar et al.,
2020a; Zafar et al., 2020b). Plants protect themselves from
oxidative damage by activating stress-responsive genes and
antioxidant defense mechanisms (Abogadallah, 2010;
Abdelgawad et al., 2016). In this study, although the ROS
level was increased under salt stress, ROS level was
significantly less in transgenic plants overexpressing OsPP2-
A13 as compared to control plants with normal OsPP2-A13
expression (Fig. 5). A similar trend was observed for MDA
(Fig. 5), which is used as an oxidative stress marker (Zafar
et al, 2020a). This indicates that OsPP2-A13 helps to keep
the ROS levels under normal ranges. Plants adapt various
defense mechanisms against oxidative stresses (Larson,
1995). Among these, the activation of antioxidant
machinery is one of the major defense strategies
(Abogadallah, 2010; Gill and Tuteja, 2010). Antioxidant
enzymes such as SOD, POD, CAT, and GST are key
enzymes that detoxify ROS molecules and protect cellular
organelles from ROS damage (Jiang and Yang, 2009; Zafar
et al., 2018a). We found a dramatic increase in the activities
of POD and GST under salt stress in the transgenic plants
expressing OsPP2-A13 as compared to control plants
without OsPP2-A13 (Fig. 5). This proves that low ROS levels

CHUNKUN FAN et al.

in the transgenic plants expressing OsPP2-A13 could be
attributed to the higher POD and GST activities, which
protected the plants from oxidative damage under salt stress
(Abogadallah, 2010; Hussain et al., 2019; Zafar et al., 2020a).
Since TaFBAI (an F-box gene) also controls salinity
tolerance by regulating antioxidant and ROS production and
Na® and K" levels in cells, this suggests some common
evolution and mechanism of action of these F-box genes
(Zhao et al., 2017b).

OsPP2-A13 regulates the expression of Na® transport and
antioxidant related genes

Our results suggest that OsPP2-A13 improves salinity
tolerance probably by affecting Na® transport and
antioxidant defense response. To understand the molecular
basis of this response, we studied the expression levels of
various Na® transport and antioxidant-related genes under
salt stress. We observed a slight to moderate upregulation of
AtSOS1, AtSOS2 (Salt overlay sensitive pathway genes)
AtNHX1, AtHNX2 (Na/H" antiporter genes) and AtHKT]I
(high-affinity potassium transporter gene) (Fig. 6). The SOS
pathway plays a key role in maintaining ion homeostasis in
cells and contributes significantly to salt tolerance (Cheng
et al, 2019). Na*/H" antiporter genes play an important
role in vacuolar compartmentalization of Na®, which is an

Antioxidant— O osPP2-A13
Na+ ak
O «— Leaf
1 pop/ast
| AtGsT1/AtGST2 Na+
Phloem
T AtNHX1/AtHKT1 *
Na+ Na+
OsPP2-A13 | Stem
Na+
Na+
* Phloem
Na+ Na+
" Nas OSPP2-A13[, o
' Na+ Na+ Na*
Na+ Soil Na+ Na+
Na+ Na+ Na+ Na+ Na+

FIGURE 7. Working model of OsPP2-A13 for Na™ transport to
regulate salinity tolerance.

Under salt stress, plants absorb Na* ions from roots and transport
them to aerial parts mainly stem and leaves. Overexpression of
OsPP2-A13 limits Na® ions transport from root to leaves via
phloem tissues. In addition, transgenic plants also induce activities
of peroxidase and glutathione S-transferase and expression of
antioxidant (AtGST1 and AtGST2) and Na' transport (AtNXHI
and AtHKTI) related genes to maintain low ROS level and Na*
concentration in leaves.
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important mechanism of salt tolerance (Yokoi et al., 2002).
Similarly, AtHKTI regulates salinity tolerance by limiting
the transport of Na" from roots to shoots (Rus ef al., 2001;
An et al, 2017). Thus, the increased expression of these
genes in OsPP2-A13 overexpressing plants may be correlated
with the Na™ transport regulation mechanism imparting salt
tolerance. Notably, the increased expression of AtHKTI
further supports the hypothesis that OsPP2-A13 enhances
salinity tolerance by downregulating Na" transport from
roots to upper plant parts and that AtHKTI and OsPP2-A13
may work in the same pathway of Na* transport.

The enzymatic activities are often positively correlated
with the expression level of their corresponding genes (Yin et
al., 2017). To see if increased activities of antioxidant
enzymes are correlated with increased transcripts levels of
corresponding genes (Das et al., 2019; Zafar et al., 2020a), we
measured the relative mRNA abundance of CAT, SOD, POD,
and GST related genes in Arabidopsis. We found that the
expression of AtSODI, AtSOD2, AtCATI, and AtCAT3
increased  slightly, AtPODI and AtPOD2 increased
moderately; however, ATGST1 and ATGST2 showed a 5-fold
increase in the expression under salt stress in transgenic
plants expressing OsPP2-A13. The relative transcript levels
were consistent with the observed antioxidant activities, as
observed previously under salt and other abiotic stresses in
rice (Das et al., 2019; Zafar et al., 2020a), suggesting that the
enzymatic activities have a moderate positive correlation with
the expression levels of their corresponding genes. These
results suggest that AtNHXI, AtHKTI, ATGSTI, and
ATGST2 could be downstream target genes of OsPP2-Al3,
which could be further validated using yeast two-hybrid, pull-
down, or split luciferase assays. Taken together, our study
describes an important role of a rice F-box gene in enhancing
salt tolerance in Arabidopsis via modulating multiple traits.

Conclusions

In summary, this study demonstrated the important role of rice
F-box phloem protein OsPP2-A13 in regulating salinity tolerance
in transgenic Arabidopsis plants (Fig. 7). We showed that
OsPP2-A13 is a nuclear-localized protein that functions
mainly via the phloem, probably by affecting Na* transport
from root to leaves. Lastly, we showed that OsPP2-A13 protect
plants from oxidative stress by maintaining higher antioxidant
activities and regulating the expression of AtGSTI and AtGST2
genes. OsPP12-A13 knock-out or RNAi experiments are
needed directly in rice in order to have a complete
understanding of the role of this gene in salt tolerance. Further
analysis to study allelic variation and development of
molecular markers linked to this gene may facilitate rapid
screening of salt-tolerant rice germplasm in breeding programs.
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SUPPLEMENTARY TABLE 1

List of primer sequences used for qRT-PCR analysis

Gene GenBank accession number Forward primers (5’-3’) Reverse primers (5’-3’)

OsACTIN LOC4333919 CTTCATAGGAATGGAA CGACCACCTTGATCTT
OsPP12-A13 LOC_0Os04g48270 AGCAGGGAAGCAGAAA GAGAAGAACAAGGGTGGT
ATACTIN2 AT3G18780 TCCTGCTCGTAGTCAA CTCCCGCTATGTATGT

ATSOS1 AT2G01980 CTTGGATCTCTCGAATATG GGAAACGTGACCTTCACAAG
ATSOS2 AT5G35410 GATAGAATTGTTCATAAAGGG GGAGTTCCACATGTGGTACGC
ATNHX1 AT5G27150 CTTTAGTGAAGATCTTTTC GAATCTGTTGCAGCAAATATG
ATNHX2 AT3G05030 GAGGGAAAAACTCACATCTC CGCCCAAGTCAAAGGTCC
ATHKT1 AT4G10310 ATCTGGCTCCTAATCCCTCAA CCGTCACTCCAAGAAGAACAC
ATSOD1 AT1G08830 GATGGTAAAACACACGGTGC GCCAGGCTGAGTTCATGGCCTC
ATSOD2 AT1G12520 GTCACCCGGAACCCACAGC CCGAATAAAAGGCCTCTCC
ATPOD1 AT1G24110 TCTGACCGTTCAAGAAATGG TGGAGCAACCCGTAACCGTG
ATPOD2 AT2G18140 TCCGGGAGCCACACCATTGG TGGTCGGAATTCAACAGTC
ATCAT1 AT1G20630 ACGGACGAAGAATACA CCAGTGCTAAGGGTTT
ATCAT3 AT1G20620 GAAACGGACAATAACC CTCTTCCCTCACCATC

ATGST1 AT5G41210 GCTCGGGTTCGGTAAA AAAAGCAACAATGCCTCA
ATGST2 AT2G29480 GCCCGAGCAAGACAAA TCTCAAACTTAAAGGCGTAC
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