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Abstract: Inactivation of apoptosis is the prime phenomenon in cancer development and cancer treatments. Mutations in

the apoptotic pathway not only exert resistance to apoptosis and provide a survival advantage to cancer cells but also

confer resistance to cancer therapies. Escaping apoptosis is the “hallmark” of cancer cells. Cancer cells can withstand

many apoptotic stimuli, such as DNA damage, unfavorable environments, and cytotoxic therapies. Substantial

research has been carried out and is in good progress on the various mechanisms adopted by cancer cells to evade

apoptosis. This article reviews the apoptosis escape mechanisms by cancer cells, viz. apoptotic gene alterations (in few

essential and accessory apoptotic genes), post-translational modifications (phosphorylation and ubiquitination of

apoptotic proteins), metabolic alterations, mitochondrial alterations, immunity escape, epigenetics, cancer cell

dormancy, cancer clonal theory, and reversibility of apoptosis. The review reveals that there is a wide scope for

further research to address the various challenges in realizing successful cancer therapies that involve reversing the

apoptotic resistance and/or inducing apoptosis in tumor cells.

Introduction

Cancer is one of the leading causes of death. As research in the
therapeutic approach of cancer is developing, cancer is also
developing its resistance towards various therapeutic agents.
The most prevalent factor providing resistance to cancer
cells is the escape from the default cell death program—
‘apoptosis’. In order to survive, cancer cells override many
barriers that would cause apoptosis. Apoptosis is a highly
regulated cell death process that occurs in multicellular
organisms. It plays important role in the organism’s life
from embryogenesis to aging, and in many diseases, such
as cancer, neurodegenerative diseases, ischemic injury,
AIDS (Acquired Immunodeficiency Syndrome), and
autoimmune diseases. It is a homeostatic mechanism
where organisms eliminate unnecessary cells from the
body in the course of development, mop out infected or
damaged cells from the system, and maintain the level by
replacing these cells with the new ones. In response to the
apoptotic stimuli, a complex cascade of events causes
changes such as chromatin condensation, membrane
blebbing, cell shrinkage, nuclear fragmentation, and DNA
fragmentation, eventually leading to the cell demise
without eliciting an immune response (Sjöström and

Bergh, 2001). The process is carried out by cysteine
aspartate proteases recognized as caspases. Many human
diseases occur due to either the death of cells that should
live or the presence of cells that should die. Hence,
realizing the fact that apoptosis has the ability to restrict
abnormal growth of tissue, the research interest on
apoptosis regulation has suddenly emerged. By extensive
research on diseases showing a characteristic decrease in
apoptotic rate and on how the diseased cells escape
apoptosis, we may be able to use these escape
mechanisms to treat the diseases characterized by an
increased rate of apoptosis.

The mechanisms of apoptosis evasion by cancer cells are
of central importance in drug development as many cancer
therapies intend to initiate cell death. Many researchers have
elaborated the diverse aspects of cancer and apoptosis, such
as apoptosis-inducing drug resistance due to apoptotic gene
modifications and targeting these modifications to develop
new therapies (Lowe and Lin, 2000; Schmitt, 2003; Mashima
and Tsuruo, 2005; Fulda, 2010; Wong, 2011; Kaleigh and
Kurokawa, 2013; Dasgupta et al., 2017; Aleksakhina et al.,
2019; Jan and Chaudhry, 2019), cancer cell interaction with
immune system and immune escape mechanisms
(Messerschmidt et al., 2017; Mohme et al., 2017; Rodriguez,
2017; Leone et al., 2018; Steven and Seliger, 2018), cancer cell
and their microenvironment (Gao et al., 2017; Sun et al.,
2019), epigenetics (Yan et al., 2017; Hervouet et al., 2013), and
anti-tumor drugs (Yan et al., 2017; Rodriguez et al., 2013;
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Cesari et al., 2014; Leone et al., 2018). However, the present
article provides a comprehensive review of the various
apoptosis-escape mechanisms reported so far, such as
genetic alterations, post-translational modifications,
metabolic alterations, mitochondrial alterations, immune
system escape, epigenetics, cancer stem cells (CSCs), cancer
cell dormancy, cancer clonal theory, circulating and
disseminated tumor cells (CTCs and DTCs), and
reversibility of apoptosis. After sequentially covering these
sub-topics, the article highlights the challenges and future
research directions to realize these mechanisms in cancer
therapies and ends with concluding remarks.

Pathways to initiate apoptosis
The two most common pathways to initiate apoptosis are
denoted as intrinsic and extrinsic (Sjöström and Bergh,
2001; Kessel, 2015). The intrinsic pathway can be termed as
auto-activation as the cell itself senses the stimuli and
undergoes apoptosis, while the extrinsic pathway is
paracrine-activation, where the cell receives signals from
neighboring cells and extracellular space; both pathways
work by the activation of caspases (Elmore, 2007).

In the extrinsic pathway or death receptor pathway,
extracellular ligands activate the responsible receptors that
are located in the cell membrane. According to Kaleigh and
Kurokawa (2013), the engagement of extracellular ligands
such as FAS (FS-7-Associated Surface antigen) and TNF
(Tumor Necrosis Factor) with cell surface receptor leads to
the formation of DISC (Death Inducing Signal Complex)
and eventual activation of initiator caspase-8 and caspase-10.
Caspase-8 has a dominant function in the extrinsic pathway.
When the death ligand binds to its cognate receptor, the cell
recruits receptor-specific adaptor proteins like FADD (Fas-
Associated Death Domain), which forms DISC that further
activates caspase-8. The activated caspase-8 either directly
catalyzes the activation of execution caspase or acts on its
substrate BID (BH-3 Interacting Domain death agonist) to
form tBID (truncated BID) that leads to the mitochondrial
release of cyt c (cytochrome complex). Studies have suggested
the inexplicable dual role of caspase-8 as pro-apoptosis and
pro-survival (Salvesen and Walsh, 2014).

The intrinsic pathway (also known as the mitochondrial
pathway) is activated by diverse stimuli (extra- and
intracellular) like oxidative stress, irradiation, and cytotoxic
drug treatment. The pro-apoptotic BCL-2 (B-Cell
Lymphoma 2) family members like BIM (Bcl-2 Interacting
Mediator of cell death), BID (BH-3 Interacting Domain
death agonist), BAD (Bcl-2 Associated Agonist of cell
death), BAX (Bcl-2 Associated Protein X), and BAK (Bcl-2
Homologous Antagonist Killer) promote MOMP
(Mitochondrial outer membrane permeabilization) due to
which pro-apoptotic proteins (such as cyt c) are released
from mitochondrial intermembrane into the cytoplasm,
where cyt c forms “Apoptosome” by binding to adaptor
protein APAF-1 (apoptotic protease activating factor) and
then it binds to procaspase-9 (Schafer and Kornbluth, 2006).
Apoptosome is a caspase-9-activating complex, which
activates initiator caspase-9. The activated caspase-9
sequentially activates caspase-3 that initiates the proteolytic
reactions. Along with cyt c, mitochondria release other

polypeptides, including AIF (Apoptosis-Inducing Factor),
Endonuclease G, SMAC (Second Mitochondrial Activator of
Caspases) also known as DIABLO, and Serine proteases
Omi (also known as HtrA2), from the intermembrane space
(Elmore, 2007). AIF and endonuclease G cause DNA
damage and condensation. And SMAC binds to XIAP (X-
linked Inhibitor of Apoptosis Protein), which inhibits
several caspases (caspase -3, -7, -9); this binding neutralizes
XIAP and facilitates cyt c-induced caspase activation
(Chipuk et al., 2006).

The granzyme pathway is another pathway to initiate
apoptosis, where CTLs (Cytotoxic T Lymphocytes) kill the
damaged/ infected cells by secreting perforin (Trapani and
Smyth, 2002). Perforin is a transmembrane pore-forming
molecule that forms a pore in the target cell membrane and
then releases granules (containing Serine proteases,
granzyme A & B) through these pores into the target cell
cytoplasm. Other pathways inducing apoptosis might also
exist, but the intrinsic and the extrinsic pathways have been
studied widely and demonstrated in detail.

The execution phase/pathway is where the
abovementioned pathways converge to the final phase that
starts by activation of execution caspases (Fig. 1). The
execution of several caspases (caspase -3, -6, -7) activates
cytoplasmic endonuclease and protease, which degrades
nuclear material and proteins, respectively, ultimately
leading to morphological and biochemical changes (Slee and
Adrain, 2001). Among the execution caspases, caspase-3 is
the most frequently activated during apoptosis. It is
activated in apoptotic cells by extrinsic, intrinsic, and
granzyme pathways where the activation is catalyzed by
caspase-8, caspase-9, and granzyme B, respectively. As the
execution involves the destruction of cellular structures (like
chromatin condensation, DNA fragmentation, cleavage of
many key cellular proteins, and formation of apoptotic
bodies), caspase-3 is also termed as executioner caspase.
Studies reported that caspase-3 also has functions before the
cell commits to death (Porter and Jänicke, 1999).

How cancer cells escape apoptosis
In cancer, some of the body’s cells divide irregularly without
stopping and spread to other tissues in the body. Cancer
occurs due to various genetic causes, and it is a complex
process involving multiple steps in its development, such
as mutation, tumor formation, and metastasis. Tissue
homeostasis is affected not only by over-proliferation of
the cells but also by decreased removal of cells, i.e., being
a “defective cell,” cancer cells also need to undergo
apoptosis. But during tumor development, these cells
acquire few genetic alterations and adopt few mechanisms
that cause evasion of apoptosis: one of the hallmarks
of cancer. For decades, to find out the mechanisms in
cancer cells to escape apoptosis is a topic of high interest
to researchers.

Genetic alterations
The outcome of each apoptotic phase is regulated by the
various factors involved in apoptosis, genes, and their
interactive networks. These apoptotic regulatory genes are
often dysregulated in cancer cells. These genomic
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abnormalities provide proliferative and survival advantages to
the cancer cells.

One of the types of alterations cancer cells use to evade
apoptosis is a shift in the balance between pro- and anti-
apoptotic gene expression programs. Most tumor cells evade
apoptosis by either increasing the expression of pro-survival
genes (anti-apoptotic) or decreasing the expression of pro-
apoptotic genes. These modulations in gene expressions can
be achieved by transcriptional and translational alterations
such as gene–deletion, –silencing, –copy number
amplification, and transcription factors’ activation or
inactivation, thereby affecting the expression of apoptotic
regulators (Kumar and Cakouros, 2004). Also, mutations in
genes that regulate apoptosis are commonly observed in
cancer cells; this phenomenon eliminates the pro-apoptotic
proteins and/or amplifies anti-apoptotic proteins, a key step
in the progression to cancer. Somatic mutations and germline
mutations of apoptosis-related genes were reported in human
cancers (Pai et al., 1998; Park et al., 2001; Lee et al., 2004;
Ghavami et al., 2009; Timofeev et al., 2019). Even the loss of
anti-oncogenes (or tumor-suppressor gene) has been
observed regulating the cell cycle by controlling growth and
proliferation (Levine and Puzio-Ku, 2010). Mutation or
inactivation of these genes results in reduction or loss of their
function (leading to abnormal cell growth), which is believed
to be a key factor in the development of several tumors. In
human cancers, the mutation of the anticancer gene family
member loses its original function. Tumor suppressor genes
are inactivated by point mutations or deletion in both alleles
of the gene (Wang et al., 2018). When tumor suppressor
genes are inactivated, cell cycle control is lost, and the cell
displays uncontrolled growth and division. The “loss of

function” of multiple tumor suppressor genes is considered to
be the main reason causing malignancy (Lam and Schmidt,
2012). Tumors also display resistance to receptor-induced cell
death (Mohammad et al., 2015).

Genetic studies have identified many genes that function
in apoptosis (Hoeppner et al., 2001), and few of the essential
and secondary apoptotic genes altered in cancer cells are
discussed in the following sub-sections.

Essential genes
BCL-2 genes
BCL-2 (B-Cell Lymphoma-2) gene was originally found in B-
cell follicular lymphoma; the pro-apoptotic and anti-apoptotic
genes are members of this family (Fig. 2). In normal cells, the
sensitivity of cells to apoptotic stimuli depends on the balance
between pro-apoptotic and anti-apoptotic BCL-2 proteins. It
has been reported that genetic inactivation of a BH3-only
(BCL-2 Homology 3-only) protein leads to resistance to
certain pro-apoptotic stimuli and also accelerates tumor
formation in mice (Faqar-Uz-Zaman et al., 2018).

Over-expression of anti-apoptotic BCL-2 was observed in
cancer cells, e.g., amplification of BCL-XL in lung cancer and
giant-cell tumor of bone (Adams and Cory, 2007); and
amplification of anti-apoptotic MCL-1 in breast and lung
cancers (Faqar-Uz-Zaman et al., 2018; Soderquist et al., 2018).
In more than 80% of the bladder cancer tissues, anti-apoptotic
BCL-2 protein was found positive, and its expression was
correlated with the stage and grade of the tumor
(Konstantinidou et al., 2002). Several cancer types such as
lung-, breast-, prostate-, gastric-, renal-, pancreatic-,
colorectal- and hepatocellular- cancer showed overexpression
of members of BCL-2 family genes (Yip and Reed, 2008;

FIGURE 1. An overview of apoptotic pathway.
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Lessene et al., 2008). A study on transgenic mice reported
collaboration of BCL-2 and/or BCL-XL expression with
oncogene (Wang et al., 2003). Alternatively, the transcription
factors like CREB (cAMP response element-binding protein)
and STAT3 (signal transducer and activator of transcription 3),
which activate genes in response to pro-survival stimuli, can
increase the expression of MCL-1 and BCl-2 (Wang et al., 1999;
Real et al., 2002). Hence, activation of CREB or STAT3 could
promote the expression of anti-apoptotic genes in cancer cells.

Gene coding for pro-apoptotic protein BAX was found
mutated in human hematological malignancies (Liu et al.,
2013). In some lymphomas and leukemia, due to BAX
frame-shift mutations, the BAX translation is terminated
prematurely, due to which BAX loses its function,
ultimately leading to apoptosis resistance (Brimmell et al.,
1998). Deletion polymorphism of one BCL-2 family
member, BIM, was reported in certain human populations
and is significantly associated with innate resistance to
TKI (Tyrosine Kinase Inhibitor) therapies (Kaleigh and
Kurokawa, 2013). BIM transcription is induced in
response to the withdrawal of growth factors (or other
apoptotic stimuli). FOXO is one of the transcription
factors involved in BIM expression (Jain et al., 2013); the
FOXO activity is suppressed by pro-survival kinases,
AKT, and ERK. Thus, cancer cells with high levels of
AKT/ERK show suppressed BIM expression (Costa et al.,
2007; Hübner et al., 2008).

Beroukhim et al. (2010) found two BCL-2 family genes
deleted in cancer; a pro-apoptotic BH-3-only family gene
PUMA (p53 Up-regulated Modulator of Apoptosis) and a
pro-apoptotic multi-BH-domain BOK (Bcl-2 Related

Ovarian Killer). PUMA is found to be most frequently
deleted in cancer. PUMA is a crucial mediator of p53-
dependent and p53-independent apoptosis; it is expressed in
response to apoptotic stimuli and regulated by p53. On
receiving death signals, PUMA binds to anti-apoptotic
BCL-2 family member in mitochondria and relieves the
inhibition on BAX and/or BAK, which leads to
mitochondrial dysfunction and caspase activation (which
carries out apoptosis). PUMA inhibition causes apoptotic
deficiency and increases the risk of cancer development.
According to a few reports, PUMA can directly activate
BAX/BAK to induce mitochondrial function (Bean, 2014).
Cancer cells with compromised functions of PUMA were
observed in many studies. For instance, the reduction in
PUMA expression in malignant cutaneous melanoma was
reported by Karst et al. (2005). Later, Adams and Cory
(2007) stated that “frequent overexpression of anti-apoptotic
BCL-2 family proteins and other anti-apoptotic
oncoproteins in tumor antagonizes PUMA-induced
apoptosis”. Additionally, mutant p53 in human tumors
repudiates induction of PUMA by irradiation and by
chemotherapeutic drugs (Yu and Zhang, 2008). Garrison et
al. (2008) also found lower expression of PUMA in
approximately 40% of human Burkitt’s lymphomas. Loss of
PUMA in the hypoxia-induced tumor model causes
chromosomal instability and promotes tumorigenesis
(Nelson et al., 2004). Further research is needed to prove
the role of PUMA in tumorigenesis because few studies
suggest that PUMA is not directly inactivated in cancers,
rather its loss is the outcome of alterations in other genes
(Yoo et al., 2007).

FIGURE 2. Family of BCL-2 genes.
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TP53(Tumor protein 53) gene
The TP53 gene codes for the transcriptional factor p53, which
plays important roles in apoptosis. It is observed that TP53 is
the most frequently mutated or inactivated tumor suppressor
gene in cancer. More than half of human tumors contain TP53
mutations (Vogelstein and Kinzler, 2004; Oren and Rotter,
2010). In normal cells, in response to stress, stabilized p53
combines with other p53 subunits and functions as a critical
transcription factor that modulates the expression of an
array of genes known to trigger apoptosis. p53 promotes
activation of GADD45 (Growth Arrest and DNA Damage
45) and P53R2 (p53 controlled Ribonucleotide reductase 2)
genes, which repairs damaged DNA, due to which mutation
(this DNA damage) is not accumulated and is not passed to
the daughter cells. However, when DNA changes are
irreparable, p53 activates the genes involved in apoptosis,
such as PUMA, BAX, FAS, PIG3 (p53 Inducible Gene 3), and
Killer/DR5 (Death Receptor 5), which leads to apoptotic
death of the cells with damaged DNA.

The p53 protein regulates glycolysis, PPP (pentose
phosphate pathway), mitochondrial oxidative phosphorylation,
lipids and nucleotides metabolism, and the cell response to
oxidative stress (Perri et al., 2016). Tumor cells depend
mainly on glycolysis for energy (referred to as the Warburg
effect). p53 down-regulates glycolysis by inducing genes
TIGAR (TP53 Induced Glycolysis and Apoptosis Regulator),
which inhibits glycolysis, and by inducing genes SCO2
(synthesis of cytochrome oxidase 2) and GLS2 (mitochondrial
glutaminase 2), which promotes oxidative phosphorylation
(Jiang et al., 2011). Moreover, glycolysis is down-regulated by
inhibiting the expression of GLUT1 (Glucose Transporter 1)
and GLUT4 (Glucose Transporter 4) due to which glucose
uptake is blocked (Jiang et al., 2011). Other than glycolysis,
PPP (Pentose Phosphate Pathway) is an alternative pathway
for tumor cells; p53 inhibits PPP as well, by reducing the
activity of enzyme G6PD (glucose-6-phosphate
dehydrogenase) (Perri et al., 2016). p53 also arrests fatty acids
biosynthesis by acting on FASN (fatty acids synthase) and
ACLY (ATP citrate lyase) and inhibits the formation of the
membrane in tumor cells (Freed-Pastor et al., 2012).

In cancer cells, a mutation in TP53 leads to the formation of
mutant p53 protein. Liu et al. (2014) stated that “most p53
mutations in human cancer are missense mutations, which
result in the production of full length mutant p53 proteins”.
10–15% of TP53 mutations (termed as ‘disruptive mutations’)
produce inactive proteins, and the remaining 85–90% of
mutations form functioning proteins. Thus, mutations affect the
ordinary function of p53 as a transcriptional factor, which
imparts survival advantage to cancer cells and eventual down-
regulation of apoptosis. Furthermore, several studies have
demonstrated that mutant p53 is not only unable to perform
tumor suppressor function, but also gains new oncogenic
functions (termed as “gain-of-function”) (Oren and Rotter,
2010; Liu et al., 2014). A recent study on myelodysplastic
syndromes reported the role of TP53 dysfunction in cancer
outcomes and suggested its use in diagnosis (Bernard et al., 2020).

Caspase genes
Caspase genes encode protease enzymes called caspases. They
are named caspase because of their specific cysteine protease

activity, and they have an essential role to play in apoptosis.
Based on their pro-apoptotic functions, caspases are divided
into two groups: initiators and effectors. The activated first
group of initiator (or apical) caspases (-2, -8, -9, -10, and
-11) in turn activate the second group of caspases (-3, -6,
and -7) (Li and Yuan, 2008). At times, initiator caspases
equally act as effector caspases to turn up weak suicide
signals (Ghavami et al., 2009). Playing a crucial role in
apoptosis, caspases are obliged to be targeted in
uncontrolled cell division. P53 transcriptionally regulates the
expression of some caspase genes (-2, -7, -8, and -9)
(Ghavami et al., 2009); in cancer cells where p53 is mutated,
expression of these caspases could be compromised,
resulting in apoptotic protection.

According to Soung et al. (2005), various cancers showed
the presence of mutated caspase-8 (mutations such as
missense, in-frame deletion, frame-shift mutations in the
coding sequences, mutations in the initiation codon,
mutations in the introns, and mutation in the untranslated
region), and there was a remarkable decrease in the
apoptosis-inducing activity of all mutated caspase-8. For
instance, missense mutations resulted in the substitution of
amino acids, and frame-shift mutations caused premature
terminations of caspase-8 protein synthesis (Ghavami et al.,
2009; Li et al., 2014). Caspase-8 mutations were mostly
detected in gastric cancers (Soung et al., 2005), though
rarely observed in other types of cancer. Sun et al. (2007)
identified a 6 bp deletion polymorphism (2652 6N del) in
the promoter of the CASP8 (Caspase 8) gene, which lowers
caspase-8 protein level, which is associated with 25%
increased risk of lung-, esophageal-, stomach-, colorectal-,
breast– and cervical– cancers. The absence of caspase-8
protein precursor in cancer cells was reported by Hopkins-
Donaldson et al. (2003). CASP8 variants were observed in
breast cancer (Cox et al., 2007). Yang et al. (2008) examined
the association of CASP8 deletion polymorphism with
pancreatic cancer. Silent mutations of CASP9 (Caspase-9)
are found in gastric- and colorectal- carcinoma (Soung et
al., 2006). A case-control study found an association of
CASP9 polymorphism with multiple myeloma (Hosgood III
et al., 2008).

Caspase-3 is an effector caspase playing an essential role
in the execution phase of cell apoptosis. Soung et al. (2004)
studied CASP3 (Caspase-3) mutation in carcinomas,
myelomas, and lymphomas, suggesting the presence of
CASP3 mutation in human cancer tissues. They reported
CASP3 mutations in several cancers (stomach carcinoma,
colon carcinoma, breast carcinoma, non-small cell lung
cancer, laryngeal carcinomas, hepatocellular carcinoma,
esophagus carcinomas, renal cell carcinomas, urinary
bladder carcinomas, medulloblastomas, Wilms’ tumors,
non-Hodgkin lymphomas, acute leukemias, and multiple
myeloma) and compared seven healthy malignant tissues
from the same patients; they found no CASP3 mutations in
normal samples and concluded that CASP3 mutations arise
somatically. They also found that CASP3 mutations
consisted of missense mutations, silent mutations, mutations
in the introns, and mutation in the untranslated regions in
few cancers (stomach adenocarcinoma, lung cancer, colon
cancer, hepatocellular carcinoma, and multiple myeloma).
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SCCHN (Squamous Cell Carcinoma of the Head and Neck) is
one of the most common cancers in the world (Li et al., 2014),
and association of CASP3 polymorphism with an increased
risk of SCCHN has been reported (Chen et al., 2008; John et
al., 2015). Caspase-7 is another effector caspase playing a
central role in executing apoptosis. Some common cancers
(such as SCCHN, Urinary bladder carcinoma, esophageal
carcinoma, lung cancer, colon adenocarcinoma, and gastric
carcinoma) displayed CASP7 (Caspase-7) somatic
polymorphism (Soung et al., 2003; Yoo et al., 2004). CASP7
mutations found in this study were non-sense mutations
causing premature termination of protein synthesis forming
loss-of-function protein. Arg-43 is a highly conserved amino
acid in caspase-7; alteration of Arg-43 decreases the protease
function of caspase-7 that has a defect in the induction of
apoptosis (Soung et al., 2003).

Death Receptor genes
DR5 (Death Receptor 5)- The KILLER/DR5, also known as
TRAILR2 (TNF-related apoptosis-inducing ligand receptor
2), has been identified as a potent inducer of apoptosis.
KILLER/DR5 gene codes for cell surface receptors having a
death domain, and over-expressed KILLER/DR5 gene is an
effective apoptotic inducer (Wu et al., 2000). Binding of
DR5 to its specific ligand TRAIL (TNF-related apoptosis-
inducing ligand) mediates the apoptotic effects of TRAIL by
activating caspase cascade (Griffith and Lynch, 1998).
According to Takimoto and El-Deiry (2000), the expression
of the KILLER/DR5 gene prevents cancer development and
helps to carry out p53-induced apoptosis in cells with wild
type p53, but this gene is affected in cells with inhibited p53
function. They also suggested that KILLER/DR5 alterations
have a role in tumorigenesis.

Park et al. (2001) showed frequent allelic loss of
KILLER/DR5 in cancers, mostly in gastric cancer. There is
accumulating evidence suggesting that the mutation of the
primary structure of DR5 might be one of the possible
mechanisms that disrupt apoptosis in tumor cells. Cancer
cells have escaping mechanisms from DR5-mediated
apoptosis such as by imitating the expression of DR5
receptor, by loss of DR5 expression, overexpression of
inhibitory proteins like FLICE (FADD-like Interleukin-
1beta- Converting Enzyme), and mutation in structural
genes of DR5 (Park et al., 2001; Karbasi et al., 2015). By
analyzing the genetic alterations of KILLER/DR5 in a
number of gastric cancers, Park et al. (2001) found the loss
of function of KILLER/DR5 mutants. Further, they found all
the mutants inhibited apoptotic cell death in transfection
studies, suggesting that inactivation of KILLER/DR5 due to
mutations might be one of the possible escaping
mechanisms against KILLER/DR5 (extrinsic) mediated
apoptosis, and this might contribute to the development of
gastric cancers. Pai et al. (1998) performed a sequence
analysis of KILLER/ DR5 and found mutations localized to
the functional cytoplasmic death domain; alterations in this
domain resulted in a truncated protein. This KILLER/DR5
mutation was also present in the germline of the affected
patient. Gene coding for DR5 was found on chromosome
8p21-22 (MacFarlane et al., 1997), and several cancers such
as gastric cancer (Yustein et al., 1999), lung cancer (Sug

Hyung Lee et al., 1999), head and neck cancer (El-Naggar et
al., 1998) showed frequent allelic losses in this chromosome.

FAS gene-FAS codes for FAS receptor (containing death
domain), which is also known as CD95 (Cluster of
Differentiation 95) or APO-1(Apoptosis Antigen-1)
(Wajant, 2002). In the extrinsic pathway, FAS ligand binds
to FAS receptor or TNF ligand binds with TNF receptor,
resulting in binding of TRADD (TNF Receptor type 1-
Associated Death Domain) with FADD, and RIP (Receptor
Interacting Protein) (Kelliher et al., 1998; Wajant, 2002).
Subsequently, the FADD–procaspase-8 association leads to
the formation of DISC (Wang et al., 2010). Apart from its
crucial role in apoptosis, FAS was observed to have non-
apoptotic functions such as differentiation or proliferation
of the cell and facilitating the pathogenesis of various
malignancies (Krammer, 2000). Edathara et al. (2016) found
that FAS gene polymorphism discouraged the apoptotic
activity of its receptor, and this altered FAS receptor was
associated with tumorigenesis. Further study by Cavalcante
et al. (2019) found an association of FAS polymorphisms
with ATL (Adult T-cell Leukemia). According to O’Reilly
et al. (2009), a mutation in FASl (FAS ligand) prevents its
binding to the receptor and retracts the function of
membrane-bound FASl and soluble FASl. Studies reported
that membrane-bound FASl-FAS and soluble FASl-FAS can
enhance the development of cancer (Kaufmann et al., 2012;
Waring and Mullbacher, 1999).

APAF-1 gene
APAF-1 is trans-activated by p53 (Steele et al., 1998; Soengas
et al., 2001). This gene codes for a cytoplasmic protein
APAF-1. APAF-1 acts downstream of p53 to induce
apoptosis. It forms one of the important units, “apoptosome”,
in the apoptosis process, which contains a CARD (Caspase
Recruitment Domain). The apoptosome binds to Procaspase-
9, cleaves it, and releases caspase-9 (Shakeri et al., 2017).
Salvesen and Duckett (2002) pointed out that despite the
current understanding of the mitochondrial pathway of
apoptosis, many details are yet to be described clearly, such
as the molecular mechanism of APAF-1 oligomerization and
activation of caspase-9 by APAF-1.

A study on mice reported APAF-1 deficient cells
displayed resistance to apoptotic stimuli and showed
reduced apoptosis (Yoshida, 2003). Hence, APAF-1 is
considered an essential tumor suppressor downstream of
p53. A study on drug-resistant tumor cells showed that anti-
cancer drugs released cytochrome-c but failed to activate
caspase-9; APAF-1 expression was down-regulated in these
drug-resistant malignant melanomas, suggesting that
impairment in APAF-1 provides proliferative benefit to
malignant cells (Soengas et al., 2001). Few other studies also
proved the role of APAF-1 in tumorigenicity (Soengas et al.,
1999; Paik et al., 2007), while the loss of APAF-1 expression
was reported in several types of cancers, such as colorectal
cancer (Zlobec et al., 2007), gastric cancer (Wang et al.,
2007), bladder cancer (Hinz et al., 2007), and melanoma
(Dai et al., 2004).

A study on human neuroblastoma cell lines found that
overexpression of miRNA-3613-3p decreased transcription of
APAF-1 mRNA, resulting in down-regulation of APAF-1,
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which indicates that the key molecule inhibiting apoptosis in BE
(2)-C human neuroblastoma cells is APAF-1 (Nowak et al., 2018).

Secondary genes
Proto-oncogene
Proto-oncogenes are highly regulated protein-coding genes
regulating cell growth and cell survival signals (Wang et al.,
2018). Proto-oncogenes can be altered by chromosomal
translocation, mutation, gene amplification, or retroviral
insertion. If it gets mutated, it becomes oncogene and
contributes to cancerogenesis, i.e., gain-of-function mutation
(McDuff and Turner, 2011). Oncogenes abrogate cell cycle
checkpoints, thus promote irregular cell proliferation (Lam
and Schmidt, 2012).

Proto-oncogene MYC codes for multifunctional
phosphoprotein that acts as a transcription factor and plays
important role in cell cycle progression, apoptosis, and
cellular transformation. According to a study, MYC trans-
activates its target genes to deploy its oncogenic effect
(Grandori et al., 2005; Hoffman and Liebermann, 2008).
Miller et al. (2012) found that mediators of metabolism,
biosynthesis, and cell cycle progression are genes targeted by
MYC, and irregularity in MYC expression leads to
uncontrolled cell growth, uncontrolled division, and
metastasis. MYC is frequently aberrated in human cancers,
and overexpression of MYC confers the progression of 40%
of tumors (Mohamed, 2017). Various genetic alterations,
such as chromosomal translocations, amplifications, point
mutations, and epigenetic reprogramming, are involved in
the deregulation of MYC expression.

Studies found the association of translocations and/or
amplification of MYC with Burkitt lymphoma, follicular
lymphoma, mantle cell lymphoma, hematopoietic and
non-hematopoietic tumors (like lung, breast, colon, and
prostate cancers), and multiple myeloma; insertional
mutagenesis in avian leucosis virus (ALV)-induced
hematopoietic tumors were also observed (Mohamed,
2017; Nguyen et al., 2017).

Non-protein coding microRNAs (miRNA) are also MYC
target genes; MYC represses miRNA-15A/miRNA16-1 (tumor
suppressor) and miR-34 (Apoptotic regulator) (O’Donnell et
al., 2005). This MYC-miRNA interaction promotes
malignant phenotype (Jackstadt and Hermeking, 2015)
(Details are given under “Proto-oncogene”). MYC plays an
important role in mitochondrial biogenesis by inducing
nuclear-encoded mitochondrial genes and by binding to the
promoters of genes encoding proteins involved in
mitochondrial function. Additionally, the genes involved
with mitochondrial biogenesis are among the MYC target
genes (Gao et al., 2009). The MYC oncogene contributes to
the genesis of many human malignancies (Wang et al., 2014).

miRNAs in apoptosis
miRNAs are non-coding RNAs made up of approximately
22 nucleotides (Hwang and Mendell, 2006), which were first
discovered in C. elegans (Bagga et al., 2005). Later on,
human genome studies discovered more than 300 miRNAs
and estimated up to 1000 miRNA genes (Hwang and
Mendell, 2006). MicroRNAs are involved in post-
transcriptional gene regulation (Nowak et al., 2018) and

important mediators in critical cellular pathways. miRNAs
function by base-pairing with their complementary sites
within 3’UTR of their target mRNAs (Hwang and Mendell,
2006; Cui and Placzek, 2018). Apart from playing an
important role in cancer progression (Slattery et al., 2018),
miRNAs act as regulators in crucial cellular events like cell
proliferation, cell differentiation, and cell death during
normal development. Genomic studies of C. elegans and
Drosophila suggested that miRNAs have a crucial role in
regulating cancer-relevant cellular phenotypes (Hwang and
Mendell, 2006). miRNAs influence apoptosis either as an
anti-apoptotic molecule (targeting pro-apoptotic mRNAs) or
as tumor-suppressors (by targeting anti-apoptotic mRNAs)
(Lima et al., 2011). Likewise, some miRNAs function as
oncogenes, while others behave as tumor suppressor genes
in a cell-typed manner (Mohamed, 2017). miRNAs with
pro-proliferative and anti-apoptotic activity likely promote
oncogenesis and thus may be overexpressed in cancer cells.

Abnormal miRNA expressions were observed to be very
common in malignancies. In the study on Chronic
Lymphocytic Leukemia (B-CLL), Cimmino et al. (2005) had
found that the most common chromosomal abnormality in
this disorder was the deletion of chromosome 13q14. They
also found that the tumor suppressor activity was imparted
by miRNAs (specifically miR-15a & miR-16-1) as they were
localized in the chromosomal deleted regions in B-CLL
patients. They concluded that, in the human genome,
miRNAs were mostly located at sites that are frequently
amplified, deleted, or rearranged in cancer. Dysregulation of
miRNA expression was observed in other cancer types as
well, such as Burkitt’s lymphoma, colorectal cancer, lung
cancer, breast cancer, and glioblastoma (Hwang and
Mendell, 2006).

miRNAs are targets of the MYC gene; it has been
established that MYC regulates the expression of many
miRNAs leading to their repression. Concurrently, MYC is
also regulated by miRNAs, and the combined effect of
sustained MYC expression and repressed miRNAs regulates
oncogenesis by MYC (Chang et al., 2008). For instance, MYC
up-regulates expression of a set of miRNAs (miR-17-92
clusters) (O’Donnell et al., 2005; Mohamed, 2017); from this
cluster, miR-19 was identified as the key oncogenic factor
(Wang et al., 2014), which is commonly amplified in several
human cancers such as carcinomas, medulloblastomas,
neuroblastomas, B-cell lymphoma, and several subtypes of
aggressive lymphomas, thus suggesting that miR-17-92 might
contribute to the oncogenic properties of MYC.

miRNAs also display their oncogenic effect by inhibiting
apoptosis, which is attained by down-regulation of TP53, E2F1
(E2 Factor transcriptional factor 1), and PTEN (Phosphate and
Tensin homolog), leading to the activation of AKT (protein
kinase B) pathway and eventual inhibition of apoptosis
(Lima et al., 2011). The onset of cancer in eµ-MYC B-cell
lymphoma can be dramatically accelerated by the insertion
of a truncated miR-17 cluster (eµ-MYC transgenic mice
develop B-cell lymphoma late in life). It is also found that
miRNAs expressing lymphomas show a high mitotic index
with lesser apoptosis (Wang et al., 2014). A decreased level
of apoptosis was observed in the eµ-MYC miRNA-
expressing tumors. E2F1 is a pro-apoptotic factor, which is
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transcriptionally activated by c-MYC (Fernandez et al., 2003);
at the same time, its translational efficiency is compromised by
miR-17. This simultaneous effect of c-MYC and miR-17
modulates the activity of E2F1 to disapprove apoptosis and
favors proliferation (Coller et al., 2007). miR-21 is another
member of the family displaying anti-apoptotic activity;
overexpression of this miRNA was observed in glioblastoma
tumor cell-lines (Chan et al., 2005) and breast cancer tissue
(Kumar et al., 2013).

Engulfment gene mutations
The term engulfment is used to describe the removal of
apoptotic cells (Hsu and Wu, 2010). An instant removal of
apoptotic cells is very crucial to ensure that cells induced to
undergo apoptosis must die rather than recovering
themselves after the initial stages of apoptosis. Engulfment
of an apoptotic cell is different from phagocytosis as it does
not evoke inflammatory response because cells being
removed carry self-antigens; therefore, apoptosis is
commonly termed as “immunologically silent” cell death.

Apoptotic clearance is a complex process accomplished
in multiple steps with the help of abundant surface
receptors and signaling molecules. The “find-me” signals
sent by the apoptotic cells are sensed by the engulfing cells
which recognize the “eat-me” signals on the apoptotic cell
surface; this leads to intracellular signaling, causing
engulfing cup formation around the apoptotic cell which is
then ingested before its processing (Ravichandran and
Lorenz, 2007; Elliott and Ravichandran, 2010).
Administration of antitumor chemotherapeutics mostly
induces apoptosis of tumor cells, efficient engulfment of
apoptotic cells, and the characteristic release of anti-
inflammatory mediators such as TGFβ (the antitumor
immune response is suppressed by the encounter of TGFβ
with eat-me signals) (Fond and Ravichandran, 2016).

Mutations in engulfment genes enhance the frequency of
cell survival. It appears feasible that apoptotic cell clearance
could have a profound impact on carcinogenesis, but there
are very few genetic studies to prove the specific role of
engulfment signaling pathways in tumorigenesis. Although
engulfment of apoptotic cells has been extensively studied,
much less is known about how mutations in engulfment
genes provide a proliferative advantage to dying apoptotic
cells and how do they assist cancer progression. With the
recent discoveries that apoptotic cells release many “find-me”
factors that attract phagocytes towards apoptotic cells, new
insights have been gained on the connection of cell clearance
with tumorigenesis (Elliott and Ravichandran, 2010).

Studies on Burkitt lymphoma determined how
macrophages sense apoptotic tumor cells and eventually
engulf them, and how this mechanism impacts tumor
progression (Truman et al., 2017; Ogden et al., 2019). By
studying fractalkine receptor-deficient mice, Truman et al.
(2017) found that fractalkine is a potent macrophage
attractant as they observed overexpression of fractalkine in
neoplastic B cells. However, Ogden et al. (2019) found that
macrophages produce IL-10 that seems to suppress tumor
immunity, and simultaneously release B-cell survival factor
that appears to promote tumor growth. Few studies reported
that chronic inflammation is a key factor in tumorigenesis,

but the removal of apoptotic cells does not elicit an immune
response; hence, its role in cancer progression remains
mysterious (Condeelis and Pollard, 2006).

Post translational modification
Cancer cells also employ (or distort the regular) post-
translational modifications of apoptotic regulatory proteins
to evade apoptosis. Either functions or stability (or both) of
anti-apoptotic and/ or pro-apoptotic proteins are altered by
post-translational modification processes such as
phosphorylation and ubiquitination (Dai and Gu, 2010;
Vucic et al., 2011; Kim et al., 2012). Kinases and
acetyltransferases promote the post-translational
modification of apoptotic modulators (Declercq et al., 2009).

Post-translational modification ubiquitination/
ubiquitylation modifies protein by adding ubiquitin; it can
be mono- or poly-ubiquitination (depending on the number
of ubiquitin molecules linked) (Vucic et al., 2011).
Ubiquitination plays important role in cellular processes like
cell cycle regulation, and is a step-wise sequential action of
ubiquitin-activating enzymes (E1), ubiquitin-conjugating
enzymes (E2), and ubiquitin ligases (E3); each catalyzing
transfer of covalent bond with ubiquitin, from one enzyme
to other until it reaches the target protein. Improper
ubiquitination affects protein degradation, sequentially
causing protein accumulation, deregulated apoptosis, and
cancer (Vucic et al., 2011).

Following apoptotic stimuli, the MCL-1 (anti-apoptotic)
level drops, which accelerates MOMP. So far, studies have
found five E3 ligases that ubiquitinate MCL-1 for
degradation. BAX is an important pro-apoptotic BCL-2
family member, which has a direct impact on MOMP. In
response to apoptotic stimuli, BAX moves towards the
mitochondrial outer membrane to initiate MOMP. The
recently identified p53RFP ligase (one of the E3 ligases) was
found to ubiquitinate BAX on the mitochondrial outer
membrane, leading to its degradation (Benard et al., 2010).
Degradation of BAX is linked with high tumor grades in
prostate cancer (Agrawal et al., 2008).

Phosphorylation is the most prominent post-
translational modification, which can promote protein
folding to improve stability as well as serve regulatory
functions. Phosphorylation is found to be most frequently
damaged in cancer. By phosphorylation of anti-apoptotic
and/or pro-apoptotic proteins, cancer cells modify their
functions and prevent apoptosis; or stabilize anti-apoptotic
proteins and/or destabilize pro-apoptotic proteins to inhibit
apoptosis. Phosphorylation can also influence ubiquitination
by enabling a docking site for ubiquitin-E3-ligase (Kaleigh
and Kurokawa, 2013).

In cancer cells, apoptosis is also down-regulated by
inhibiting activation of APAF-1 by phosphorylation; for
example, in prostate cancer, RSK (Ribosomal S6 Kinase) is
overexpressed and it phosphorylates APAF-1, resulting in
inhibition of its activation (Kim et al., 2012; Clark et al.,
2005). Phosphorylation can alter the function of apoptotic
regulators; if phosphorylation is carried out by a pro-
apoptotic kinase JNK (c-Jun N-terminal Kinase), pro-
apoptotic proteins are activated and anti-apoptotic proteins
are inhibited; conversely, if phosphorylation is done by a
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pro-survival kinase AKT or ERK, pro-apoptotic proteins are
inhibited and anti-apoptotic proteins are activated.
Phosphorylation also plays a key role in the stability of
MCL-1 protein. Phosphorylation of MCL-1 by JNK occurs
at the T163 site, followed by other sites S155/ S159,
eventually leading to proteasomal degradation of MCL-1.
On the contrary, phosphorylation by AKT or ERK
(Extracellular signal Regulated Kinase) occurs only at the
T163 site imparting substantial stabilization to MCL-1. As
the AKT/ERK level is high in cancer cells, they
phosphorylate MCL-1 at only T163 (leading to MCL-1
stabilization), whereas in normal cells, the AKT level is
lowered and JNK is activated, which phosphorylates MCL-1
at S155/S159/T163 and causes degradation of MCL-1 (Lei
and Davis, 2003; Maurer et al., 2006; Kopper and Peták,
2008; Nifoussi et al., 2012). Similarly, phosphorylation of
BIM by JNK promotes the pro-apoptotic activity of BIM,
while ERK phosphorylation of BIM prevents the interaction
between BIM and BAX, thereby inhibiting apoptosis
(Kaleigh and Kurokawa, 2013).

The serine-threonine kinase AKT is also found to
phosphorylate pro-apoptotic protein, thereby inhibiting
apoptosis and exerting survival advantage to the cell (Datta
et al., 1997). The BH-3 only protein PMAIP1 (Phorbol-12-
myristate-13-Acetate-Induced Protein 1 - also known as
Noxa), is a pro-apoptotic protein that interacts with MCL-1
and supports its degradation. In cancer cells where higher
glucose levels are observed, CDK5 (cyclin-dependent kinase)
is activated, which phosphorylates Noxa at Ser13, thereby
stabilizing Noxa and suppressing its pro-apoptotic activity
(Alves et al., 2006). Phosphorylation of BAD inhibits its
pro-apoptotic function. When BAD is phosphorylated at
Ser112, Ser136, and Ser155 sites, it provides a docking site
for adaptor protein 14-3-3. The binding of adaptor protein
at this site prevents the interactivity of BAD and BCL-XL,
which results in a lack of MOMP, leading to apoptosis
inhibition (Zha et al., 1996). Even caspases involved in
apoptosis can be suppressed by their direct phosphorylation
(Seifert and Clarke, 2009), or substrates of these caspases are
phosphorylated, which protects these substrates from
proteolytic cleavage by caspases, e.g., phosphorylation of
BID by CK1/CK2 (Casein Kinases) protects BID from
proteolytic degradation by caspase-8 (Kurokawa et al., 2008).

Metabolic alterations
Some tumor cells use altered metabolism compared to normal
cells, as they need to fulfill their nutrient requirement (to build
new cells) from nutrient-deprived surroundings. However,
recent studies suggested that altered metabolism is one of
the ways cancer cells avoid apoptosis, as metabolic
alterations modulate apoptotic machinery to protect the cell
from death (Heiden et al., 2009; Matsuura et al., 2016;
Pavlova and Thompson, 2016).

Tumor cells adapt their metabolism to their
microenvironment and take up more biomolecules (such as
glucose, lipids, nucleotides, amino acids) to meet the
requirements of rapidly dividing cells. Thus, glucose uptake
is intensified in cancer cells, and unlike normal cells (which
depend on oxidative phosphorylation for energy
generation), cancer cells ferment the glucose to lactate by

aerobic glycolysis, even in presence of an ample amount of
oxygen. This is called as “Warburg effect” (Heiden et al.,
2009), and also enhanced anaerobic glycolysis is observed in
cancer cells (Matsuura et al., 2016). Cellular metabolites
such as glucose, lipids, amino acids, and nucleic acids; are
found to regulate functions of pro-apoptotic and anti-
apoptotic proteins (Kaleigh and Kurokawa, 2013). Among
the metabolic pathways, glucose and lipid metabolism are
specifically altered in cancer cells, which can impact the
apoptotic pathways (Matsuura et al., 2016).

Glucose taken up by cells is converted to Glucose-6-
phosphate with the help of hexokinases, which further
undergoes either glycolysis or pentose phosphate pathway
(PPP). If it undergoes glycolysis, energy is generated (32
ATP molecules) at the end via Kreb’s cycle and oxidative
phosphorylation, whereas PPP generates fatty acids, ribose-
5-phosphate (precursor for nucleotide), and NADPH
(Nicotinamide Adenine Dinucleotide Phosphate). This is
why PPP is considered to be essential for biomass
production; as cancer cells (being highly proliferative cells)
require much biomass, PPP is enhanced in cancer cells to
meet their requirement. Solid tumor development increases
the cell-density, which creates hypoxic conditions (low
oxygen) due to which oxidative phosphorylation is
suppressed and PPP is enhanced. In hypoxic conditions,
gene expression is regulated by HIF-1 (Hypoxia-Inducible
Factor-1), which is overexpressed in several types of cancers
(Semenza, 2002). HIF-1 up-regulates its target genes, and
many of these gene products encourage glycolysis. Studies
showed the correlation between HIF-1 activity and tumor
formation (Unruh et al., 2003; Fulda and Debatin, 2007).
Besides, HIF-1 suppresses pro-apoptotic protein BID
(Seenath et al., 2008).

AKT activated in cancer cells increases glycolysis and
lactate production (Elstrom et al., 2004). AKT promotes the
union of outer mitochondrial membrane and hexokinase in
presence of glucose, which inhibits the release of
cytochrome-c (Majewski et al., 2004). Moreover, AKT
down-regulates MCL-1 degradation (discussed under
phosphorylation section). In presence of glucose AKT
suppresses the function of p53 (Yang et al., 2006), which
indicates that AKT conceals PUMA induction in presence
of glucose. Pro-apoptotic protein BAD is also a substrate for
AKT (Datta et al., 1997).

p53 also plays role in cellular metabolism (Bensaad et al.,
2006); the p53 protein represses the transcription of the
GLUT1 (Dang, 1999), and loss of p53 activity leads to the
Warburg effect (Levine and Puzio-Ku, 2010). TIGAR (TP53-
Induced Glycolysis & Apoptosis Regulator) is a p53 target
gene, which regulates glucose metabolism; it lowers the
intracellular concentrations of fructose 2,6 bisphosphate and
decreases glycolysis by switching to the PPP (Bensaad et al.,
2006). TIGAR also has functional similarities to the
bisphosphate domain of PFK-2/FBPase-2 (Phosphofructo
Kinase-2/ Fructose Biphosphatase-2) in regulating glycolysis,
and it protects the cell from ROS (Reactive Oxygen
Species)-associated apoptosis (Levine and Puzio-Ku, 2010;
Dai and Gu, 2010). As p53 is genetically mutated or
functionally inactivated in the majority of cancers, these
cells are expected to become highly glycolytic following loss
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of normal p53 activity (Muller and Vousden, 2013).
Therefore, p53-mediated glucose metabolism is likely
dysregulated in most cancers.

Glucose metabolism regulates Noxa phosphorylation
(Lowman et al., 2010). In cancer cells, higher glucose levels
aid in the phosphorylation of Noxa, leading to suppression
of its pro-apoptotic activity (discussed in phosphorylation).
NADPH produced in PPP contributes to metabolic
inhibition of apoptosis by controlling the redox state of
cytochrome-c, as reduced cytochrome cannot form
apoptosome. However, oxidized cytochrome-c (oxidized by
ROS) forms apoptosome. This shows that glucose
metabolism negatively regulates apoptosis by producing
NADPH (Chandra et al., 2006). Cancer cells alter
metabolism to make maximum use of available elements to
synthesize macromolecules needed in large amounts in
rapidly proliferating cells; for example, catabolism and
disposal of nitrogen and carbon are altered in cancer cells
(Keshet et al., 2018). As in the urea cycle, enzymes ASL
(Argininosuccinate Lyase) and ASS1 (Argininosuccinate
Synthase-1) are altered, which leads to the accumulation of
ornithine that is used to produce polyamines. Polyamines
are nitrogenous compounds that can inhibit apoptosis and
assist tumor progression. Even arginine acts as a precursor
for polyamines in the tumor microenvironment (Pavlova
and Thompson, 2016).

Ca++ also plays role in apoptosis and cancer progression.
When there is a high concentration of Ca++ in ER, Ca++ are
released from ER (Endoplasmic Reticulum) due to apoptotic
stimuli; consequently, the level of Ca++ in mitochondria
increases, which increases the permeability of the
mitochondrial membrane and facilitates the flow of pro-
apoptotic molecules into the cytoplasm (Chami et al., 2004;
Jeong and Seol, 2008). Recent studies suggest that the
connecting points between ER and mitochondria are the
target sites for oncogenes and tumor suppressor genes. This
Ca++ flow between ER and mitochondria determines the
metabolism of cancer cells (Pedriali et al., 2017).

Mitochondrial metabolic alterations have been observed
in cancer cells; alteration of the physiological mitochondrial
metabolism might act as an oncogenic trigger (details under
“Mitochondrial alterations”).

Mitochondrial alterations
Recent studies have found that in most of the cancer cells,
mitochondria drive the malignant phenotype (Riganti and
Donadelli, 2019). As mentioned earlier, mitochondria play
an important role in apoptosis.

In metabolic aspects of apoptosis, mitochondria provide
energy for the apoptosis. As cancer cells are dividing rapidly,
they need energy, and mitochondria are energy suppliers
of the cell, hence in cancer cells, mitochondrial functions are
accelerated. For example, mitochondria-related metabolic
pathways are exploited to produce ATP and building blocks,
mitochondrial ROS functions as signaling molecules for anti-
apoptotic pathways. Alterations of specific mitochondrial
enzymes exert oncogenic properties e.g. SDH (succinate
dehydrogenase) loses its function in cancer cells because
of inactivating mutations due to which its substrate
succinate (oncometabolite) gets accumulated that promotes

cell proliferation (Dalla Pozza et al., 2019). Hence loss
in function of SDH aids cell proliferation, whereas
overexpression of SDH suppresses cell proliferation and
promotes apoptosis (Dong et al., 2008). Similarly, FH
(fumarate hydratase) function is lost in cancer cells leading
to the concentration of its substrate fumarate. How FH
reduction leads to cancer is still elusive (Riganti and
Donadelli, 2019).

Mitochondria have an essential role in mediating
intrinsic apoptosis induced by diverse stimuli. In cancer
cells, mitochondrial apoptosis is inhibited either by
obstructing MOMP (by affecting BCL-2 family proteins
and/or by loss of p53 function) or by inactivating caspases
(by suppressing Apoptosome with the help of inhibitory
phosphorylation of APAF-1, or by cytochrome c
ubiquitination) (Lopez and Tait, 2015). As mitochondria
play a substantial role in apoptosis, defects of mtDNA might
have the capacity to alter cellular response towards
apoptotic stimuli, which might provide a survival advantage
to the cell. Studies have observed mtDNA mutations in
several cancers, such as breast cancer, ovarian cancer,
colorectal cancer, gastric cancer, hepatic cancer, esophageal
cancer, pancreatic cancer, prostate cancer, thyroid cancer,
renal cell carcinoma, hematologic malignancies, brain
tumor, and other solid tumors (Carew and Huang, 2002).
Also, the nuclei-encoded long non-coding RNA MEG3
(Maternally Expressed 3) was found in mitochondria
enhancing apoptosis by reducing the expression of Bcl-2
and promoting the release of Cyt-c to the cytoplasm (Wang
et al., 2015). ncRNAs (Non-coding RNAs) like ASncmtRNA-1
and ASncmtRNA-2 were found inducing apoptosis in
several human and mouse tumor cell lines and involved in
aging and replicative senescence in normal human cells
(Landerer et al., 2011).

According to Chinnery and Turnbull (2000), different
levels of heteroplasmy in mtDNA (within a cell,
mitochondria with wild-mtDNA and mitochondria with
mutant mtDNA co-exist) might have a significant
importance in the expression of mtDNA genes and nuclear
genes, including genes involved directly and indirectly in
apoptosis and tumorigenesis. According to the studies on
several diseases from a mito-epigenetic point of view,
abnormal mtDNA methylation is associated with
pathological conditions, and minute alterations in these
ncRNAs might affect their apoptosis-inducing ability. It has
been established that both intrinsic and extrinsic pathways
require mitochondria in certain cell types, where death
receptor proteins interact with mitochondria (Khosravi-Far,
2004; Zeng et al., 2012).

Escaping immune system scrutiny
Interactions between the immune system and malignant cells
play an important role in tumorigenesis. Many mechanisms of
tumor resistance to immune rejection have been studied, but
very few of them involve immune escape by using alteration in
apoptosis. As already mentioned, tumor cells somehow alter
the expression of molecules involved in apoptosis signaling,
which can result in resistance of tumor cells to immune-
rejection (e.g., mutations in surface receptors like DR5 or
FAS); paradoxically, molecules with altered expression
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might also serve as antigens of tumor cells (e.g., overexpressed
non-mutated p53 in tumor cells may act as tumor antigen for
T-cell) (Lee Peter et al., 1999).

Another strategy used by tumor cells to evade anti-tumor
immunological response is by inducing apoptosis of
host lymphocytes, termed as “tumor counterattack” (Igney
and Krammer, 2002; Horton and Gajewski, 2018); for
instance, in colon cancer, soluble mediator sFASl (released
by membrane-bound FASl on colon cancer cell) induces
apoptosis of host lymphocytes and allows tumor
progression (Song et al., 2001). However, the induction of
apoptosis by sFASl is not clearly understood and hence
needs further elucidation.

Macrophages constitute the immune system, which
forage for apoptotic bodies. They can induce apoptosis
(Diez-Roux and Lang, 1997) and in most cases, macrophage
cytotoxicity results in the death of target cells through
apoptosis (Aliprantis et al., 1996). In an attempt to treat
treatment-resistant tumor cells, Whitworth et al. (1990)
suggested that systematic activation of tumoricidal
properties of the host’s macrophages could help eliminate
such resistant tumor cells. A study on laboratory animals
clearly indicated that inhibition/elimination of macrophages
disrupts apoptosis (Diez-Roux and Lang, 1997). Thus, it
demonstrates that macrophages play important role in
completing the apoptosis process, and inhibition or
elimination of macrophages may hinder apoptosis.

Epigenetics
Epigenetic modifications are DNA modifications that do not
change the DNA sequence but affect gene activity.
Epigenetics is greatly involved in gene dysregulation in
cancer cells. Even mutation-free cells can be induced with
pro-cancer characteristics, due to epigenetic changes (Sarkar
et al., 2013). Progressive epigenetic alterations in advancing
tumors result in an aberrant apoptotic pathway, thereby
promoting tumor development (Pal et al., 2010). Epigenetics
affects the pro- and anti-apoptotic protein expressions and
provides apoptosis resistance to cancer cells (Hervouet et al.,
2013). Recent progress in cancer epigenetics found
modifications such as DNA methylation and
hydroxymethylation, histone acetylation and methylation,
nucleosome positioning, and changes in small ncRNAs and
miRNAs (Sarkar et al., 2013; Qu et al., 2013). The most
widely focused epigenetic changes in cancer are DNA
methylation. Evidence suggests that the downregulation of
apoptotic genes due to DNA methylation (e.g., aberrant
DNA methylation patterns, hypermethylation, and
hypomethylation) is one of the reasons for cancer cells to
evade apoptosis (Hervouet et al., 2013; Gopisetty et al., 2006).

Methylation
DNA methylation confers stable gene silencing thus plays
important role in gene expression regulation and chromatin
architecture (Qu et al., 2013). Methylation plays a crucial
role in tumorigenesis. The DNA methylation results from a
transfer of a CH3 (methyl group) from S-adenosyl
methionine to the fifth carbon of cytosine in CpG (Cytosine
triphosphate deoxynucleotide-phosphodiester bond-Guanine
triphosphate deoxynucleotide) motifs. It occurs in about

50% CpG in the genome; the CpG-rich areas, referred to as
CpG islands (CGI), are more frequently methylated than
isolated CpG (Hervouet et al., 2013). DNA methylation
between cell division is maintained by DNMT1 (DNA-
methyltransferases 1) that is found to be highly expressed in
cancer cells (Robertson, 2000). As reported, DNA
methylation occurs either after replication on
neosynthesized strands of DNA by DNMT1, or de novo on
unmethylated DNA strands by DNMT3a and DNMT3b
(Chen et al., 2003; Bird, 2002). Several apoptosis-linked
genes are silenced by methylation, such as APAF1, p14,
BCL2, EDNRB (Endothelin Receptor B), in bladder cancer
DAPK (Death Associated Protein Kinase), PUMA (in
lymphoma), FADD, TNFRSF25 (TNF Receptor Superfamily
member 25), TNFRSF21 (TNF Receptor Superfamily member
21), TRAILR3 (TNF Receptor Superfamily member 10c),
LITAF (Lipopolysaccharide Induced TNF Factor), BAX,
CASP8, CASP3, CASP9, DR4 (Death Receptors 4), DR5; cell
adherence CDH1 (Cadherin-1), CDH3 (Cadherin-3); tumor
suppressor p53, RASSF1A (Ras Associated Domain Family-1
isoform A), BLU; cell cycle regulator CHFR (Checkpoint
protein with Fork-head and Ring-finger domain), p16, p21,
p27; DNA repair MGMT (Methyl Guanine Methyl
Transferase), ARH1 (ADP-Ribosylarginine Hydrolase-1)
(breast and ovarian cancer); cellular growth suppressor RIL
(Reversion-Induced LIM domain); and TMS1 (Target of
Methylation-induced Silencing)/ASC (Apoptosis associated
Speck-like protein containing a CARD); each gene harbors a
CpG island in its 5’ region (Hervouet et al., 2013; Friedrich
et al., 2004; Martinez et al., 2007; Sarkar et al., 2013; Das et
al., 2006; Boumber et al., 2007). The Knudson’s “two-hit
hypothesis” proposes promoter methylation as a pathway of
carcinogenesis (Jones and Laird, 1999). The promotors of
TSG (tumor suppressor gene) in cancer cells are silenced
epigenetically, which leads to tumor progression through
apoptosis inhibition (Sarkar et al., 2013). It is important to
note that methylation of CpG sites after transcription of
initiation site does not block expression; thus, it may not
lead to gene silencing, but it can be used as a tumor marker.

Aberrant methylation: Transcriptional silencing of TSG
promotors by aberrant methylation is another way of cancer
development (Das et al., 2006), and this is found to be a
hallmark of gastric cancer (Qu et al., 2013). Expression of
silenced TSGs can be regained by demethylation, which
results in cell cycle inhibition and apoptosis (Mataga et al.,
2012). Usually, aberrant methylation leads to loss of gene
function, thus providing survival advantage to neoplastic
cells (Jones and Baylin, 2002). DNA coding for miRNAs also
undergoes aberrant methylation, causing abnormal levels of
miRNAs in various cancers from solid tumors to blood
cancers (Lujambio et al., 2007).

Hyper-methylation: DNA hypermethylation carries out
pro-apoptotic gene silencing (Hatziapostolou and Iliopoulos,
2011). Many apoptotic genes were found to be
hypermethylated in cancer cells; few are more specific to
tumor type, while others are found to be commonly
hypermethylated in cancer (Garrison et al., 2008). Hyper-
methylation of the TSG promoter is the prominent
epigenetic change in human neoplasia (Friedrich et al.,
2004). In ovarian cancer, decreased expression of TRAIL

APOPTOSIS EVASION AND CANCER 873



due to hypermethylation was observed (Horak et al., 2005).
Hypermethylation of apoptosis-related genes covers large
promotor sequences, and it is found to be irregular
(Mohammad et al., 2015). Further study is needed to design
demethylations therapies to treat hypermethylation-
dependent silencing of TSGs.

Hypomethylation: Hypomethylation abnormally activates
oncogenes. DNA hypomethylation plays important role in
tumor formation and progression (Ehrlich, 2009). However,
less is known about apoptotic genes hypomethylation in cancer.

Cancer cell dormancy
Tumor dormancy came into light when disease relapse was
observed in several cancer patients, years after their surgical
treatment. Tumor dormancy is crucial in understanding the
metastatic disease. It is contrived that few cancer cells
survive even after the supposedly successful treatment.
These residual cancer cells may dwell in distant organs and
contribute to disease recurrence; these are termed as
disseminated tumor cells (DTCs), and a subgroup of DTCs
circulating in the blood is termed as circulating tumor cells
(CTCs) (Mohme et al., 2017; Gao et al., 2017). DTCs and
CTCs get exposed to diverse microenvironments during
dissemination and circulation, which constrains tumor
growth; moreover, when they arrive on a secondary site,
they must undergo apoptosis, but they maintain long-term
survival. The key mechanism behind this resistance is found
to be tumor dormancy (Townson and Chambers, 2006).

Dormancy can be of two types, dormant solitary cells and
dormant micrometastases (Naumov et al., 2001; Naumov et
al., 2002). In dormant micrometastases, there is a balance
between proliferation and apoptosis, resulting in no net
increase in tumor size; this may be due to angiogenic/
immunologic dormancy (Kareva, 2016). On the other hand,
dormant solitary cells are quiescent cells with no
proliferation and apoptosis; this might be due to G0-G1
arrest, or they might release certain factors and modulate
growth-related signaling pathways to accommodate
themselves in the new microenvironment (Gao et al., 2017;
Aguirre-Ghiso, 2007). However, they can exit dormancy and
proliferate again, yet the clear mechanism as to how is it
decided is unknown, which cell would continue to be
dormant, which would undergo apoptosis, and which would
start proliferating (Kareva, 2016). Thus, these dormant cells
are potentially resistant to therapies that rely on cell cycle
progression and apoptosis induction (Naumov et al., 2003).
Studies were reported on detecting DTCs (in the bone
marrow and lymph node) and CTCs (in the blood) in
asymptomatic patients at the early stage so that it could be
used as selection markers and monitoring tools (Mohme et
al., 2017; Lianidou et al., 2015).

It is highly conceived that solitary dormant cells are
responsible for tumor recurrence, but the clear mechanism is
yet to be elucidated, regarding how this dormant cell localizes
in the tissue for a long time, how it remains unnoticed by the
immune system, and how does it give rise to large metastasis.

Cancer clonal theory and stem cells
Regarding the origin of cancer, the two basic theories being
considered are cancer clonal theory and cancer stem cells

(CSCs) hypothesis. According to the cancer clonal theory,
random mutations lead to malignant transformation and
subsequent clonal selection of cancer cells with the potential
to regenerate tumor growth (Tysnes, 2010). The clonal
theory is being widely accepted and is gaining attention for
the development of therapies that attack individual clones
with genetic survival traits. One of the areas of these
beneficial mutations was found to be in apoptotic genes
(Messerschmidt et al., 2017).

The CSCs hypothesis suggests that tumor arises from a
small population of self-renewing stem-like cells with
unlimited proliferation potential, which are dissimilar to
differentiated progeny (Reya et al., 2001; Garcia et al., 2012).
Both theories are acceptable, and it is worth noting that
these two paradigms are not disparate, as CSCs go through
clonal evolution (Barabé et al., 2007). The CSC model is
currently well-established in the context of developing
therapies. Studies suggest that CSCs are disseminated tumor
cells (DTCs) holding stem cell-like phenotype, and they are
dormant cells causing metastasis and relapse (Chaffer and
Weinberg, 2011; Mascré et al., 2012; Naik et al., 2016;
Kleffel and Schatton, 2013). The cancer stem cells’ apoptosis
resistance may involve innate cellular mechanisms and
extrinsic factors such as self-renewal, differentiation
pathways (e.g., Wnt, Notch, and Hedgehog), tumor
suppressor genes (PTEN, and TP53), asymmetric cell
division, indefinite self-replication, genetic instability,
epigenetics, chromatin changes, mobilization, and modified
microenvironment (e.g., secreted survival factors, adhesion-
mediated apoptosis resistance, and hypoxic conditions)
(Barabé et al., 2007; Medina et al., 2009; Kruyt and
Schuringa, 2010; Garcia et al., 2012). Overexpression of
anti-apoptotic BCL-2 molecules is associated with CSCs
(Garcia et al., 2012). Upregulation of ABC (ATP-Binding
Cassette) transporters confers resistance to toxic agents and
multi-drugs (Tysnes, 2010; Fulda and Pervaiz, 2010). In
certain types of cancers, CSCs showed elevated expression of
death receptors such as DR4 (in colon cancer) and DR5(in
bladder cancer) (Signore et al., 2013; Sussman et al., 2007;
Szliszka et al., 2009). CSCs are found to be TRAIL-resistant
due to overexpressed c-FLIP (cellular FLICE Inhibitory
Protein) (Piggott et al., 2013). Certain miRNAs are found to
have an impact on CSCs fate; for example, miR-34
suppresses CSCs tumor formation by apoptosis regulation
(Ji et al., 2009).

These studies are yet under investigation and need
rigorous research, as the possibility of dedifferentiation of
differentiated cells into CSCs cannot be denied. Evidence is
needed to prove tumor formation from early progenitors
(normal stem cells) (Kruyt and Schuringa, 2010).

Reversibility of apoptosis
It has already been mentioned that MOMPmight be a point of
no return, but cells could survive MOMP in few situations
(Lopez and Tait, 2015). The early stages of apoptosis are
reversible upon removal of the apoptotic stimulus. Many
studies found that when apoptosis is induced in cancer cells
via chemotherapy, apoptosis is reversed after initial response
and the cancer cells are returned back; this is due to inefficient
apoptosis (Geske et al., 2001; Kim and Tannock, 2005;
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Letai, 2008; Tang et al., 2009). Tang et al. (2009) showed that
when various cancer cell lines (cervical carcinoma, skin
cancer, liver cancer, breast cancer, prostate cancer) were
exposed to apoptotic inducers (e.g., jasplakinolide, ethanol,
staurosporine), they started to undergo apoptosis and
displayed apoptotic features (such as mitochondrial
dysfunction and fragmentation, nuclear condensation, cell
shrinkage, and caspase activation); however, upon removal
of these inducers, they reverted back apoptosis and
survived. This study also found that these features of
apoptosis were not point-of-no-return, as apoptosis could
reverse even after these stages; however, it could not be
reversed after nuclear fragmentation. According to Geske
et al. (2001), DNA repair is activated early in the p53-
induced apoptotic process, which might be involved in
reversing the cell death pathway in some circumstances.

Summary and future challenges
It is obvious from the present review that cancer cells apply
multiple mechanisms to evade apoptosis, which influence
cancer progression. Apoptosis is halted by cancer cells using
various mechanisms simultaneously, but we cannot exclusively
separate any mechanism. Apoptosis can be disturbed by
mutation of the genes coding for proteins involved, metabolic
alterations, mitochondrial changes, or axing of immunity.
These provide a survival advantage to the cell and help cancer
development. Few points deduced from the review of extensive
research in this field are summarized below:
1. Collectively, the transcriptional network is found to be

dysregulated in cancer cells, remarkably affecting the
expression of apoptotic regulators, thus resulting in resistance
to drugs and favors tumor development (Fig. 3). For instance:

� Cancer cells modulate BCL-2 and TP53 genes to escape
apoptosis, and targeting these genes would be a valuable
treatment strategy for a wide variety of tumors.

� Mutation in caspase genes is one of the ways to escape
apoptosis by cancer cells.

� Cancer cells affect the DR5 receptor to escape apoptosis,
which results in tumor cell survival.

� miRNAs play essential roles in many basic physiologic
processes, including apoptosis; thus, abnormalities in
miRNA function influence tumorigenesis.

� The expression of several key engulfment players is
upregulated in neoplastic cells, but the importance of
this observation is unclear.

� The cell clearance process can influence antitumor
immune responses, and apoptotic cell clearance
promotes tumorigenesis, or it suppresses tumorigenesis.

� APAF-1 is the key regulator molecule of apoptosis, and
its suppression can mediate tumorigenesis.

2. Post-translational modifications play a critical role in the
regulation of apoptosis by modulating apoptotic
regulatory protein stabilities and functions.

3. Metabolic alterations in cancer cells affect apoptosis.
4. Mitochondria play important role in almost all aspects of

apoptosis, such as gene expression regulation,
metabolism, and release of pro-apoptotic proteins.

5. Macrophage cytotoxicity results in apoptosis in the target
cell population and could treat cancers. Cancers can be
treated by immune therapies that activate macrophages.

6. Dormant tumor cells are found to resist apoptosis and cause
metastasis. Mechanisms through which each cell achieves
dormancy might be different.

7. Reversibility of apoptosis plays role in cancer progression.
As apoptosis is found to be affected in cancers and

playing role in tumorigenesis, targeting apoptosis to treat
cancer is a valid strategy. However, there are many
challenges that need to be addressed, as summarized below:

� Apoptosis-based therapies: Although many therapies
targeting apoptosis are already at the stage of human
clinical trials, most of the therapeutic agents remain at
the pre-clinical stage, due to the lack of their specificity
and resistance developed towards them before the
completion of treatment. Thus, future studies should
focus on identifying the predominant apoptosis
evasion mechanism specific to each type of cancer and
designing therapeutic agents that can specifically target
that mechanism to treat the particular type of cancer.

� Improving the efficacy of existing drugs: Apart from
inducing apoptosis in normal cells, the existing drugs
are resisted by cancer cells and have side-effects that
limit the required dose for treatment. A further
detailed study is needed to improve these drugs. As
mutations in apoptotic genes also cause resistance,

FIGURE 3. Gene expression level in normal and cancer cells (Karbasi et al., 2015).
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these mutations must be studied further as they become
new therapeutic targets.

� Development of new drugs: Deciphering apoptosis
knowledge into clinical practices will be remarkable as
it will treat not only cancer but also a broad range of
disorders such as Alzheimer’s, AIDS, and ischemia-
associated injuries. Drugs that modulate either by
altering actions of anti-apoptotic and pro-apoptotic
proteins or by stumbling RNA transcription (for
example by using mimetic of pro-apoptotic
transcription factors), holds the potential for use in
cancer therapy.

� Apoptotic stimuli in cancer treatment: Stimuli that causes
DNA damage in the cell and how the cell responds to
the DNA damage play important role in cell death and
cell survival. If detailed mechanistic is studied, we can
manipulate it to use it in treatments. For example, in
p53-induced apoptosis, p53 repairs the DNA damage due
to which the cell survives death. What are the factors
that decide damage is irreparable and the cell must die?
What death pathway to choose; apoptosis or
inflammatory response? If how cells take these decisions
is known, manipulation of these decisions would be
helpful in treatment.

� A detailed study of macrophages: It has been suggested
to treat cancer by activating the tumoricidal properties
of macrophages. We need to find out a detailed model
of macrophage subsets that are actually involved in
tumor killing as these subsets possess therapeutic
importance.

� Tumor counterattack: Rigorous work is needed to find
out the specific and unique antigens displayed by
cancer cells so that these antigens can be targeted.
Tumor cells display a counterattack which is killing
tumor-infiltrating lymphocytes by expressing apoptosis
inducing ligand CD95L. Extended research on tumor
counterattack is needed to use this phenomenon in
treatment.

� Mitochondrial alteration: As mitochondria play
important role in apoptosis and aberration in
mitochondrial functions facilitates tumorigenesis,
many things in mitochondria are yet to be explored;
for example, small molecules, used as a sensor in
response to different stimuli, must be found out.

� Use of genetic engineering in therapies: As genetic
engineering is rapidly advancing, we need to explore
the potential means of employing it in cancer
treatment, such as introducing anti-oncogene,
replacing altered or mutated genes, cutting-off mutated
genes, repairing mutation by insertion or deletion of
base-pairs.

� Further studies are needed to find out, if genes coding for
surface receptors and signaling molecules involved in cell
clearance, get mutated because of which cell clearance will
fail, then what role this failure will play in tumor
progression.

� Metabolic alteration: Further studies are needed to
completely elucidate the link between metabolic
alteration and apoptosis and its connection to
tumorigenesis.

� Immunity escape: Detailed study is required to find how
tumor cells alter the immune system to escape apoptosis.

� Cancer dormancy: Rigorous research is needed to
explore mechanisms of cancer dormancy and to find
specific markers to detect dormant cells, as it has
prime clinical importance in metastasis treatment. A
clear understanding of chemo-resistant mechanisms by
dormant cells might completely change our reflection
on tumorigenesis, tumor diagnosis, and their treatment.

Conclusions

A comprehensive review of the various mechanisms used by
cancer cells to evade apoptosis is presented. Apoptosis is
found to be frequently deregulated in almost all types of
cancers studied so far. There has been dramatic progress to
explore apoptosis evasion mechanisms by cancer cells,
which attracted researchers and health professionals. As the
world is facing threats of cancer, there is a growing demand
for successful cancer treatment. Killing a cancer cell is the
best cancer treatment, for which induction of apoptosis can
be a remarkably effective therapy. As most of the
compounds that successfully induce apoptosis are usually
non-toxic to normal cells, they can be used in cancer
therapies. Though many existing cancer therapies treat
cancers by inducing apoptosis either by activating apoptotic
pathway or by removing apoptosis inhibitors, they are not
fully successful with several cancer types and different stages
of cancer; moreover, cancer cells gradually develop
resistance towards them and block apoptosis induced by
these therapeutic agents. The cancer cells’ response to these
therapies depends on the differences in apoptosis evasion
methods and molecular strategies used to escape apoptosis.

Thus, to provide new molecular targets for future
therapeutic approaches, a detailed study of apoptosis
evasion mechanisms is needed, which involves identifying
the escape mechanism predominant in a particular type of
cancer and its stage of occurrence. We can develop
specifically targeting gene therapies; for example, if it is
found that a particular anti-oncogene has been altered to a
high extent or lost in a certain type of cancer, introducing
oncogene to normal chromosome can be achieved.
Moreover, as cancer cells use multiple mechanisms to evade
apoptosis, we need agents that can alter these multiple
pathways and treat cancer without leaving a single reason
for a cancer cell to survive.
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