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Abstract: The rise of the Internet of Things (IoT) exposes more and more 
important embedded devices to the network, which poses a serious threat to 
people’s lives and property. Therefore, ensuring the safety of embedded devices 
is a very important task. Fuzzing is currently the most effective technique for 
discovering vulnerabilities. In this work, we proposed PS-Fuzz (Protocol State 
Fuzz), a gray-box fuzzing technique based on protocol state orientation. By 
instrumenting the program that handles protocol fields in the firmware, the 
problem of lack of guidance information in common protocol fuzzing is solved. 
By recording and comparing state transition paths, the program can be quickly 
booted, thereby greatly improving the efficiency of fuzzing. More importantly, the 
tool utilizes the synchronous execution of the firmware simulator and the firmware 
program, which can collect and record system information in the event of a crash 
from multiple dimensions, providing assistance for further research. Our 
evaluation results show that for the same vulnerability, the efficiency of PS-Fuzz 
is about 8 times that of boofuzz under ideal conditions. Even rough 
instrumentation efficiency can reach 2 times that of boofuzz. In addition, PS-Fuzz 
can provide at least 6 items more information than boofuzz under the same 
circumstances. 
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1 Introduction 
With the development of emerging technologies such as 5G, the IoT has gradually become the main 

development trend of human life. Embedded devices, as an important part of the Internet of Things, have 
also become an indispensable part of our daily lives. While these embedded devices bring convenience to 
people’s lives, they also pose unprecedented security threats. The safety of embedded devices is not only 
related to people’s privacy and property, but may also threaten lives. Hackers often use vulnerabilities in 
firmware to launch attacks to control a series of IoT devices and even form a large botnet. This is because 
almost all the programs running in the IoT device are in the firmware. Therefore, it is very important to be 
able to quickly and efficiently find vulnerabilities in the firmware. 

At the beginning, people focused on how to simulate the operating environment of IoT devices. Recent 
research has proposed a series of solutions, from pure software full-system simulation (such as Firmadyne 
[1]), to a combination of hardware and software simulation (such as Avatar [2] and Avatar2 [3]), to 
augmented process emulation (such as FirmAFL [4]). In order to further improve the efficiency of firmware 
vulnerability mining, firmware fuzzing has become a new research focus. However, the fuzzing of IoT 
firmware faces the following three challenges: 

(1) The fuzzing efficiency is low. The operating environment of the firmware is relatively harsh, 
which is very different from ordinary software. If you are not doing research on real devices, you need to 
build a complex firmware simulator. And this kind of simulator itself has low efficiency. Another more 
important reason is that the IoT devices have strict requirements on the protocol format of the received data 
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packet. Most of the test cases generated by some common black box fuzzing tools are likely to be invalid. 
Every invalid test is also executed in an inefficient firmware simulator, which seriously affects the 
efficiency of fuzzing. 

(2) Lack of guidance information. Since firmware usually does not have source code, its fuzzing 
method often uses black box fuzzing technology. This kind of fuzzing will only be executed continuously 
according to its own mutation strategy, and it is impossible to judge the quality of each test case. The 
traditional branch guidance information is insufficient, and the combination ability cannot be fully utilized. 

(3) Less information about crashes. Existing fuzzing tools almost only provide information about 
the test cases that caused the crash, and do not care about the entire system at the time of the crash. This is 
not conducive to further vulnerability information collation and research. 

In order to solve the above challenges, we proposed PS-Fuzz–a graybox firmware fuzzing tool. We 
compared the time spent using PS-Fuzz and boofuzz [5] to find the same firmware vulnerability. The 
experimental results show that the efficiency of PS-Fuzz is about 8 times that of boofuzz under ideal 
conditions. Even rough instrumentation efficiency can reach 2 times that of boofuzz. At the same time, the 
amount of information that PS-Fuzz can provide is at least 6 more items than boofuzz under the same 
circumstances. 

In summary, the contributions of this paper are as follows: 
 We implement a protocol state-oriented fuzzing method, and based on this, create an efficient 

gray box firmware fuzzing tool–PS-Fuzz. 
 Through a large number of tool synchronization and information integration, we can effectively 

monitor the execution state of the firmware program and obtain a large amount of system 
information when the firmware crashes. 

 We use a router firmware to evaluate PS-Fuzz. Experimental results show that the efficiency of 
PS-Fuzz can reach 2–8 times that of boofuzz under different instrumentation conditions. At the 
same time, it provides much more information than boofuzz. 

2 Related Work 
With the development of the Internet of Things industry, more and more vulnerabilities are exposed 

in embedded devices. People have gradually realized the significance and value of firmware vulnerability 
research. These techniques can be roughly divided into static analysis and dynamic analysis. 

Static analysis. Costin et al. [6] proposed a static analysis framework that can implement firmware 
collection, filtering, unpacking, and large-scale analysis. The framework examines the firmware 
information extracted from each firmware sample to determine whether it contains a private encryption key 
or a string of known errors. 

Firmalice [7] is a symbolic analysis system used to analyze the binary code in the complex firmware 
of different hardware platforms and automatically identify the authentication bypass vulnerability that 
occurs. It is built on the Angr [8] symbolic execution engine. Firmalice tries to find the path to the privileged 
program point and performs authentication bypass checks on the successfully reached symbol status. 

Dynamic analysis. Firmadyne is a framework dedicated to dynamically analyzing vulnerabilities in 
Linux-based embedded firmware. A script based on Binwalk [9] API effectively implements the extraction 
of the file system and optional kernel. In the simulation phase, Firmadyne uses a prepared kernel and a file 
system extracted from the firmware for initial simulation on the QEMU [10] simulator. In this learning 
process, it will continuously modify the network configuration of QEMU. 

Avatar2 is a dynamic multi-target orchestration framework. Compared to Avatar using S2E [11], 
Avatar2 is a completely redesigned system. Each target abstracts the endpoint through the protocol and 
provides a high-level interface for the Avatar2 kernel. In the end, Avatar2 integrated five targets: GDB [12], 
OpenOCD [13], QEMU, PANDA [14], and Angr. 



             
JAI, 2021, vol.3, no.1                                                                                                                                                    23 

IoTFuzzer [15] uses the mobile App of IoT devices to design a black box fuzzing tool to avoid such 
problems and analyze memory error vulnerabilities on IoT devices. In order to identify those data and the 
content of the message to be sent to the IoT device, the data flow is tracked from selected elements to 
determine the content that affects certain message fields. Then, these data will be changed to the content of 
the field for fuzzing. 

FirmFuzz [16] provides a device-independent automated simulation and dynamic analysis framework 
for Linux-based firmware images. It uses a graybox-based generational fuzzing method, combined with 
static analysis and system introspection to provide targeted and deterministic vulnerability discovery in 
firmware images. 

FirmAFL realizes an augmented process emulation method by combining system mode simulation 
and user mode simulation. This new simulation method can greatly improve the efficiency of simulation 
execution. At the same time, FirmAFL incorporates the traditional AFL [17] into the firmware, enabling it 
to support augmented process emulation, and specify the input location of test cases through the virtual 
machine introspection system.  

3 Overview 
3.1 Background 

Fuzzing is considered the most effective method of vulnerability analysis. However, in the current 
firmware vulnerability detection tools, there are fewer tools for fuzzing. There are common problems that 
are single in form and cannot be analyzed in depth. This is mainly limited by the particularity of the 
firmware itself. We believe that the main differences between firmware and ordinary binary programs are: 
complex format, diverse architecture, and difficulty in running [18]. These reasons all make the common 
fuzzing tools unable to be applied to the firmware. In addition, vulnerabilities in the firmware can usually 
only be exploited through various protocol ports opened by the device, which also increases the difficulty 
of fuzzing. 

Fuzzing techniques include mutation-based fuzzing (such as AFL, LibFuzzer [19]) and generation-
based fuzzing (such as Peach [20], boofuzz). The former can better generate test cases and judge program 
execution. However, it lacks compatibility with devices and is basically incapable of special architecture 
and systems. At the same time, without format constraints, test cases are difficult to accept. The latter can 
generate well-formed test cases. But the lack of feedback information, it belongs to the traversal of all 
possibilities in the black box situation. Based on the above situation, we believe that the generation-based 
fuzzing method is easier to combine with firmware analysis. Because it will not be affected by the 
architecture, nor will it be restricted by the format. Defining a feedback message for a certain type of 
firmware to guide the fuzzing can solve its own shortcomings. 

3.2 Architecture 
Based on the above problems, we design and implement an efficient firmware fuzzing tool–PS-Fuzz. 

Its architecture is shown in Fig. 1. PS-Fuzz mainly includes two modules: protocol state instrumentation 
and protocol state guided fuzzing. In order to solve the problem of the lack of guidance in common protocol 
fuzzing and the inability to judge whether the test cases are good or bad, PS-Fuzz uses a more direct and 
effective method to monitor the impact of test cases on program execution in real time, thereby simplifying 
the process of fuzzing fields and achieving faster fuzzing. The protocol state instrumentation module 
completes the preanalysis of the firmware and program instrumentation. Finally, a state detector collects 
the feedback information of each instrumentation point. This information will be sent to the state checker 
of the protocol state guided fuzzing module for state judgment. The fuzzing controller selects a new 
mutation strategy based on the feedback information, and further controls the mutation engine and the 
format checker to complete the generation of test cases. This not only makes the path of program execution 
deeper, but also makes the discovery of vulnerabilities faster. In addition, PS-Fuzz also includes a firmware 
emulator for maintaining the firmware operating environment, a monitor and a logger. More importantly, 
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PS-Fuzz is not only aimed at discovering vulnerabilities, it will also feedback a large amount of system 
information to users for further research. 
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Figure 1: PS-fuzz workflow 

4 Design and Implementation 
4.1 Protocol State Instrumentation 

The core function of the protocol state instrumentation module is to complete program execution and 
analysis. It is the main source of fuzzing guidance information and one of the channels for obtaining 
program execution information. This module mainly includes preanalysis, program instrumentation and 
state detector. 

4.1.1 Preanalysis 
The preanalysis has two main steps: protocol format acquisition and firmware program analysis. In 

the protocol format acquisition step, we need to get as many data packets as possible to the emulation device, 
so as to obtain the format of the data packets that the firmware can accept. The correct protocol format is 
used for subsequent format checking of the generated test cases to ensure that each test is valid. After 
obtaining the protocol format, we have to enter the firmware program analysis step. In this step, we need 
to find a program used to process data packets in the firmware file system, and analyze the program in the 
next process. This is because vulnerabilities that cause firmware security threats are usually triggered by 
data packets. Therefore, the program that processes the data packet is the most likely to have vulnerabilities 
and the most likely to be exploited in actual situations. The main function of preanalysis is to provide PS-
Fuzz with the correct protocol format and firmware programs that need to be fuzzed. It determines the 
general fuzzing direction for PS-Fuzz. 

4.1.2 Program Instrumentation 
Program instrumentation needs to find the most suitable point in the program for instrumentation 

according to the protocol format provided by the preanalysis and firmware program. Our idea is to segment 
the correct protocol format by field. Then find the position of the function that processes each field in the 
program. These functions will produce obvious branching phenomenon after processing fields. When a 
function finds that the data in the field it is processing is abnormal, it will immediately jump to the abnormal 
state and end the processing of the data packet. In addition, the order of these processing functions is obvious. 
This means that the subsequent field processing is skipped, that is to say, the current test case does not reach 
deeper in the program. This is why it can be the main criterion for judging guidance. It is simple to use IDA 
to find these field-processing functions in the program, because these functions must store the field name in 
the register before processing the field. We can use this to quickly find the addresses of these functions in the 
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program. It should be noted that whether some fields exist or whether there is content in the fields does not 
affect the processing of the data packet. We need to exclude these processing functions to avoid unnecessary 
instrumentation. Finally, we instrumented each valid field processing function, and tracked which branch it 
went to after the end of the run, and collected the execution information of the program. 

4.1.3 State Detector 
PS-Fuzz defines each instrumentation point as a state. And from one instrumentation point to another, 

we call it state transition. Fig. 2 illustrates the basic process of state transition in PS-Fuzz. The state set 𝑆𝑆 =
〈𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛, 𝑆𝑆𝐸𝐸𝑛𝑛𝐸𝐸〉  is the state set of a certain firmware program. The set of protocol field 
information required from one state to another state is 𝐹𝐹 = �𝐹𝐹𝑖𝑖,𝑗𝑗, 0 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛�. For a state 𝑆𝑆𝑖𝑖, if the program 
wants to further reach the state 𝑆𝑆𝑗𝑗, it must add or satisfy the corresponding field information 𝐹𝐹𝑖𝑖,𝑗𝑗 in the new 
test case. If it is not satisfied, the program will jump to the state 𝑆𝑆𝐸𝐸𝑛𝑛𝐸𝐸. Obviously, each test case will generate 
a corresponding state transition path. This is the complete execution flow of a test case in the program. 
According to the state transition path, we can clearly understand the depth of program execution, thereby 
judging the quality of test cases. It should be noted that, in order to further improve the efficiency, the state 
transition of PS-Fuzz is designed to only transition in a deeper direction, but not in the opposite direction. 
We will explain the content of this part later. 
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Figure 2: Protocol state transition driven by field information 

4.2 Protocol State Guided Fuzzing 
The protocol state guided fuzzing module is constructed by adding guidance information to the 

common protocol fuzzing architecture. It includes all the common functions of fuzzing. This module mainly 
includes fuzzing controller, mutation engine, format checker and state checker. 

4.2.1 State Checker 
The state checker corresponds to the state detector in the protocol state instrumentation module. It is 

used to receive the state transition path information sent by the state detector. And compare with the state 
transition path generated by the previous test case. In order to determine whether the current test case 
triggers a new state, whether the mutation strategy can be updated according to the new state. When the 
state checker thinks that the answers to the above questions are all yes, it will send the new state information 
to the fuzzing controller for processing. 

4.2.2 Fuzzing Controller 
The fuzzing controller is the brain of the protocol state guided fuzzing. It stores a table, which we call 

the state strategy table. In the state strategy table, each state has a corresponding mutation strategy. When 
the fuzzing controller receives the state information from the state checker, it will look for the corresponding 
mutation strategy in the state strategy table according to the latest triggered state. It will follow this new 
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mutation strategy in the next fuzzing process. In terms of defining mutation strategy, we think that when 
the program reaches a new state 𝑆𝑆𝑖𝑖, it means all the fields in front of the corresponding field information of 
𝑆𝑆𝑖𝑖 in protocol format (𝐹𝐹1,2,𝐹𝐹2,3, … ,𝐹𝐹𝑖𝑖−1,𝑖𝑖) have met the conditions of program execution. These fields have 
already completed the mutation process or do not need to be mutated at all. In order to run the program 
more in-depth, it should mutate the following fields (𝐹𝐹𝑖𝑖,𝑖𝑖+1,𝐹𝐹𝑖𝑖+1,𝑖𝑖+2, … ,𝐹𝐹𝑛𝑛−1,𝑛𝑛 ) as much as possible. 
Therefore, our mutation strategy for the state Si is to keep the 𝐹𝐹1,2,𝐹𝐹2,3, … ,𝐹𝐹𝑖𝑖−1,𝑖𝑖  field information 
unchanged, and use 𝐹𝐹𝑖𝑖,𝑖𝑖+1,𝐹𝐹𝑖𝑖+1,𝑖𝑖+2, … ,𝐹𝐹𝑛𝑛−1,𝑛𝑛 as the main mutation objects. At the same time, we also need 
to define the field types of 𝐹𝐹𝑖𝑖,𝑖𝑖+1,𝐹𝐹𝑖𝑖+1,𝑖𝑖+2, … ,𝐹𝐹𝑛𝑛−1,𝑛𝑛, which is to make the mutation engine work better. At 
this time, if a reverse jump is performed, the previously fixed field has to be mutated again, which is 
obviously redundant. This is also the main reason why PS-Fuzz is designed to be unable to perform reverse 
state transitions. In this way, fields that have been mutated and do not need to be mutated at all in 
𝐹𝐹1,2,𝐹𝐹2,3, … ,𝐹𝐹𝑖𝑖−1,𝑖𝑖 are skipped, thereby greatly improving efficiency. 

4.2.3 Mutation Engine 
The mutation engine will mutate according to the mutation strategy currently in use. It usually 

maintains a mutation database. According to the different definitions of each field type in our mutation 
strategy, the mutation engine will traverse all the malformed data under this type until the fuzzing process 
of the field is completed. This mutation database comes with boofuzz, which contains a lot of malformed 
data that can trigger common protocol vulnerabilities. But for PS-Fuzz, if a new state cannot be triggered, 
using traversal fuzzing for invalid fields is equivalent to a waste of time. And we cannot guarantee that the 
new state will be reached after the traversal is over. And boofuzz's mutation database is obviously not so 
easy to trigger new states. So we added some necessary fields to boofuzz's mutation database to ensure that 
it will enter a new state after a period of mutation. The mutation engine will complete the generation of test 
cases and pass the test cases to the format checker. 

4.2.4 Format Checker 
The job of the format checker is very simple. It will get the correct protocol format extracted in the 

preanalysis stage in the protocol state instrumentation module. The correct protocol format will be 
accurately divided into fields here. The test cases generated by the mutation engine will also be divided into 
fields. The format checker will compare the two data packets field by field to determine whether the test 
case can be accepted by the emulation device. Finally, the format checker will send the test cases that 
successfully pass the check to the emulation device through the socket to complete a test. 

4.3 Monitor 
The monitor needs to monitor three parts: emulation device, protocol state instrumentation module 

and protocol state guided fuzzing module. PS-Fuzz calls all information related to the crash that can be 
obtained as system information 𝐼𝐼𝑆𝑆 . After boofuzz can get the crash feedback, it will record all the test 
information in a fuzzing database. It includes the initial interaction information between each test case and 
the emulation device, the content of the data packet sent, and the feedback information after sending. We 
define this information as boofuzz information 𝐼𝐼𝐵𝐵 . In addition, the GDB used by the protocol state 
instrumentation module can also provide us with rich information. This is because there is a gdbserver in 
the firmware emulator. Gdbserver can be connected to the GDB in the protocol status instrumentation 
module to realize the synchronous execution of the firmware program. In other words, in the protocol state 
instrumentation module, we can obtain exactly the same information as in the emulation device. We define 
this information as GDB information 𝐼𝐼𝐺𝐺 . 𝐼𝐼𝐺𝐺  mainly contains information from common GDB analysis, 
including memory information, stack information, register information, program execution, and so on. This 
information is usually obtained by manually entering multiple commands. PS-Fuzz uses the pwndbg tool 
to integrate all crash information and provide intuitive feedback. The entire information acquisition process 
does not require user involvement. The last is the crash information that the QEMU system simulation 
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mode itself can provide 𝐼𝐼𝑄𝑄, so we can get Eq. (1). PS-Fuzz provides more system information than most 
protocol fuzzing tools, and it can provide help for firmware vulnerability mining and further firmware 
research from different angles. 
𝐼𝐼𝑆𝑆 = 𝐼𝐼𝐵𝐵 + 𝐼𝐼𝐺𝐺 + 𝐼𝐼𝑄𝑄                                                                                                                                                  (1) 

5 Experimental Evaluation 
We evaluate PS-Fuzz through a typical firmware vulnerability. D-Link’s DAP-2695 router has a buffer 

overflow vulnerability CVE-2016-1558 in its firmware. The vulnerability is due to the firmware not 
checking the length of the dlink_uid parameter when processing HTTP packets. As a case study, we will 
discuss the vulnerability and how it was detected. We will also evaluate the efficiency of vulnerability 
detection and discuss the system information that can be obtained when the vulnerability is triggered. We 
evaluated PS-Fuzz on a virtual machine running Ubuntu 16.04 with two processors and 4 GB of RAM. In 
the firmware emulator, PS-Fuzz uses QEMU version 2.5.0 as the backend of fuzzing. In addition, PS-Fuzz 
uses GDB version 9.2 for instrumentation. And make changes on boofuzz version 0.2.0 to fuzzing the 
emulation device. 

5.1 Experimental Steps 
First use Firmadyne to simulate the firmware. After the emulation device is started, we can use some 

packet capture tools to capture the data packets in the process of interacting with its Web page to get the 
correct protocol format and necessary fields. Then we can use Binwalk to extract the complete file system 
of the firmware and find the program for processing HTTP packets for preanalysis. After getting the 
instrumentation points and mutation strategy, PS-Fuzz can automatically fuzz the emulation device. We 
mainly evaluate the efficiency and amount of information of PS-Fuzz. In order to achieve evaluation, we 
use boofuzz for comparison. 

5.2 Efficiency 
As shown in the Fig. 3, when PS-Fuzz starts to run, it will quickly transfer its state. The state triggered 

by each test case will be displayed on the terminal in real time as shown in the Fig. 4. In the end, PS-Fuzz 
can quickly find vulnerabilities and give prompts on both the emulator side and the fuzzing side, as shown 
in the Fig. 5 and Fig. 6. However, boofuzz cannot be found under normal circumstances even if the 
vulnerability is triggered. After adding a monitor to it, we compared the efficiency of the two. 

 

Figure 3: Fast state transition in PS-Fuzz 
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As shown in Tab. 1, since we have obtained the correct protocol format and know the parameters that 
trigger the vulnerability, a series of optimizations can be carried out when formulating the mutation strategy. 
The experimental results show that the time required for PS-Fuzz is much less than the time spent by 
boofuzz when the same vulnerability is found. In addition, we find that the efficiency of PS-Fuzz depends 
on the method of instrumenting. This requires a full understanding of the program execution process in the 
preanalysis stage. We did a lot of work in the preanalysis stage during the experiment. Under ideal 
circumstances, the efficiency of PS-Fuzz is about 8 times that of boofuzz. Even rough instrumentation 
efficiency can reach 2 times that of boofuzz. 

 

Figure 4: Discover the state triggered by each test case 

 

Figure 5: Display on the emulation device end when the crash occurs 

 

Figure 6: Display on the fuzzing end when the crash occurs 
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Table 1: Comparison of the time of finding the same vulnerability with two different instrumentation 
methods of PS-Fuzz and boofuzz 

Tool Boofuzz 
PS-Fuzz 

(Rough instrument) 
PS-Fuzz 

(Accurate instrument) 
Time 8 min 34 s 3min 47s 58s 

5.3 Amount of Information 
After the fuzzing is over, boofuzz will record the information of each test in a fuzzing database. It 

includes the initial interaction information between each test case and the emulation device, the content of 
the data packet sent, and the feedback information after sending. 

In addition to the information that boofuzz itself can provide, PS-Fuzz can also provide a large amount 
of system information. As shown in the Fig. 7, PS-Fuzz will record the state transition path of each test 
case. At the same time, PS-Fuzz will immediately record the information provided by the firmware 
simulator and the protocol state instrumentation module after the vulnerability is triggered. This mainly 
includes simulation system information, register information, stack information, and command execution 
information. In addition, since boofuzz cannot identify the crash of the simulated device, it cannot record 
the data packet that caused the crash. PS-Fuzz can accomplish this job well, as shown in the Fig. 8. 

 

Figure 7: Log state transition information 

 

Figure 8: Log the packets that caused the crash 

Finally, we compared the information provided by PS-Fuzz and boofuzz to get Tab. 2. From the table, 
we can clearly see that PS-Fuzz far exceeds boofuzz in its ability to collect and provide information. 

Table 2: Comparison of the information obtained by boofuzz and PS-Fuzz after the crash is found 

Information Boofuzz PS-Fuzz 
Interactive information √ √ 
Data packets √ √ 
Feedback information √ √ 
State transition paths × √ 
Simulation system × √ 
Registers × √ 
Stack × √ 
Instructions × √ 
Crash packets × √ 
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6 Conclusion 
In this paper, we propose PS-Fuzz, a gray-box fuzzing technology that detects embedded firmware 

vulnerabilities by comparing protocol state transition paths. On the basis of the traditional protocol fuzzing, 
we can perform instrumentation in the firmware program according to the protocol field state. And by 
collecting synchronization information from different modules to guide PS-Fuzz for fuzzing. So as to 
improve the efficiency of fuzzing test, and provide help for further firmware research. The experimental 
results on the actual embedded firmware show that for the same firmware vulnerability, PS-Fuzz has a 
significant efficiency improvement under different instrumentation situations, and the efficiency is 2-8 
times that of boofuzz. PS-Fuzz not only has a significant increase in the speed of finding vulnerabilities, it 
can also provide a large amount of crash system information. Compared with traditional fuzzing tools, PS-
Fuzz can provide at least 6 additional system internal information. Our current method is limited by the 
inability to fully automate the preanalysis stage. And We plan to further expand the versatility of PS-Fuzz 
by optimizing the instrumentation method to help the security protection of embedded devices. 
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