

Journal on Artificial Intelligence
DOI:10.32604/jai.2021.017328

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Article

PS-Fuzz: Efficient Graybox Firmware Fuzzing Based on Protocol State

Xiaoyi Li, Xiaojun Pan and Yanbin Sun*

Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510000, China
*Corresponding Author: Yanbin Sun. Email: sunyanbin@gzhu.edu.cn

Received: 17 January 2021; Accepted: 17 March 2021

Abstract: The rise of the Internet of Things (IoT) exposes more and more
important embedded devices to the network, which poses a serious threat to
people’s lives and property. Therefore, ensuring the safety of embedded devices
is a very important task. Fuzzing is currently the most effective technique for
discovering vulnerabilities. In this work, we proposed PS-Fuzz (Protocol State
Fuzz), a gray-box fuzzing technique based on protocol state orientation. By
instrumenting the program that handles protocol fields in the firmware, the
problem of lack of guidance information in common protocol fuzzing is solved.
By recording and comparing state transition paths, the program can be quickly
booted, thereby greatly improving the efficiency of fuzzing. More importantly, the
tool utilizes the synchronous execution of the firmware simulator and the firmware
program, which can collect and record system information in the event of a crash
from multiple dimensions, providing assistance for further research. Our
evaluation results show that for the same vulnerability, the efficiency of PS-Fuzz
is about 8 times that of boofuzz under ideal conditions. Even rough
instrumentation efficiency can reach 2 times that of boofuzz. In addition, PS-Fuzz
can provide at least 6 items more information than boofuzz under the same
circumstances.

Keywords: Firmware; vulnerability mining; fuzzing

1 Introduction
With the development of emerging technologies such as 5G, the IoT has gradually become the main

development trend of human life. Embedded devices, as an important part of the Internet of Things, have
also become an indispensable part of our daily lives. While these embedded devices bring convenience to
people’s lives, they also pose unprecedented security threats. The safety of embedded devices is not only
related to people’s privacy and property, but may also threaten lives. Hackers often use vulnerabilities in
firmware to launch attacks to control a series of IoT devices and even form a large botnet. This is because
almost all the programs running in the IoT device are in the firmware. Therefore, it is very important to be
able to quickly and efficiently find vulnerabilities in the firmware.

At the beginning, people focused on how to simulate the operating environment of IoT devices. Recent
research has proposed a series of solutions, from pure software full-system simulation (such as Firmadyne
[1]), to a combination of hardware and software simulation (such as Avatar [2] and Avatar2 [3]), to
augmented process emulation (such as FirmAFL [4]). In order to further improve the efficiency of firmware
vulnerability mining, firmware fuzzing has become a new research focus. However, the fuzzing of IoT
firmware faces the following three challenges:

(1) The fuzzing efficiency is low. The operating environment of the firmware is relatively harsh,
which is very different from ordinary software. If you are not doing research on real devices, you need to
build a complex firmware simulator. And this kind of simulator itself has low efficiency. Another more
important reason is that the IoT devices have strict requirements on the protocol format of the received data

22 JAI, 2021, vol.3, no.1

packet. Most of the test cases generated by some common black box fuzzing tools are likely to be invalid.
Every invalid test is also executed in an inefficient firmware simulator, which seriously affects the
efficiency of fuzzing.

(2) Lack of guidance information. Since firmware usually does not have source code, its fuzzing
method often uses black box fuzzing technology. This kind of fuzzing will only be executed continuously
according to its own mutation strategy, and it is impossible to judge the quality of each test case. The
traditional branch guidance information is insufficient, and the combination ability cannot be fully utilized.

(3) Less information about crashes. Existing fuzzing tools almost only provide information about
the test cases that caused the crash, and do not care about the entire system at the time of the crash. This is
not conducive to further vulnerability information collation and research.

In order to solve the above challenges, we proposed PS-Fuzz–a graybox firmware fuzzing tool. We
compared the time spent using PS-Fuzz and boofuzz [5] to find the same firmware vulnerability. The
experimental results show that the efficiency of PS-Fuzz is about 8 times that of boofuzz under ideal
conditions. Even rough instrumentation efficiency can reach 2 times that of boofuzz. At the same time, the
amount of information that PS-Fuzz can provide is at least 6 more items than boofuzz under the same
circumstances.

In summary, the contributions of this paper are as follows:
 We implement a protocol state-oriented fuzzing method, and based on this, create an efficient

gray box firmware fuzzing tool–PS-Fuzz.
 Through a large number of tool synchronization and information integration, we can effectively

monitor the execution state of the firmware program and obtain a large amount of system
information when the firmware crashes.

 We use a router firmware to evaluate PS-Fuzz. Experimental results show that the efficiency of
PS-Fuzz can reach 2–8 times that of boofuzz under different instrumentation conditions. At the
same time, it provides much more information than boofuzz.

2 Related Work
With the development of the Internet of Things industry, more and more vulnerabilities are exposed

in embedded devices. People have gradually realized the significance and value of firmware vulnerability
research. These techniques can be roughly divided into static analysis and dynamic analysis.

Static analysis. Costin et al. [6] proposed a static analysis framework that can implement firmware
collection, filtering, unpacking, and large-scale analysis. The framework examines the firmware
information extracted from each firmware sample to determine whether it contains a private encryption key
or a string of known errors.

Firmalice [7] is a symbolic analysis system used to analyze the binary code in the complex firmware
of different hardware platforms and automatically identify the authentication bypass vulnerability that
occurs. It is built on the Angr [8] symbolic execution engine. Firmalice tries to find the path to the privileged
program point and performs authentication bypass checks on the successfully reached symbol status.

Dynamic analysis. Firmadyne is a framework dedicated to dynamically analyzing vulnerabilities in
Linux-based embedded firmware. A script based on Binwalk [9] API effectively implements the extraction
of the file system and optional kernel. In the simulation phase, Firmadyne uses a prepared kernel and a file
system extracted from the firmware for initial simulation on the QEMU [10] simulator. In this learning
process, it will continuously modify the network configuration of QEMU.

Avatar2 is a dynamic multi-target orchestration framework. Compared to Avatar using S2E [11],
Avatar2 is a completely redesigned system. Each target abstracts the endpoint through the protocol and
provides a high-level interface for the Avatar2 kernel. In the end, Avatar2 integrated five targets: GDB [12],
OpenOCD [13], QEMU, PANDA [14], and Angr.

JAI, 2021, vol.3, no.1 23

IoTFuzzer [15] uses the mobile App of IoT devices to design a black box fuzzing tool to avoid such
problems and analyze memory error vulnerabilities on IoT devices. In order to identify those data and the
content of the message to be sent to the IoT device, the data flow is tracked from selected elements to
determine the content that affects certain message fields. Then, these data will be changed to the content of
the field for fuzzing.

FirmFuzz [16] provides a device-independent automated simulation and dynamic analysis framework
for Linux-based firmware images. It uses a graybox-based generational fuzzing method, combined with
static analysis and system introspection to provide targeted and deterministic vulnerability discovery in
firmware images.

FirmAFL realizes an augmented process emulation method by combining system mode simulation
and user mode simulation. This new simulation method can greatly improve the efficiency of simulation
execution. At the same time, FirmAFL incorporates the traditional AFL [17] into the firmware, enabling it
to support augmented process emulation, and specify the input location of test cases through the virtual
machine introspection system.

3 Overview
3.1 Background

Fuzzing is considered the most effective method of vulnerability analysis. However, in the current
firmware vulnerability detection tools, there are fewer tools for fuzzing. There are common problems that
are single in form and cannot be analyzed in depth. This is mainly limited by the particularity of the
firmware itself. We believe that the main differences between firmware and ordinary binary programs are:
complex format, diverse architecture, and difficulty in running [18]. These reasons all make the common
fuzzing tools unable to be applied to the firmware. In addition, vulnerabilities in the firmware can usually
only be exploited through various protocol ports opened by the device, which also increases the difficulty
of fuzzing.

Fuzzing techniques include mutation-based fuzzing (such as AFL, LibFuzzer [19]) and generation-
based fuzzing (such as Peach [20], boofuzz). The former can better generate test cases and judge program
execution. However, it lacks compatibility with devices and is basically incapable of special architecture
and systems. At the same time, without format constraints, test cases are difficult to accept. The latter can
generate well-formed test cases. But the lack of feedback information, it belongs to the traversal of all
possibilities in the black box situation. Based on the above situation, we believe that the generation-based
fuzzing method is easier to combine with firmware analysis. Because it will not be affected by the
architecture, nor will it be restricted by the format. Defining a feedback message for a certain type of
firmware to guide the fuzzing can solve its own shortcomings.

3.2 Architecture
Based on the above problems, we design and implement an efficient firmware fuzzing tool–PS-Fuzz.

Its architecture is shown in Fig. 1. PS-Fuzz mainly includes two modules: protocol state instrumentation
and protocol state guided fuzzing. In order to solve the problem of the lack of guidance in common protocol
fuzzing and the inability to judge whether the test cases are good or bad, PS-Fuzz uses a more direct and
effective method to monitor the impact of test cases on program execution in real time, thereby simplifying
the process of fuzzing fields and achieving faster fuzzing. The protocol state instrumentation module
completes the preanalysis of the firmware and program instrumentation. Finally, a state detector collects
the feedback information of each instrumentation point. This information will be sent to the state checker
of the protocol state guided fuzzing module for state judgment. The fuzzing controller selects a new
mutation strategy based on the feedback information, and further controls the mutation engine and the
format checker to complete the generation of test cases. This not only makes the path of program execution
deeper, but also makes the discovery of vulnerabilities faster. In addition, PS-Fuzz also includes a firmware
emulator for maintaining the firmware operating environment, a monitor and a logger. More importantly,

24 JAI, 2021, vol.3, no.1

PS-Fuzz is not only aimed at discovering vulnerabilities, it will also feedback a large amount of system
information to users for further research.

Firmware emulatorFirmware

Moniter
Preanalysis

Protocol state instrumentation

Program
instrumentation

State
detector

Fuzzing
controler

Protocol state guided fuzzing

Mutation
engine

Format
checker

State
checker

Logger

test case

crash
state path
system information

synchronous execution

Figure 1: PS-fuzz workflow

4 Design and Implementation
4.1 Protocol State Instrumentation

The core function of the protocol state instrumentation module is to complete program execution and
analysis. It is the main source of fuzzing guidance information and one of the channels for obtaining
program execution information. This module mainly includes preanalysis, program instrumentation and
state detector.

4.1.1 Preanalysis
The preanalysis has two main steps: protocol format acquisition and firmware program analysis. In

the protocol format acquisition step, we need to get as many data packets as possible to the emulation device,
so as to obtain the format of the data packets that the firmware can accept. The correct protocol format is
used for subsequent format checking of the generated test cases to ensure that each test is valid. After
obtaining the protocol format, we have to enter the firmware program analysis step. In this step, we need
to find a program used to process data packets in the firmware file system, and analyze the program in the
next process. This is because vulnerabilities that cause firmware security threats are usually triggered by
data packets. Therefore, the program that processes the data packet is the most likely to have vulnerabilities
and the most likely to be exploited in actual situations. The main function of preanalysis is to provide PS-
Fuzz with the correct protocol format and firmware programs that need to be fuzzed. It determines the
general fuzzing direction for PS-Fuzz.

4.1.2 Program Instrumentation
Program instrumentation needs to find the most suitable point in the program for instrumentation

according to the protocol format provided by the preanalysis and firmware program. Our idea is to segment
the correct protocol format by field. Then find the position of the function that processes each field in the
program. These functions will produce obvious branching phenomenon after processing fields. When a
function finds that the data in the field it is processing is abnormal, it will immediately jump to the abnormal
state and end the processing of the data packet. In addition, the order of these processing functions is obvious.
This means that the subsequent field processing is skipped, that is to say, the current test case does not reach
deeper in the program. This is why it can be the main criterion for judging guidance. It is simple to use IDA
to find these field-processing functions in the program, because these functions must store the field name in
the register before processing the field. We can use this to quickly find the addresses of these functions in the

JAI, 2021, vol.3, no.1 25

program. It should be noted that whether some fields exist or whether there is content in the fields does not
affect the processing of the data packet. We need to exclude these processing functions to avoid unnecessary
instrumentation. Finally, we instrumented each valid field processing function, and tracked which branch it
went to after the end of the run, and collected the execution information of the program.

4.1.3 State Detector
PS-Fuzz defines each instrumentation point as a state. And from one instrumentation point to another,

we call it state transition. Fig. 2 illustrates the basic process of state transition in PS-Fuzz. The state set 𝑆𝑆 =
〈𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛, 𝑆𝑆𝐸𝐸𝑛𝑛𝐸𝐸〉 is the state set of a certain firmware program. The set of protocol field
information required from one state to another state is 𝐹𝐹 = �𝐹𝐹𝑖𝑖,𝑗𝑗, 0 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛�. For a state 𝑆𝑆𝑖𝑖, if the program
wants to further reach the state 𝑆𝑆𝑗𝑗, it must add or satisfy the corresponding field information 𝐹𝐹𝑖𝑖,𝑗𝑗 in the new
test case. If it is not satisfied, the program will jump to the state 𝑆𝑆𝐸𝐸𝑛𝑛𝐸𝐸. Obviously, each test case will generate
a corresponding state transition path. This is the complete execution flow of a test case in the program.
According to the state transition path, we can clearly understand the depth of program execution, thereby
judging the quality of test cases. It should be noted that, in order to further improve the efficiency, the state
transition of PS-Fuzz is designed to only transition in a deeper direction, but not in the opposite direction.
We will explain the content of this part later.

S0 S1 S2 … Sn

SEnd

F0,0 F1,1 F2,2

F0,1

Fn,n

F1,2

F0,End

F…

F1,End F2,End Fn,End

Figure 2: Protocol state transition driven by field information

4.2 Protocol State Guided Fuzzing
The protocol state guided fuzzing module is constructed by adding guidance information to the

common protocol fuzzing architecture. It includes all the common functions of fuzzing. This module mainly
includes fuzzing controller, mutation engine, format checker and state checker.

4.2.1 State Checker
The state checker corresponds to the state detector in the protocol state instrumentation module. It is

used to receive the state transition path information sent by the state detector. And compare with the state
transition path generated by the previous test case. In order to determine whether the current test case
triggers a new state, whether the mutation strategy can be updated according to the new state. When the
state checker thinks that the answers to the above questions are all yes, it will send the new state information
to the fuzzing controller for processing.

4.2.2 Fuzzing Controller
The fuzzing controller is the brain of the protocol state guided fuzzing. It stores a table, which we call

the state strategy table. In the state strategy table, each state has a corresponding mutation strategy. When
the fuzzing controller receives the state information from the state checker, it will look for the corresponding
mutation strategy in the state strategy table according to the latest triggered state. It will follow this new

26 JAI, 2021, vol.3, no.1

mutation strategy in the next fuzzing process. In terms of defining mutation strategy, we think that when
the program reaches a new state 𝑆𝑆𝑖𝑖, it means all the fields in front of the corresponding field information of
𝑆𝑆𝑖𝑖 in protocol format (𝐹𝐹1,2,𝐹𝐹2,3, … ,𝐹𝐹𝑖𝑖−1,𝑖𝑖) have met the conditions of program execution. These fields have
already completed the mutation process or do not need to be mutated at all. In order to run the program
more in-depth, it should mutate the following fields (𝐹𝐹𝑖𝑖,𝑖𝑖+1,𝐹𝐹𝑖𝑖+1,𝑖𝑖+2, … ,𝐹𝐹𝑛𝑛−1,𝑛𝑛) as much as possible.
Therefore, our mutation strategy for the state Si is to keep the 𝐹𝐹1,2,𝐹𝐹2,3, … ,𝐹𝐹𝑖𝑖−1,𝑖𝑖 field information
unchanged, and use 𝐹𝐹𝑖𝑖,𝑖𝑖+1,𝐹𝐹𝑖𝑖+1,𝑖𝑖+2, … ,𝐹𝐹𝑛𝑛−1,𝑛𝑛 as the main mutation objects. At the same time, we also need
to define the field types of 𝐹𝐹𝑖𝑖,𝑖𝑖+1,𝐹𝐹𝑖𝑖+1,𝑖𝑖+2, … ,𝐹𝐹𝑛𝑛−1,𝑛𝑛, which is to make the mutation engine work better. At
this time, if a reverse jump is performed, the previously fixed field has to be mutated again, which is
obviously redundant. This is also the main reason why PS-Fuzz is designed to be unable to perform reverse
state transitions. In this way, fields that have been mutated and do not need to be mutated at all in
𝐹𝐹1,2,𝐹𝐹2,3, … ,𝐹𝐹𝑖𝑖−1,𝑖𝑖 are skipped, thereby greatly improving efficiency.

4.2.3 Mutation Engine
The mutation engine will mutate according to the mutation strategy currently in use. It usually

maintains a mutation database. According to the different definitions of each field type in our mutation
strategy, the mutation engine will traverse all the malformed data under this type until the fuzzing process
of the field is completed. This mutation database comes with boofuzz, which contains a lot of malformed
data that can trigger common protocol vulnerabilities. But for PS-Fuzz, if a new state cannot be triggered,
using traversal fuzzing for invalid fields is equivalent to a waste of time. And we cannot guarantee that the
new state will be reached after the traversal is over. And boofuzz's mutation database is obviously not so
easy to trigger new states. So we added some necessary fields to boofuzz's mutation database to ensure that
it will enter a new state after a period of mutation. The mutation engine will complete the generation of test
cases and pass the test cases to the format checker.

4.2.4 Format Checker
The job of the format checker is very simple. It will get the correct protocol format extracted in the

preanalysis stage in the protocol state instrumentation module. The correct protocol format will be
accurately divided into fields here. The test cases generated by the mutation engine will also be divided into
fields. The format checker will compare the two data packets field by field to determine whether the test
case can be accepted by the emulation device. Finally, the format checker will send the test cases that
successfully pass the check to the emulation device through the socket to complete a test.

4.3 Monitor
The monitor needs to monitor three parts: emulation device, protocol state instrumentation module

and protocol state guided fuzzing module. PS-Fuzz calls all information related to the crash that can be
obtained as system information 𝐼𝐼𝑆𝑆 . After boofuzz can get the crash feedback, it will record all the test
information in a fuzzing database. It includes the initial interaction information between each test case and
the emulation device, the content of the data packet sent, and the feedback information after sending. We
define this information as boofuzz information 𝐼𝐼𝐵𝐵 . In addition, the GDB used by the protocol state
instrumentation module can also provide us with rich information. This is because there is a gdbserver in
the firmware emulator. Gdbserver can be connected to the GDB in the protocol status instrumentation
module to realize the synchronous execution of the firmware program. In other words, in the protocol state
instrumentation module, we can obtain exactly the same information as in the emulation device. We define
this information as GDB information 𝐼𝐼𝐺𝐺 . 𝐼𝐼𝐺𝐺 mainly contains information from common GDB analysis,
including memory information, stack information, register information, program execution, and so on. This
information is usually obtained by manually entering multiple commands. PS-Fuzz uses the pwndbg tool
to integrate all crash information and provide intuitive feedback. The entire information acquisition process
does not require user involvement. The last is the crash information that the QEMU system simulation

JAI, 2021, vol.3, no.1 27

mode itself can provide 𝐼𝐼𝑄𝑄, so we can get Eq. (1). PS-Fuzz provides more system information than most
protocol fuzzing tools, and it can provide help for firmware vulnerability mining and further firmware
research from different angles.
𝐼𝐼𝑆𝑆 = 𝐼𝐼𝐵𝐵 + 𝐼𝐼𝐺𝐺 + 𝐼𝐼𝑄𝑄 (1)

5 Experimental Evaluation
We evaluate PS-Fuzz through a typical firmware vulnerability. D-Link’s DAP-2695 router has a buffer

overflow vulnerability CVE-2016-1558 in its firmware. The vulnerability is due to the firmware not
checking the length of the dlink_uid parameter when processing HTTP packets. As a case study, we will
discuss the vulnerability and how it was detected. We will also evaluate the efficiency of vulnerability
detection and discuss the system information that can be obtained when the vulnerability is triggered. We
evaluated PS-Fuzz on a virtual machine running Ubuntu 16.04 with two processors and 4 GB of RAM. In
the firmware emulator, PS-Fuzz uses QEMU version 2.5.0 as the backend of fuzzing. In addition, PS-Fuzz
uses GDB version 9.2 for instrumentation. And make changes on boofuzz version 0.2.0 to fuzzing the
emulation device.

5.1 Experimental Steps
First use Firmadyne to simulate the firmware. After the emulation device is started, we can use some

packet capture tools to capture the data packets in the process of interacting with its Web page to get the
correct protocol format and necessary fields. Then we can use Binwalk to extract the complete file system
of the firmware and find the program for processing HTTP packets for preanalysis. After getting the
instrumentation points and mutation strategy, PS-Fuzz can automatically fuzz the emulation device. We
mainly evaluate the efficiency and amount of information of PS-Fuzz. In order to achieve evaluation, we
use boofuzz for comparison.

5.2 Efficiency
As shown in the Fig. 3, when PS-Fuzz starts to run, it will quickly transfer its state. The state triggered

by each test case will be displayed on the terminal in real time as shown in the Fig. 4. In the end, PS-Fuzz
can quickly find vulnerabilities and give prompts on both the emulator side and the fuzzing side, as shown
in the Fig. 5 and Fig. 6. However, boofuzz cannot be found under normal circumstances even if the
vulnerability is triggered. After adding a monitor to it, we compared the efficiency of the two.

Figure 3: Fast state transition in PS-Fuzz

28 JAI, 2021, vol.3, no.1

As shown in Tab. 1, since we have obtained the correct protocol format and know the parameters that
trigger the vulnerability, a series of optimizations can be carried out when formulating the mutation strategy.
The experimental results show that the time required for PS-Fuzz is much less than the time spent by
boofuzz when the same vulnerability is found. In addition, we find that the efficiency of PS-Fuzz depends
on the method of instrumenting. This requires a full understanding of the program execution process in the
preanalysis stage. We did a lot of work in the preanalysis stage during the experiment. Under ideal
circumstances, the efficiency of PS-Fuzz is about 8 times that of boofuzz. Even rough instrumentation
efficiency can reach 2 times that of boofuzz.

Figure 4: Discover the state triggered by each test case

Figure 5: Display on the emulation device end when the crash occurs

Figure 6: Display on the fuzzing end when the crash occurs

JAI, 2021, vol.3, no.1 29

Table 1: Comparison of the time of finding the same vulnerability with two different instrumentation
methods of PS-Fuzz and boofuzz

Tool Boofuzz
PS-Fuzz

(Rough instrument)
PS-Fuzz

(Accurate instrument)
Time 8 min 34 s 3min 47s 58s

5.3 Amount of Information
After the fuzzing is over, boofuzz will record the information of each test in a fuzzing database. It

includes the initial interaction information between each test case and the emulation device, the content of
the data packet sent, and the feedback information after sending.

In addition to the information that boofuzz itself can provide, PS-Fuzz can also provide a large amount
of system information. As shown in the Fig. 7, PS-Fuzz will record the state transition path of each test
case. At the same time, PS-Fuzz will immediately record the information provided by the firmware
simulator and the protocol state instrumentation module after the vulnerability is triggered. This mainly
includes simulation system information, register information, stack information, and command execution
information. In addition, since boofuzz cannot identify the crash of the simulated device, it cannot record
the data packet that caused the crash. PS-Fuzz can accomplish this job well, as shown in the Fig. 8.

Figure 7: Log state transition information

Figure 8: Log the packets that caused the crash

Finally, we compared the information provided by PS-Fuzz and boofuzz to get Tab. 2. From the table,
we can clearly see that PS-Fuzz far exceeds boofuzz in its ability to collect and provide information.

Table 2: Comparison of the information obtained by boofuzz and PS-Fuzz after the crash is found

Information Boofuzz PS-Fuzz
Interactive information √ √
Data packets √ √
Feedback information √ √
State transition paths × √
Simulation system × √
Registers × √
Stack × √
Instructions × √
Crash packets × √

30 JAI, 2021, vol.3, no.1

6 Conclusion
In this paper, we propose PS-Fuzz, a gray-box fuzzing technology that detects embedded firmware

vulnerabilities by comparing protocol state transition paths. On the basis of the traditional protocol fuzzing,
we can perform instrumentation in the firmware program according to the protocol field state. And by
collecting synchronization information from different modules to guide PS-Fuzz for fuzzing. So as to
improve the efficiency of fuzzing test, and provide help for further firmware research. The experimental
results on the actual embedded firmware show that for the same firmware vulnerability, PS-Fuzz has a
significant efficiency improvement under different instrumentation situations, and the efficiency is 2-8
times that of boofuzz. PS-Fuzz not only has a significant increase in the speed of finding vulnerabilities, it
can also provide a large amount of crash system information. Compared with traditional fuzzing tools, PS-
Fuzz can provide at least 6 additional system internal information. Our current method is limited by the
inability to fully automate the preanalysis stage. And We plan to further expand the versatility of PS-Fuzz
by optimizing the instrumentation method to help the security protection of embedded devices.

Funding Statement: This work is funded by the National Key Research and Development Plan (Grant No.
2018YFB0803504), the National Natural Science Foundation of China (Nos. 62072130, 61702223, 61702220,
61871140, 61872420, U1636215), the Guangdong Province Key Area R&D Program of China (No.
2019B010137004), the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010450),
Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2019), and the Opening
Project of Shanghai Trusted Industrial Control Platform (TICPSH202003014-ZC).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] D. D. Chen, M. Egele, M. Woo and D. Brumley, “Towards automated dynamic analysis for linux-based

embedded firmware,” in Proc. of 23rd Annual Network and Distributed System Security Sym., San Diego,
CA, USA, vol. 1, pp. 1–16, 2016.

[2] J. Zaddach, L. Bruno, D. Balzarotti and A. Francillon, “Avatar: a framework to support dynamic security
analysis of embedded systems’ firmware,” in Proc. of 21st Annual Network and Distributed System
Security Sym., San Diego, CA, USA, vol. 23, pp. 1–16, 2014.

[3] M. Muench, D. Nisi, A. Francillon and D. Balzarotti, “Avatar2: a multi-target orchestration platform,” in
Proc. of the Workshop Binary Analysis Research, San Diego, CA, USA, vol. 18, pp. 1–11, 2018.

[4] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu et al., “Firm-AFL: high-throughput greybox fuzzing of
IoT firmware via augmented process emulation,” in Proc. of the 28th USENIX Conf. on Security Sym.,
Berkeley, CA, USA, pp. 1099–1114, 2019.

[5] J. Pereyda, “Boofuzz: network protocol fuzzing for humans,” 2017. [Online]. Available:
https://github.com/jtpereyda/boofuzz.

[6] A. Costin, J. Zaddach, A. Francillon and D. Balzarotti, “A large-scale analysis of the security of
embedded firmwares,” in Proc. of the 23rd USENIX Conf. on Security Sym., San Diego, CA, USA, pp.
95–110, 2014.

[7] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel and G. Vinga, “Firmalice-automatic detection of
authentication bypass vulnerabilities in binary firmware,” in Proc. of 22nd Annual Network and
Distributed System Security Sym., San Diego, CA, USA, vol. 1, 2015.

[8] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary analysis,” in Proc. of 2017 IEEE
Cybersecurity Development, Cambridge, MA, USA, pp. 8–9, 2017.

[9] C. Heffner, “Binwalk: firmware analysis tool,” 2010. [Online]. Available: https://code. google.
com/p/binwalk/.

[10] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proc. of the 14th USENIX Annual Technical
Conf., Anaheim, CA, USA, vol. 41, pp. 46, 2005.

JAI, 2021, vol.3, no.1 31

[11] V. Chipounov, V. Kuznetsov and Candea G, “S2e: a platform for in-vivo multi-path analysis of software
systems,” ACM Sigplan Notices, vol. 46, no. 3, pp. 265–278, 2011.

[12] G. D. B. Developers, “GDB: the GNU project debugger,” 2017. [Online]. Available: https://www. gnu.
org/software/gdb.

[13] H. Högl, D. Rath and D. De, “OpenOCD-Open on-chip debugger” 2006.
[14] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek and R. Whelan, “Repeatable reverse engineering with

PANDA,” in Proc. of the 5th Program Protection and Reverse Engineering Workshop, New York, NY,
USA, pp. 1–11, 2015.

[15] J. Chen, W. Diao, Q. Zhao, C. Zuo and K. Zhang, “Iotfuzzer: discovering memory corruptions in IoT
through app-based fuzzing,” in Proc. of the Network and Distributed System Security Sym., San Diego,
CA, USA, 2018.

[16] P. Srivastava, H. Peng, J. Li, H. Okhravi and M. Payer, “Firmfuzz: automated IoT firmware introspection
and analysis,” in Proc. of the 2nd Int. ACM Workshop on Security and Privacy for the Internet-of-Things,
New York, NY, USA, pp. 15–21, 2019.

[17] M. Zalewski, “American fuzzy lop,” 2015. [Online]. Available: http://lcamtuf. coredump. cx/afl.
[18] X. Li, L. Qiao, Y. Sun and Q. Guan, “Research on automated vulnerability mining of embedded system

firmware,” in Proc. of Int. Conf. on Artificial Intelligence and Security, Hohhot, China, vol. 1254, pp.
105–117, 2020.

[19] K. Serebryany, “Libfuzzer: a library for coverage-guided fuzz testing (within llvm).” [Online]. Available:
https://github.com/Dor1s/libfuzzer-workshop.

[20] M. Eddington, “Peach fuzzing platform,” 2011. [Online]. Available: https://community.peachfuzzer.com/.

	PS-Fuzz: Efficient Graybox Firmware Fuzzing Based on Protocol State
	Xiaoyi Li, Xiaojun Pan and Yanbin Sun*

	6 Conclusion
	References

