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ABSTRACT

Soy-protein isolate (SPI) was used to prepare non-isocyanate polyurethane (NIPU) thermosetting adhesives for
wood panels by reacting it with dimethyl carbonate (DMC) and hexamethylene diamine. Both linear as well
as branched oligomers were obtained and identified, indicating how such oligomer structures could further
cross-link to form a hardened network. Unusual structures were observed, namely carbamic acid-derived
urethane linkages coupled with lactam structures. The curing of the adhesive was followed by thermomechanical
analysis (TMA). It appeared to follow a two stages process: First, at a lower temperature (maximum 130°C), the
growth of linear oligomers occurred, finally forming a physically entangled network. This appeared to collapse
and disentangle, causing a decrease of MOE, as the temperature increases. This appears to be due to the ever more
marked Brownian movements of the linear oligomer chains with the increase of the temperature. Second, chemi-
cal cross-linking of the chains appeared to ensue, forming a hardened network. This was shown by the thermo-
mechanical analysis (TMA) showing two distinct MOE maxima peaks, one around 130°C and the other around
220°C, with a very marked MOE decrease between the two. Plywood panels were prepared and bonded with the
SPI-NIPU wood adhesive and the results obtained are presented. The adhesive appeared to pass comfortably the
requirements for dry strength of relevant standards, showing to be suitable for interior grade plywood panels. It
did not pass the requirements for wet tests. However, addition of 15% of glycerol diglycidyl ether improved the
wet tests results but still not enough to satisfy the standards requirements.
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1 Introduction

Soy protein has been and is one of the protein of choice to formulate wood adhesives. This is so as it is a
renewable raw material of vegetable origin, widely available, and relatively inexpensive [1]. It can be applied
(i) In several forms as an additive to traditional synthetic wood adhesives, or (ii) Used as a wood adhesive
after partial hydrolysis and modifications [2]. Nonetheless, this adhesive material presents a few drawbacks,
such as an insufficient water resistance, its improvement being one of the subjects of present research. The
approach most generally used to improve this aspect is by adding a chemical cross-linker to soy protein
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isolate [3–9]. More recently good results have been obtained by reinforcing soy adhesives with condensed
tannins [10–12] as well by preparing wood adhesives from soy flour by generating higher molecular weight,
non-volatile non-toxic aldehydes by periodate specific oxidation [13,14].

Polyurethanes are a ubiquitous and widely used material for a number of applications, such as coatings,
varnishes, foams and wood adhesives in structural glulam and finger-jointing. Polyurethanes are to-day
prepared using polymeric isocyanate. However, isocyanates are classed as toxic. Polymeric
diphenylmethane diisocyanate (p-MDI) is used for wood adhesives. p-MDI is also used as a modifier/
crosslinker to improve the performance of protein adhesives [15,16]. The toxicity of p-MDI has focused
research on its substitution by preparing polyurethanes without isocyanates (NIPU). Several approaches
are used for this, namely by reacting hydroxyl groups-carrying materials with one or two cycles organic
carbonates or CO2 and diamines [17–21]. This research has mainly been directed to the preparation of
foams and coatings [22–26]. All these are using oil-derived synthetic-based materials to prepare NIPUs.
More recently, successful attempts to produce NIPUs from natural materials rich in hydroxyl groups have
been reported [27–37]. These have the additional characteristic to have simplified the procedure by using
a cheaper aliphatic carbonate by eliminating the reaction of preparing cyclic carbonates [27–37]. Among
these, glucose-and sucrose-based NIPUs prepared with dimethyl carbonate and hexamethylene diamine
were used to bond wood joint and particleboard with encouraging results [34,35]. Thus, soy-based non-
isocyanate polyurethanes are an interesting route to pursue, considering the amount of hydroxyl groups
and amino groups of which SPI’s aminoacids are rich, and also considering the possibility of reaction of
the numerous amide group of the peptide grouping in the constitutive skeletal chain of proteins. The
work described here is then aimed at preparing a NIPU wood adhesive based on soy protein isolate
presenting good bonding characteristics.

2 Experimental

2.1 Materials
Soy protein isolate was supplied by Ruikang Biotechnology Co., Ltd. (Dezhou, China). Commercial

glycerol diglycidyl ether (GDE, technical grade), hexamethylene diamine 98%, and dimethyl carbonate
were bought from Sigma-Aldrich (Saint Louis, France).

2.2 Preparation of SPI-NIPU Adhesive
The SPI-NIPU adhesive was prepared as follows: 80 g SPI is dissolved in 400 g of deionized water under

magnetic stirring, then 54 g dimethyl carbonate is added and the mixture heated to 60°C for 120 min. Then
105 g hexamethylenediamine are then added and heated to 90°C for another 2 h, then cooled to room
temperature. The mixture can be roto-evaporated under reduced pressure at 55°C to eliminate the excess of
water and to obtain a final resin solids content of 45%. with a viscosity of 26.9 ± 1 Pa•s.

2.3 Thermomechanical Analysis (TMA)
The resins were tested by thermomechanical analysis. The samples were prepared by applying each

adhesive between two beech wood plies, with dimensions of 21 mm × 6 mm × 1.1 mm. These beech-
resin-beech sandwiches were tested in non-isothermal mode between 25°C and 250°C at a heating rate of
10 °C/minute with a Mettler Toledo 40 TMA equipment (Mettler Toledo, Zurich, Switzerland). They
were tested in three-point bending on a span of 18 mm exercising a force cycle of 0.1/0.5 N on the
specimens, with each force cycle of 12 seconds (6 s/6 s). The classical mechanics relationship between
force and deflection

E ¼ L3= 4bh3ð Þ½ � F= fwood � fadhesiveð Þ½ �
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where L = the length of the sample; b = its width; h = its thickness; F = the force applied fwood the deflection of
the wood and fadhesive the deflection of the wood adhesive sandwich under test. This equation allows the
calculation of the Young’s modulus E for each case tested. Such a measuring system has been introduced
and is used to follow the progressive hardening of the adhesive with the increase of temperature and to
indicate comparatively if an adhesive system is faster or slower hardening and if it gives stronger joints
than another one.

2.4 ATR-FT-MIR Analysis
All of the samples were analyzed with a PerkinElmer Frontier ATR-FT-MIR provided by an ATR

Miracle diamond crystal. The powder and liquid samples were laid on the diamond eye (1.8 mm) of the
ATR equipment and the contact for the sample was ensured by tightly screwing the clamp device. Each
extract was scanned registering the spectrum with 32 scans with a resolution of 4 cm−1 in the wave
number range between 600 and 4000 cm−1.

2.5 MALDI-ToF Analysis
Samples for matrix assisted laser desorption ionization time-of-flight (MALDI-ToF) analysis were

prepared by first dissolving 7.5 mg of sample powder in 1mL of a 50:50 v/v acetone/water solution. Then
10 mg of this solution was added to 10 µL of a 2,5-dihydroxy benzoic acid (DHB) matrix. The locations
dedicated to the samples on the analysis plaque were first covered with 2 µL of a NaCl solution 0.1 M in
2:1 v/v methanol/water, and predried. Then 1.5 µL of the sample solution was placed on its dedicated
location and the plaque was dried again. Red phosphorous was to standardize the MALDI equipment.
MALDI-ToF spectra were obtained using an Axima-Performance mass spectrometer from Shimadzu
Biotech (Kratos Analytical Shimadzu Europe Ltd., Manchester, UK) using a linear polarity-positive
tuning mode. The measurements were carried out making 1000 profiles.

2.6 Three-Layer Plywood Preparation and Testing
The performance of the SPI-NIPU adhesive was tested by preparing laboratory plywood panels and

evaluating their shear strength dry, after 24 hours cold water soaking, and after 3 h in water at 63°C. The
plywood panels of 400 mm × 200 mm × 5 mm were prepared for each adhesive using 2 mm poplar
(Populus tremuloides) veneers. The glue spread used was of 300 g/m2 double glue line, and hot-pressing
time was of 6 minutes at 1.25 MPa pressure at a temperature of 200°C based on the consequence of the
TMA trace. After hot pressing the plywood was stored under ambient conditions (20°C and 12% relative
humidity) for 48 hours then it was cured and tested the dry shear strength, 24 h cold water soaking
strength and for strength after 3 h at 63°C in water according to China National Standard GB/T 14074
(2006) [38], China National Standard GB/T17657 (1999) [39], and European Norm EN 636:2012 (2012)
[40]. To reinforce the SPI-NIPU plywood also panels to which 10% or 15% by weight of a biosourced
glycerol diglycidyl ether (GDE) were added to the SPI-NIPU based on solids were also pressed and
tested under the same conditions.

3 Results and Discussion

3.1 MALDI ToF Analysis
The MALDI ToF analysis shows that SPI-NIPU urethane linkages do form with at least some of the soy

protein amino acids. However, the analysis also shows that for SPI it is not a straightforward reaction to
NIPUs as described for other bio-sourced materials (Figs. 1a–1d). The assignments for the relevant peaks
of the spectra are shown in Tab. 1. Thus, the peaks in Fig. 1a at 189 Da and 215 Da can be assigned to
the reaction product of leucine with DMC without and with Na+ being present, respectively, hence to a
structure of Type (I):
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The same structure is present for 284 Da and 311 Da which can be assigned to triptofan-DMCwithout or
with Na+. At 271 Da the structure can be attributed to serine-DMC-hexamethylene diamine +Na+. However,
at 271 Da and 295 Da the structure that can be deduced is leucine-DMC-hexamethylene diamine without or
with Na+ of Structure (II)

It must be clearly pointed out that while a urethane linkage, namely R-NH-COO-R is formed, the structure
so formed is also a lactam, as indicated by the -CO-O-CO- structure. The same type of urethane/lactam linkage
is found also at 339 Da and 368 Da these being respectively arginine-DMC-diamine + Na+ and tryptophan-
DMC-diamine + Na+. The small peak at 453 Da indicates the formation of a different oligomer, namely:
leucine-DMC-diamine-DMC-leucine +Na+, hence a more complex structure of Type (III):

The same type of structure but involving different amino acids is present at 495 Da, 539 Da and 602 Da,
these oligomers being respectively leucine-DMC-amine-DMC-arginine + Na+, arginine-DMC-amine-DMC-
arginine + Na+ and tryptophan-DMC-amine-DMC-tryptophan + Na+.

It must be pointed out that:
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This reaction, as seen, leads to urethanes that eventually share a lactam structure. To avoid the presence
of urethane/lactam type structure then a longer carbonate, cyclic or not should be used.

2. That after urethane dimers are formed such as those of the peaks at 453 Da, 495 Da, 539 Da and
602 Da the reaction can further proceed either (i) By reactions forming amides as the NH2 usable for
reaction with DMC do not lead to urethanes, or (ii) By further reaction of the residual NH groups in the
urethane linkages with DMC-aminoacid. In effect, there is a peak at 610 Da (with Na+) assigned to a
compound formed in this latter manner by reaction of a third leucine of structure (IV)

And even the peak at 746 Da (without Na+) of assigned structure (V):

Similar peaks for other soy protein amino acids are also present.

There are then some urethane linkages formed, more than enough to cross-link the protein, even if these
are coupled with lactam-like structures. Thus, once the two NH2 of the diamine are saturated then any further
reaction can proceed either (i) Through the formation of amides, hence polyamides [41], or (ii) By a chain
reaction with any residual -NH- group that is obtained when forming a urethane linkage, or (iii) By using a
polyamine rather than a diamine. This means that in any case the hardened network formed is most likely to
be cross-linked by a mix of urethane bridges and amides ones.

Parasite side reactions also appear to occur as indicated by the peaks at 256 Da (VI) and 398 Da (VII)
assigned to structures derived by the reaction of DMC with the diamine.

O

O

O

O

O

O

NH
N

O
O

O

IV

NH2

NH2

H2N

O

O

O

N

O
O

O

O

O

O

N

O

O

O

V

NH2

NH2

H2NH2N

JRM, 2021, vol.9, no.6 1049



And

Although these reactions form also compounds that are platforms for further urethane linkages to be
formed either among themselves or with the SPI amino acids.

In summary rather complex tridimensional structures can results from these combinations.

The reaction of formation of soy protein urethanes, when using DMC as the carbonate, leads to
urethanes that eventually share a lactam structure. The use of a longer carbonate, preferably cyclic such
as propylene carbonate, does not eliminate the presence of such urethane/lactam type structures.
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The FTIR spectra of SPI and of the SPI-NIPU resin are shown in Fig. 2. The peaks at 1703 cm−1, 1543 cm−1

and 1255 cm−1 are characteristic of the asymmetric stretching of urethane linkages, with the 1703 cm−1 for the
SPI NIPU spectrum belonging the C=O of the urethane being quite intense and being absent in the spectrum of
SPI alone. This conclusion of the presence of urethane linkages is confirmed by the presence of other peaks. Thus,
the appearance of the relatively small peak at 1766 cm−1 in the SPI NIPU spectrum is characteristic the R-COO-R
of esters derived from the lactam structures, these being esters of the carbamic acid (-NH-COO-) forming the
urethanes, confirming the structures assigned by the MALDI-ToF analysis. The big peak at 1639 cm−1 is
characteristic of amide groups, the peak being quite marked already for SPI alone, thus describing the amide
(peptide) linkages holding together the protein skeleton. This same peak becomes even more dominant in the
SPI NIPU spectrum where the amides derived from the reactions of the diamine with DMC and the proteins
amino acids generate a great number of amides in the urethane structure superposed to the ones already
present in the protein skeleton. The presence of the amide groups is supported by the peak at 1370 cm−1

(thus of-CO-NH-C-) and the wide peak at 3200 cm−1 that mask a number of different group effects. The peak
at 1441 cm−1 represents the asymmetric stretch of -CH2- groups of the alkane chains of the diamine included
in the finished network. Lastly the peak at 1390–1400 cm−1 belongs to the protonated N-containing groups,
such as -NH3

+ on the protein aminoacids. The two sharp peaks at 2900 cm−1 and 2800 cm−1 are assigned to
the asymmetric stretching of both the –CH3 groups of DMC and the asymmetric stretching of the R-CH2-R
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chains from the amine, both before and after reaction. They support such assignments in relation to the peak at
1441 cm−1 for the –CH2- groups. It must be also pointed out that these peaks are particularly intense as they are
the superposition of the asymmetric stretching band of both –CH3 and –CH2- groups.

The thermomechanical analysis traces of SPI-NIPU adhesive is shown in Fig. 3. The curve of the
increase of Young’s modulus as a function of temperature show two upsurges and two peaks of MOE,
namely at 130°C and at 220°C, this latter starting at around 185°C. The curves decrease in MOE value
between the two peaks. This means that the peak at 130°C indicates the formation of an unstable network
that is degraded and transformed if the temperature is increased causing a marked internal rearrangement.
The second peak at higher temperature indicates that curing of the SPI-NIPU resin occurs at a high
temperature as already reported in previous literature for similar types of adhesives [34,35]. The increase
of Young’s modulus has been shown to correlate with the bonding strength of the adhesive [42–48].

It is interesting to speculate what is the cause of the marked decrease between the two MOE peaks in
Fig. 3. While it could be an unstable structure, a more likely reason could derive from the formation of
linear polymers arranging themselves in a physically entangled network, rather than a chemically cross-
linked one. As the temperature increases further, the Brownian movements would make the viscosity of
these physically entangled chains markedly decrease and extensively disentangle, the MOE again starting
to increase at the much higher temperature of the second peak once chemical cross-linking does finally occur.

Before the TMA curves show a significant increase in the modulus value, the overall trend of the
modulus values in the TMA curves of the NIPU adhesive decreases between 50°C and 75°C. This is
mainly due to the decrease in viscosity of the adhesive as the temperature increases, resulting in a
lower viscosity and bonding strength. Conversely, the adhesive penetrates into the wood, softening or
degrading it during heating thus reducing its strength. It is evident from the TMA trace that the curing
temperature to be used for such adhesives is relatively higher than what common to-day for equivalent
panels bonded with traditional adhesives. After 200°C degradation of the wood substrate is known to
start [45–48], thus the second peak is rather high when considering that wood degradation has already
started to occur at the same time. The decrease of the curve afterward is the reflexion of the continuing
degradation of the wood substrate.

The results of the 3-plys plywood panels prepared are presented in Tab. 2. These indicate that the SPI
NPU adhesive by itself just passes at 0.74 MPa the interior grade limit of the relevant China national
standards [38–40] that requires a shear strength equal to, or higher than 0.7 MPa. By adding 10% and
15% biosourced GDE the dry shear strength results improved markedly in both cases passing to
1.34 MPa and 1.73 MPa respectively. This indicates that also the dry strength requirements for interior
grade plywood of European Norm EN 636:2012 (2012) are satisfied [40] for interior grade plywood.
Such a marked shear strength increase indicates that even the addition of smaller percentages of GDE,
around 5% by weight, would be sufficient to comfortably pass the requirements for interior grade
plywood panels under industrial conditions. The addition of GDE improves the performance due to
additional cross-linking. The 24 hours cold water soaking results and the 3 hours at 63°C tests did not
pass the requirements for exterior or semiexterior grade plywood as shown in Tab. 2 which are 0.7 MPa
and 1.0 MPa for both the China National Standard and in the European Norm, respectively. This is
consistent with the results of the TMA reported in Fig. 3, where it is indicated that these adhesives, in the
reaction proportions used in this work, need a higher curing temperature to develop all their strength and
achieve good results in the wet-type tests. It means also that such an adhesive under the conditions used
is possibly better suited to its use in particleboard where higher pressing temperatures are used. An
approach to explore to further decrease the high energy of activation of the curing reaction and thus
achieve better wet bonding results would be to use small percentages of ionic liquids as already
experienced for other adhesives [49].
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Figure 2: FT-IR spectra of soy protein isolate (SPI) and of soy protein isolate non-isocyanate polyurethane
(NIPU) adhesive resin

Figure 3: Thermomechanical analysis (TMA) curves of MOE as a function of temperature of joints bonded
with soy protein isolate non-isocyanate polyurethane (NIPU) adhesive

Table 2: SPI-NIPU-bonded plywood test results. Percentages wood failure for the dry test are in parenthesis

Shear Strength (MPa)

Dry 63°C for 3h 24 h cold water

SPI-NIPU 0.74 – –

SPI-NIPU + 10%GDE 1.30 (30) – –

SPI-NIPU + 15%GDE 1.73 (90) 0.28 0.34
Note: (-) not tested.

1054 JRM, 2021, vol.9, no.6



4 Conclusions

Soy-protein isolate (SPI) has been used to prepare non-isocyanate polyurethane (NIPU) thermosetting
adhesives for wood panels by reacting it with dimethyl carbonate (DMC) and hexamethylene diamine.
MALDI-ToF and FTIR spectrometry have shown that urethane linkages are effectively formed in the
reaction, in which all three reagents do participate. Some parasite reactions do occur, but these do not
appear to detract to the formation of NIPU resins. Both linear as well as branched oligomers were
obtained and identified, indicating by their molecular weight growth how such oligomer structures could
further cross-link to form a hardened network. While the NIPU oligomers structures identified present the
characteristics of urethane linkages derived from the urethane precursor carbamic acid (-NHCOOH-), they
also simultaneously present structures characteristic of lactams. This is rather unusual, as they are
exclusively due to the use of DMC, the simple organic carbonate used, and will not occur with other
types of organic carbonates. Thermomechanical analysis (TMA) monitoring of the curing of the adhesive
showed two distinct MOE maxima peaks, one around 130°C and the other around 220°C, with a very
marked decrease in MOE between the two. The first peak can be assigned to the growth of linear
oligomers forming a physically entangled network. This physically entangled network collapses and
disentangles as the temperature increases due to the ever more marked Brownian movements of the linear
oligomer chains. The second peak is assigned to the chemical cross-linking of the chains forming a
hardened network. Plywood panels were prepared by bonding them with the SPI-NIPU wood adhesive
and gave acceptable results for dry strength, with wet strength improving only after addition of 15% of a
biosourced glycerol diglycidyl ether.
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