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Abstract: Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling.

Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The

physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and

reviews, but the fluorescence imaging techniques –which are powerful tools for biological studies– have not. Here we

review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used

to study integrin expression, localization, activation, and functions.

Introduction

Integrins are a family of adhesion receptors that are abundantly
expressed in all cell types of metazoans except for erythrocytes.
Their integral roles in mediating cell–cell and cell–extracellular
matrix (ECM) interactions make integrins indispensable for the
existence of multicellular organisms. Interactions between
integrins and their ligands trigger profound changes of the
cytoskeleton and signaling apparatus during biological
processes, such as adhesion (Evans et al., 2019; Fan et al.,
2019; Fan et al., 2016; Stubb et al., 2019; Sun et al., 2020a;
Valencia-Gallardo et al., 2019), migration (Bernadskaya et al.,
2019; Martens et al., 2020; Sun et al., 2014), proliferation
(Clark et al., 2020; Erusappan et al., 2019), differentiation
(Martins Cavaco et al., 2018; Schumacher et al., 2020; Xie et
al., 2019), inflammation (Arnaout, 2016; Sun et al., 2020b),
tumor invasion (Bui et al., 2019; Haeger et al., 2020), and
metastasis (Fuentes et al., 2020; Howe et al., 2020; Osmani et
al., 2019). Fine-tuned integrin signaling is crucial for cellular
homeostasis, and abnormal integrin activities give rise to
many pathological conditions, including autoimmune
diseases, cardiovascular diseases, and cancer. Extensive efforts
have been made to discover and develop molecules targeting
integrins as potential means of therapy (Ley et al., 2016).
Several integrin-targeting antibodies and synthetic

compounds are approved for treating inflammatory diseases
or are under investigation in clinical trials. Fluorescent
imaging techniques provide a powerful tool for better
understanding integrin structures and conformational
changes (by Förster resonance energy transfer,
conformational reporting antibody, and super-resolution
imaging), and integrin-ligand interactions to develop more
effective therapies for a vast array of diseases.

Structure of integrins
Integrins are heterodimers consisting of noncovalently
associated α (120–180 kDa) and β (90–110 kDa) subunits
(Hynes, 1992). In the vertebrates, 18 α subunits and 8 β
subunits form 24 αβ pairs (Barczyk et al., 2010; Hynes,
2002) (Fig. 1). Integrin families are separated into four
major categories: those with specificity for intercellular
adhesion molecules and inflammatory ligands (leukocyte
integrins, α4, αE, αL, αM, αX, and αD), Arg-Gly-Asp (RGD)
motifs (αIIb, αV, α5, and α8), collagens (α1, α2, α10, and
α11), and laminins (α3, α6, and α7) (Campbell and
Humphries, 2011; Humphries et al., 2006; Tolomelli et al.,
2017). Both α and β subunits are type I transmembrane
glycoproteins containing a relatively large extracellular
domain (ectodomain), a single transmembrane domain, and
a short cytoplasmic tail (Arnaout, 2016; Campbell and
Humphries, 2011; Fan and Ley, 2015; Luo et al., 2007).

The ectodomain is an asymmetric structure with a
“head” carrying two “legs” (~16 nm long). The head
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consists of a predicted seven-bladed β-propeller domain (~60
amino acids each) of an α subunit (Xiao et al., 2004; Xiong et
al., 2001) (nine of eighteen α subunits also contain an
additional ~200 amino acids αA/αI domain) (Larson et al.,
1989) and a ~250 amino acid βA/βI-like domain inserted in
a hybrid domain of β subunit. The αA/αI domain and βA/
βI-like domain are homologous to small ligand-binding von
Willebrand Factor type A (vWFA) domain (Arnaout, 2002;
Arnaout et al., 2007). The βA/βI-like domain contains two
additional segments: one forms the interface with the β-
propeller, and the other is a specificity-determining loop
(SDL) mediating the ligand-binding (Luo et al., 2007). As
structures of αVβ3 and αIIbβ3 showed, the α subunit leg
domain is composed of an immunoglobulin-like “thigh”
domain, a genu loop, and two similar β-sandwich domains
named calf-1 and calf-2. The β subunit leg is formed by a
plexin-semaphorin-integrin (PSI) domain, a hybrid domain
(Bork et al., 1999), four tandem epidermal growth factor
(EGF)-like domains, and a β-tail domain (βTD) (Bode et al.,
1988; Janowski et al., 2001). The knee of the α subunit (α
genu) lies at the junction between the thigh and calf-1
domains, and the knee of the β-subunit (β genu) is within
the PSI and EGF1-2 region (Takagi and Springer, 2002). In
integrins containing an αA/αI domain, ligand binding is
mediated by this domain. As for integrins lacking the αA/αI
domain, binding sites of ligands localize in the interface
between β subunit β-I domain and α subunit β-propeller
domain. Transmembrane domains of both α and β subunits
are single α-helixes. NMR studies of αIIbβ3 show that the
transmembrane domain of β3 is longer than αIIb and tilted
with a ~25° angle to ensure the formation of inner and
outer membrane clasp (IMC and OMC), which are
important for proper integrin activity (Ginsberg, 2014; Kim
et al., 2011; Lau et al., 2009; Sun et al., 2018).

Conformations of integrins
Many techniques have been applied to distinguish two major
models of conformational changes influencing integrin
affinity, namely “switchblade” (Luo et al., 2007) and
“deadbolt” (Arnaout et al., 2005). Although height change is
a conspicuous readout, no consistent conclusions have been
drawn owing to the plasticity of integrin structure. Most

studies of ectodomains favor the switchblade model:
extension (E+) of the integrin is the prerequisite for
rearrangement of the ligand-binding site, leading to high
affinity (H+). Three major conformations with different
ligand binding affinities provide evidence for this model:
inactive bent ectodomain with low-affinity headpiece
(E−H−), primed extended ectodomain with low-affinity
headpiece (E+H−) with low affinity, and fully activated
extended ectodomain with high-affinity headpiece (E+H+)
(Chen et al., 2010; Springer and Dustin, 2012; Takagi et al.,
2002). However, crystallography results showed that the
conformations of bent ectodomain with open headpiece
(E−H+) found in αvβ3 and αXβ2 (Sen et al., 2013) had the
capacity to bind its ligand. In primary human neutrophils,
the “switchblade” transition (E−H− to E+H− to E+H+) was
observed. And an alternative transition from E−H− to E−H+

to E+H+ was also observed (Fan et al., 2016). E−H+ β2
integrins bind intercellular adhesion molecules (ICAMs) in
cis (Fan et al., 2016) and form a face-to-face orientation
(Fan et al., 2019), inhibiting leukocyte adhesion and
aggregation (Fan et al., 2016). E−H+ αMβ2 integrins were
shown binding FcγRIIA in cis to limit antibody-mediated
neutrophil recruitment (Saggu et al., 2018). These findings
suggest an alternative allosteric pathway other than the
“switchblade” model.

Integrin labeling in fluorescence imaging

Monoclonal antibodies
Immunofluorescent staining is the most commonly used
method for integrin labeling, and antibody selection is
extremely important for studying integrins. Monoclonal
antibodies targeting different epitopes of specific integrin α
and β subunits have been developed (Tab. 1). Some of these
have been discussed in a previous review (Byron et al.,
2009). Briefly, most of these clones target human integrins
and can be classified into three categories: Blocking/
inhibitory, non-blocking/non-functional, and stimulatory/
activation specific. Blocking antibodies can be used in
integrin loss-of-function assays, such as adhesion and
phagocytosis, or testing integrin expression when there is no
ligand binding, such as flow cytometry. Non-blocking
antibodies do not interfere with the biological functions of

FIGURE 1. Twenty-four αβ pairs of vertebrate integrins constituted by 18 α subunits and 8 β subunits have been classified into four separate
groups.
Dark and light oranges represent α subunits with or without the αA/αI domain. Different β subunits were colored differently. RGD is the
abbreviation of Arg-Gly-Asp peptides.
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TABLE 1

Human integrin-targeting monoclonal antibodies

Integrin Epitope
(Domain)

Clone name Integrin Epitope
(Domain)

Clone name

Blocking/inhibitory

α1 αA/αI FB12 (Fabbri et al., 1996) β1 βA/βI-like 4B4 (Takada and Puzon, 1993)

mAb13 (Takada and Puzon, 1993)

α2 αA/αI 12F1 (Kamata et al., 1994) AIIB2 (Takada and Puzon, 1993)

Gi9 (Tuckwell et al., 2000) P4C10 (Takada and Puzon, 1993)

JA218 (Tuckwell et al., 2000) Hybrid JB1A (Ni and Wilkins, 1998)

P1E6 (Kamata et al., 1994)

β2 βA/βI-like CLB LFA-1/1 (Zang et al., 2000)

α3 β-propeller ASC-6 (Zhang et al., 1999) MHM23 (Hildreth et al., 1983)

P1B5 (Zhang et al., 1999) TS1/18 (Lu et al., 2001a)

Not known IA3 (Turner et al., 2006) IB4 (Wright et al., 1983)

L130 (Zang et al., 2000)

α4 β-propeller HP2/1 (Kamata et al., 1995) Hybrid 7E4 (Tng et al., 2004)

P4C2 (Kamata et al., 1995)

PS/2 (Kamata et al., 1995) β3 βA/βI-like 7E3 (Artoni et al., 2004)

Not known 9F10 (Lei et al., 2016) Not known SZ-21 (Sheng et al., 2003)

L25 (Chandele et al., 2016)

P1H4 (Stampolidis et al., 2015) β4 Not known ASC-8 (Egles et al., 2010)

A4-PUJ1 (Martin et al., 2015)

β5 Not known ALULA (Su et al., 2007)

α5 β-propeller JBS5 (Burrows et al., 1999)

mAb16 (Burrows et al., 1999) β6 Not known 6.3G6 (Weinreb et al., 2004)

P1D6 (Burrows et al., 1999)

Not known NKI-SAM-1 (Orecchia et al., 2003) β7 βA/βI-like FIB504 (Andrew et al., 1994)

FIB27 (Andrew et al., 1994)

FIB30 (Andrew et al., 1994)

α6 Not known GoH3 (Lee et al., 1992)

β8 Not known 37E1 (Mu et al., 2002)

α7 Not known 6A11 (Zhao et al., 2004)

αIIb β-propeller 10E5 (Nishimichi et al., 2015)

α8 β-propeller YZ3 (Nishimichi et al., 2015) 2G12 (Kamata et al., 1996)

α9 Not known Y9A2 (Staniszewska et al., 2008) αVβ3 β-propeller 23C6 (Kamata et al., 2013)

αVβ5 Not known P1F6 (Singh et al., 2007)

αV β-propeller 17E6 (Kamata et al., 2013) P3G2 (Hendey et al., 1996)

L230 (Nishimichi et al., 2015)

Not known NKI-M9 (Grzeszkiewicz et al., 2001) αVβ6 Not known 10D5 (Weinreb et al., 2004)

6.3G9 (Weinreb et al., 2004)

αE αA/αI αE7-1 (Russell et al., 1994)

αE7-2 (Russell et al., 1994) αLβ2 αA/αI, β-
propeller,

YTA-1 (Zang et al., 2000)

Not known Ber-ACT8 (Kruschwitz et al., 1991) and βA/βI-like

(Continued)
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Table 1 (continued).

Integrin Epitope
(Domain)

Clone name Integrin Epitope
(Domain)

Clone name

αL αA/αI TS1/22 (Lu et al., 2004) αM αA/αI 2LPM19c (Osicka et al., 2015)

HI111 (Ma et al., 2002) MAN-1 (Eisenhardt et al., 2007)

CBR LFA-1/1 (Ma et al., 2002) anti-M7 (Wolf et al., 2018)

Not known mAb38 (Lomakina and Waugh, 2004) ICRF44 (Osicka et al., 2015)

Thigh M1/70 (Osicka et al., 2015)

αX αA/αI 3.9 (Hogg et al., 1986) αD αA/αI 217I (Van Der Vieren et al., 1999)

Not known 496K (Sadhu et al., 2008) 240I (Van Der Vieren et al., 1999)

Bu15 (Sadhu et al., 2008)

Non-blocking/non-functional

α1 Not known TS2/7 (Woods et al., 1994) α5 Calf-1 to 2 mAb11 (Askari et al., 2010)

β-propeller VC5 (Askari et al., 2010)

α2 Not known 16B4 (Tuckwell et al., 2000)

31H4 (Tuckwell et al., 1995) α6 Not known J1B5 (Damsky et al., 1994)

α3 Not known A3-X8 (Weitzman et al., 1993) α7 Not known 3C12 (Mielenz et al., 2001)

α4 Not known 44H6 (Bridges et al., 2005) α9 Not known A9A1 (Vlahakis et al., 2005)

8F2 (Newham et al., 1998)

αIIb Not known PL98DF6 (Puzon-Mclaughlin et al.,
2000)

αV Not known LM142 (Mathias et al., 1998)

αD Not known 212D (Van Der Vieren et al., 1999)

αL β-propeller TS2/4 (Zang et al., 2000) 92C4D (Van Der Vieren et al., 1999)

Not known YTH81.5 (Stanley et al., 2008)

αM β-propeller CBRM1/20 (Oxvig and Springer, 1998) β1 I-EGF K20 (Askari et al., 2010)

Thigh OKM1 (Osicka et al., 2015) β2 Not known CBR LFA-1/7 (Lu et al., 2001a)

CyaA (Osicka et al., 2015)

β4 Not known ASC-3 (Egles et al., 2010)

αX Not known CBR-p150/2E1 (Shang and Issekutz, 1998)

β5 Not known 11D1 (Ricono et al., 2009)

Stimulatory or activation-specific

α2 Not known JBS2 (Ho et al., 1997) β2 βA/βI-like mAb24 (Lu et al., 2001a)

327C (Beals et al., 2001)

α4 β-propeller HP1/3 (Kamata et al., 1995) Hybrid MEM-148 (Tang et al., 2005)

EGF-like 2 KIM127 (Robinson et al., 1992)

α5 Calf-1 & 2 SNAKA51 (Clark et al., 2005) EGF-like 3 CBR LFA-1/2 (Lu et al., 2001a)

MEM-48 (Lu et al., 2001a)

αIIb β-propeller PT25-2 (Puzon-Mclaughlin et al., 2000) EGF-like 4 KIM185 (Lu et al., 2001a)

Calf-1 MBC370.2 (Chen et al., 2019) β3 Hybrid AP3 (Peterson et al., 2003)

Calf-2 PMI-1 (Loftus et al., 1987) PSI AP5 (Cheng et al., 2013)

EGF-like 3/4 LIBS6 (Frelinger et al., 1991)

αL αA/αI 2E8 (Carreno et al., 2010) β-tail LIBS2 (Du et al., 1993)

MEM83 (Gronholm et al., 2016)

Genu NKI-L16 (Keizer et al., 1988) β7 βA/βI-like and 10F8 (Tidswell et al., 1997)

hybrid 2B8 (Tidswell et al., 1997)

αM αA/αI CBRM1/5 (Oxvig et al., 1999) 2G3 (Tidswell et al., 1997)

Thigh VIM12 (Osicka et al., 2015)
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integrins. Thus, they are useful in live-cell fluorescence imaging
to monitor the expression, localization, and clustering of
integrins when interacting with ligands (Ezratty et al., 2009;
Garmy-Susini et al., 2013; Huang et al., 2009; Jamerson et al.,
2012; Shao et al., 2019; Tchaicha et al., 2011; Xiao et al., 2019).
Among integrin antibodies, a unique kind of integrin antibody
recognizes epitopes only expressed when integrins are
activated or inactivated. Some of them further stabilize certain
conformation(s) by steric effect resulting in enhancement or
attenuation of ligand binding. Immunofluorescent imaging
using antibodies with different effects on integrin activation
can help illuminate novel biological functions.

Integrin antibodies that recognize activated epitopes have
been applied to understanding β2 integrins-leukocyte-specific
integrins that are critical for leukocyte recruitment and
functions. Monoclonal antibody KIM127 (Robinson et al.,
1992) recognizes the cysteine-rich repeat residues in the stalk
region of integrin β2 subunits (Lu et al., 2001a). Monoclonal
antibody mAb24 (Dransfield and Hogg, 1989) recognizes
Glu173 and Glu175 within the CPNKEKEC sequence
(residues 169–176) of the β2 I domain (Kamata et al., 2002;
Lu et al., 2001b). These epitopes are shielded by the stalk
region, and the αA/αI domain or the β-propeller of integrin α
subunit are exposed and recognized by KIM127 and mAb24
upon integrin activation. KIM127 binding indicates integrin
extension (E+), and mAb24 binding indicates rearrangement
in the ligand-binding site leading to high-affinity (H+)
(Kuwano et al., 2010; Lefort et al., 2012; Sorio et al., 2016).
Owing to noninterference with each other (Fan et al., 2016),
KIM127 and mAb24 were used to label different
conformational states of β2 integrin on live human
neutrophils (Fan et al., 2019; Fan et al., 2016; Sun et al.,
2020a; Wen et al., 2020b), which enables to distinguish E+H−,

E−H+, and E+H+ β2 integrins in live cells and. These studies
demonstrated that other than the canonical switchblade
model (E−H− to E+H− to E+H+), an alternative integrin
activation pathway (E−H− to E−H+ to E+H+) exists on
primary human neutrophils. Monoclonal antibody 327C has

been mapped to the upstream C-terminal region between
amino acids 23 and 411 of the β2 integrin and also reports
β2 integrin H+ (Zhang et al., 2008). 327C has been used to
monitor β2 integrin activation during neutrophil migration
(Green et al., 2006) and T cell spreading (Feigelson et al.,
2010) using epifluorescence imaging, and neutrophil-platelet
interaction using confocal microscopy (Evangelista et al., 2007).

Antibodies for activated integrins have also been used to
study β1 integrins, which are expressed on various cells, such
as leukocytes (Rullo et al., 2012; Werr et al., 1998), endothelial
cells (Xanthis et al., 2019), epithelial cells (Spiess et al., 2018),
and fibroblasts (Samarelli et al., 2020), and they are critical for
several cell functions, such as adhesion and migration.
Monoclonal antibody 9EG7 binds to the upper portion of the
lower β-leg, which is approximately within the I-EGF2
domain, and reports β1 integrin extension (Lenter et al., 1993;
Su et al., 2016) similar to KIM127 binding in β2 integrin.
Antibody 12G10 binds to the βI domain of high-affinity β1
integrin (Su et al., 2016), which is similar to mAb24 binding in
β2 integrin. Using 9EG7, 12G10, and a pan-β1 integrin
antibody AIIB2, distinct nanoclusters of active and inactive β1
integrins have been identified in focal adhesions (FAs) (Spiess
et al., 2018). Antibody TS2/16 binds an epitope similar to what
12G10 binds, where it activates and appears to stabilize an H+

βI domain conformation without requiring extension or hybrid
domain swing-out (Van De Wiel-Van Kemenade et al., 1992).
Antibodies HUTS-4, HUTS-7, and HUTS-21 recognize
overlapping epitopes located in the hybrid domains of the β1
subunit. Their expressions parallel the ligand-binding activity
of β1 integrins induced by various extracellular and
intracellular stimuli (Luque et al., 1996; Su et al., 2016).

Antibodies recognizing and binding to the inactive
conformation or that inhibit function are also used for
integrin labeling. mAb13 recognizes an epitope within the βI
domain of β1 integrin and is dramatically attenuated in the
ligand-occupied form of α5β1. The binding of mAb13 to
ligand-occupied α5β1 induces a conformational change in
the integrin, resulting in the displacement of the ligand

Table 1 (continued).

Integrin Epitope
(Domain)

Clone name Integrin Epitope
(Domain)

Clone name

αIIbβ3 β-propeller and PAC-1 (Kamata et al., 1996)

αX Not known 496B (Sadhu et al., 2008) βA/βI-like

β1 βA/βI-like 12G10 (Mould et al., 1995) αVβ3 β-propeller and WOW-1 (Pampori et al., 1999)

8A2 (Takada and Puzon, 1993) βA/βI-like LM609 (Kamata et al., 2013)

TS2/16 (Takada and Puzon, 1993)

A1A5 (Takada and Puzon, 1993) αVβ6 β-propeller and 6.8G6 (Weinreb et al., 2004)

Hybrid 15/7 (Mould et al., 2003) βA/βI-like

HUTS-4 (Luque et al., 1996)

HUTS-7 (Luque et al., 1996) α4β7 β-propeller and J19 (Qi et al., 2012)

HUTS-21 (Luque et al., 1996) βA/βI-like

PSI 8E3 (Mould et al., 2005)

N29 (Mould et al., 2005) β1 EGF-like 2 9EG7 (Askari et al., 2010)
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(Mould et al., 1996). Antibody SG/19 has been reported to
inhibit the function of the β1 integrin on the cell surface. SG/
19 recognizes the wild-type β1 subunit that exists in a
conformational equilibrium between the high and low-affinity
states but binds poorly to a mutant β1 integrin that is locked
in a high-affinity state. SG/19 binds Thr82 located at the outer
face of the boundary between the I-like and hybrid domains of
the β1 subunit. SG/19 attenuates the ligand-binding function
by restricting the conformational shift to the high-affinity state
involving the swing-out of the hybrid domain without directly
interfering with ligand docking (Luo et al., 2004). Monoclonal
antibody SNAKA51 binds to the calf-1/calf-2 domains of the
α5 subunit when the α5β1 integrin is active (Su et al., 2016).
Alexa Fluor 488-conjugated SNAKA51 facilitates the detection
of a conformation that promotes fibrillar adhesion formation.
Gated stimulated emission depletion (g-STED) confocal
microscopy analyses of PPFIA1 (protein tyrosine phosphatase
receptor type F polypeptide interacting protein α1) and
SNAKA51 activating α5β1 integrin in endothelial cells
indicates that PPFIA1 localizes close to both focal and fibrillar
adhesions (Mana et al., 2016).

β3 integrins are also widely expressed, and antibodies have
been developed to study their functions. Vitronectin receptor
integrin αVβ3 is expressed on leukocytes (Antonov et al., 2011),
endothelial cells (Liao et al., 2017), and platelets (Bagi et al.,
2019), etc. Active and inactive conformations of αVβ3 integrins
can be detected by antibodies anti-αVβ3 clone LM609 and
clone CBL544, respectively (Drake et al., 1995). WOW-1 is a
ligand-mimic Fab fragment that reports αVβ3 integrin
activation (Pampori et al., 1999). It has been used in detecting
αVβ3 integrin activation on endothelial cells during shear
sensing (Tzima et al., 2001) and migration (Lu et al., 2006)
using fluorescence imaging. αIIbβ3 integrins are also known as
glycoprotein IIb/IIIa and expressed on platelets (Adair et al.,
2020; Chen et al., 2019; Ting et al., 2019). Antibody MBC370.2
binds to the calf-1 domain of the αIIb chain and reports the E+
of αIIbβ3 integrins (Zhang et al., 2013). PAC-1 is a ligand-
mimic antibody and binds to both the β-propeller and βA/βI-
like domains of H+ αIIbβ3 integrins (Kashiwagi et al., 1997).
AP5 recognizes an epitope in the β3 PSI domain and reports
hybrid domain swing-out (Cheng et al., 2013). By using these
three antibodies, it has been demonstrated that biomechanical
platelet aggregation is mediated by E+ but not H+ of αIIbβ3
integrins (Chen et al., 2019).

Integrin α4β7 is a lymphocyte homing receptor that
mediates both rolling and firm adhesion of lymphocytes on
vascular endothelium, two of the critical steps in
lymphocyte migration and tissue-specific homing (Berlin et
al., 1993; Iwata et al., 2004). Integrin α4β7 is the target of
the most successful integrin drug vedolizumab, which is a
human-derived blocking antibody and has recently proven
useful in the treatment of inflammatory bowel diseases
(Fedyk et al., 2012; Ley et al., 2016; Sands et al., 2019;
Zingone et al., 2020). An activation-specific antibody J19 for
integrin α4β7 has been developed (Qi et al., 2012). This
antibody does not block the mucosal vascular addressin cell
adhesion molecule 1 (MAdCAM-1) binding site. Its binding
site has been mapped to Ser-331, Ala-332, and Ala-333 of
the β7 A/I-like domain and a seven-residue segment from
184 to 190 of the α4 β-propeller domain.

Fluorescent proteins
Since the molecular cloning of green fluorescent protein
(GFP) from the jellyfish Aequorea victoria (Chalfie et al.,
1994; Prasher et al., 1992; Ward et al., 1980), a wide
spectrum of fluorescent proteins have provided excellent
opportunities to monitor integrin localization and dynamics
in living cells and tissues.

To study the separation of integrin α and β “legs” during
activation, the monomeric cyan fluorescent protein (mCFP)
and monomeric yellow fluorescent protein (mYFP) were
fused to the C-termini of the α and β cytoplasmic domains of
αVβ3, respectively (Kim et al., 2003). The “leg” separation
was demonstrated by the decrease of Förster resonance
energy transfer (FRET) from mCFP to mYFP. A similar
strategy has been applied to study αMβ2 integrin activation
as well (Lefort et al., 2009). To extend this idea in studying
integrin activation in mouse disease models, knock-in (KI)
mice with αM-mYFP (Lim et al., 2015), αL-mYFP (Capece et
al., 2017), or β2-mCFP (Hyun et al., 2012) were generated, in
which the fluorescent proteins were inserted into the C
terminus of each integrin. Intravital imaging was then
performed to visualize αM-mYFP+ leukocytes (Lim et al.,
2015) or β2-mCFP leukocytes (Hyun et al., 2012) within
inflamed or infected tissues. The αL-mYFP KI mice helped
reveal an intracellular pool of integrin αLβ2 involved in CD8+

T cell activation and differentiation (Capece et al., 2017). In
combined KI mice, activation of αLβ2 and αMβ2 was
observed during neutrophil transendothelial migration by
intravital microscopy (IVM) (Hyun et al., 2019).

In another study, GFP was inserted into the β3-β4 loop of
blade 4 of the αL integrin β-propeller domain with no
appreciable influence on integrin function and
conformational regulation (Nordenfelt et al., 2017). The
orientation of GFP can be measured by emission anisotropy
microscopy (Ghosh et al., 2012; Nordenfelt et al., 2017;
Ojha et al., 2020). Thus, they found that the direction of
actin flow dictates integrin αLβ2 orientation during
leukocyte migration (Nordenfelt et al., 2017). The role of α5
integrins in cell adhesion and migration was investigated by
introducing the eukaryotic expression vectors pEGFP-N3,
pECFP-N1, and pEYFP-N1 inserted with the integrin α5
cDNA and a 10-13 amino acid linker into CHO K1 and
CHO B2 (α5-deficient) cells (Laukaitis et al., 2001). They
found that α5 integrins stabilized cell adhesion and formed
visible complexes after the arrival of α-actinin and paxillin.
Integrin β4-YFP fusion proteins were introduced into HaCat
cells as a marker of hemidesmosome protein complexes
(HPCs). Meanwhile, CFP-tagged α-actinin was used as a
marker of focal contacts (FCs). Tight co-regulation of HPCs
and FCs was detected in keratinocytes undergoing migration
during wound healing (Ozawa et al., 2010). Wild type or
mutated mouse integrin β3-EGFP fusion protein was used
to investigate the mechanisms and dynamics of the
clustering and incorporation of activated αVβ3 integrins
into FAs in living cells. Formation of the ternary complex
consisting of activated integrins, immobilized ligands, talin,
and PI(4,5)P2 was found to contribute to integrin clustering
(Cluzel et al., 2005). Fluoppi is a technology providing an
easy way to visualize protein-protein interactions (PPIs)
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with a high signal-to-background ratio (Koyano et al., 2014;
Yamano et al., 2015). It employs an oligomeric assembly
helper tag (Ash-tag) and a tetrameric fluorescent protein tag
(FP-tag) to create detectable fluorescent foci when there are
interactions between two proteins fused to the tags. This
technique has been used to prove the interaction of integrin
β1 and Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 2
(PLOD2) in cell migration (Ueki et al., 2020).

In another study, an extracellular site of integrin β1 was
reported suitable for inserting different tags, including GFP
and PH-sensitive pHluorin (Huet-Calderwood et al., 2017).
pHluorin is a GFP variant that displays a bimodal excitation
spectrum with peaks at 395 and 475 nm and an emission
maximum at 509 nm. Upon acidification, pHluorin excitation
at 395 nm decreases with a corresponding increase in the
excitation at 475 nm (Mahon, 2011). In this study, pHluorin
tagged integrin β1 was used to monitor the exocytosis of β1
integrins in live cells. Since similar extracellular fluorescence
protein insertion was performed in β2 integrins (Bonasio et
al., 2007; Moore et al., 2018; Nordenfelt et al., 2017), it is
feasible to use pHluorin in study β2 integrin functions, such
as degranulation and phagocytosis.

Other methods for fluorescently tagging integrins
HaloTag is a 34 kDa engineered, catalytically inactive derivative
of a bacterial hydrolase. It can be fused to a protein of interest
and covalently bound by synthetic HaloTag ligands with high
specificity. A covalent bond can form rapidly under
physiological conditions and is essentially irreversible.
HaloTag allows adaptation of the targeted protein to different
experimental requirements without altering the genetic
construct (Los et al., 2008; Los and Wood, 2007). For
example, Atto655 was used to generate the HaloTag655
ligand, which is suitable for labeling live cells by expressing a
β1-integrin-HaloTag fusion protein. The resulting living cells
are suitable for STED microscopy, and intracellular
distribution of the β1-integrin such as filopodia and endocytic
vesicles were studied in unprecedented detail (Schroder et al.,
2009). Halo and SNAP tags were also inserted into the β1
integrin extracellular domain in the study mentioned above
(Huet-Calderwood et al., 2017). Similar to HaloTag, SNAP
(Keppler et al., 2003) is also a self-labeling protein tag that
can covalently bind to synthetic fluorescence dyes. Sequential
fluorescence dye labeling of Halo-tagged integrin β1 can
distinguish surface and internal β1 integrins in cells (Huet-
Calderwood et al., 2017).

Many integrins bind to ECM molecules through an RGD
motif. RGD peptide was found to bind to resting integrins and
induce integrin activation. Compared to linear peptides,
suitable optimized cyclic RGD (cRGD) peptides interact with
integrins in a more selective manner and with higher affinity
(Weide et al., 2007). Changing a three-dimensional structure
or modifying the amino acid sequences flanking the RGD
motif can enhance its ligand selectivity (Schaffner and Dard,
2003). Within this area, integrin αVβ3 was studied most
extensively for its role in tumor growth, progression, and
angiogenesis. It was considered an interesting biological target
for therapeutic cancer drugs and a diagnostic molecular
imaging probe (Ye and Chen, 2011). Fluorescein
isothiocyanate (FITC)-conjugated dimeric cRGD peptides

(FITC-RGD2, FITC-3P-RGD2, and FITC-GalactoRGD2)
were used as fluorescent probes for in vitro assays of integrin
αvβ3/αvβ5 expression in tumor tissues (Zheng et al., 2014).
Quantum dots (QDs) are fluorescent nanocrystals that absorb
a wide-range spectrum (400–650 nm) of light and emit a
narrow symmetric spectrum of bright fluorescence. These
allow the QD signal to be clearly distinguished from the
cellular autofluorescence background (Alivisatos et al., 2005;
Gao et al., 2005; Michalet et al., 2005; Pinaud et al., 2006).
cRGD peptides and a biotin-streptavidin linkage are used to
specifically couple individual QDs to αVβ3 integrins on living
osteoblast cells. The positions of individual QDs were tracked
with nanometer precision, and localized diffusive behavior
was observed (Lieleg et al., 2007). Near-infrared (650–900
nm) fluorescence imaging has provided an effective solution
for improving the imaging depth along with sensitivity and
specificity by minimizing the autofluorescence of some
endogenous absorbers (Shah and Weissleder, 2005; Tung,
2004). Cyanine analogs, such as Cy5, Cy5.5, were used to
label cyclic RGD analogs for in vivo optical imaging of
integrin αVβ3 positive tumors with high contrast in mice (Jin
et al., 2006; Wang et al., 2004).

The C-terminal region of the fibrinogen γ subunit
contains γC peptide uniquely binding to activated or primed
αIIbβ3 integrin at the interface between α and β subunits
(Hantgan et al., 2006; Springer et al., 2008; Zhao et al., 2016).
Therefore, it may serve as the prototype for the design of a
probe targeting activated αIIbβ3 integrin. Gold nanoclusters
are a newly developed class of fluorescent particles. The gold
nanocluster Au18 conjugated with γC peptide peptides were
used to detect αIIbβ3 in HEL with an excitation wavelength
of 514 nm and an emission wavelength of 650 nm (Zhao et
al., 2016). Due to the specific binding between the Leu-Asp-
Val (LDV) peptide and integrin α4β1, fluorophore-
conjugated LDV is commonly used to monitor changes of
α4β1 integrin conformation or affinity in live cells (Chigaev
et al., 2001; Chigaev et al., 2011b). LDV-FITC can be used as
a FRET donor to reveal conformational changes of α4β1
under different biological conditions (Chigaev et al., 2003b;
Chigaev et al., 2004; Njus et al., 2009).

Soluble ligands ICAM-1 (Lefort et al., 2012; Margraf et al.,
2020), vascular cell adhesion protein 1 (VCAM-1) (Sun et al.,
2014), and MadCAM-1 (Sun et al., 2018; Sun et al., 2014)
were used to detect the activation of β2, β1, and β7 integrins.
In the classic article imaging the immunological synapse
(Grakoui et al., 1999), Cy5-labeled ICAM-1 were anchored to
the bilayer in a manner that allows their free diffusion in the
supported bilayer to monitor the dynamic changes of integrin
αLβ2 activation and distribution during the formation of the
immunological synapse. A similar approach became a
canonical method to study integrins in immunological
synapses (Kaizuka et al., 2007; Kondo et al., 2017; Somersalo
et al., 2004) and was also used to track active integrin αLβ2
in leukocyte migration (Smith et al., 2005).

Fluorophore-conjugated integrin allosteric antagonists
and agonists are also widely used to label certain integrins.
BIRT 377 and XVA-143 are integrin αLβ2-specific allosteric
antagonists that belong to two distinct classes. The BIRT
377 binding site is located within the I domain of the αL
integrin subunit. The XVA-143 site is located between the
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αL β-propeller and the β2 subunit I–like domain (Shimaoka
and Springer, 2003). BIRT- and XVA-FITC were used to
study conformational changes of integrin αLβ2 (Chigaev et
al., 2015). A ligand-mimic small molecular probe has been
developed to measure integrin αLβ2 activation (Chigaev
et al., 2011a).

Imaging techniques
Live-cell imaging of integrins
Live-cell imaging has been abundantly used in biological
studies, including some for integrins. This method has given
rise to tremendous progress in documenting dynamic
cellular processes, such as cell adhesion (Fan et al., 2016;
Morikis et al., 2017; Morikis et al., 2020; Shao et al., 2020;
Sun et al., 2020a; Sun et al., 2018; Wen et al., 2020b; Yago et
al., 2015; Yago et al., 2018), migration (Kostelnik et al.,
2019; Moore et al., 2018; Nordenfelt et al., 2017; Panicker et
al., 2020; Ramadass et al., 2019; Tweedy et al., 2020; Zhou et
al., 2020), cell-cell interactions (Hanna et al., 2019;
Kretschmer et al., 2019; Lin et al., 2015a; Lin et al., 2015b;
Omsland et al., 2018; Zucchetti et al., 2019), endocytosis/
phagocytosis (Chu et al., 2020; Freeman et al., 2020; Levin-
Konigsberg et al., 2019; Ostrowski et al., 2019; Walpole et
al., 2020), exocytosis/degranulation (Cohen et al., 2015;
Thiam et al., 2020), and cytoskeleton rearrangement (Balint
et al., 2013; Ostrowski et al., 2019; Walpole et al., 2020), in
real-time and down to the single molecular level (Balint et
al., 2013; Katz et al., 2017; Katz et al., 2019; Moore et al.,
2018; Mylvaganam et al., 2020). Fluorescent probes and
proteins have been ubiquitously utilized in live-cell imaging,
allowing observation of dynamics and function of cellular
structures and macromolecules, such as integrins, over time
and in-depth.

In epifluorescence microscopy, which is the most
commonly used wide-field microscopy, all the emission
light around the focal plane captured by the objective,
which depends on its numerical aperture, is sent to the
detector leading to high light-collecting efficiency. The use
of the pinhole in confocal laser scanning microscopy
(CLSM) decreases the background signal from out-of-
focus light and increases the signal-to-background
ratio. However, CLSM is limited by phototoxicity/
photobleaching. This is mainly due to that most confocal
microscopes have detectors with low quantum efficiency,
such as photomultiplier tubes (PMT), in comparison to
epifluorescence microscopes, such as charge-coupled device
(CCD) or complementary metal-oxide-semiconductor
(CMOS) cameras. Thus, to acquire images of similar
brightness, CLSM needs higher power of the excitation
light than epifluorescence microscopy. On the other hand,
most CLSM setting has a limited imaging speed due to its
scanner. For example, most CLSM has a laser dwell time of
≥1 µs per pixel (Straub et al., 2020), which means that it
will take more than 0.25 seconds to acquire a 512 × 512
image (≤4 frames per second). In comparison, most
cameras in epifluorescence microscopes allow an imaging
speed of ≥20 frames per second (1280 × 1024 pixels). The
low speed of CLSM can be overcome by using a high-cost
resonant scanner, which allows a speed of 30 fps for 512 ×
512 images. Thus, if the specimen is a monolayer,

epifluorescence microscopy might be a good choice
(Stephens and Allan, 2003; Waters, 2007).

Epifluorescence microscopy has been used to monitor
β2 integrin activation during leukocyte rolling on selectins
(Kuwano et al., 2010). In the study developing the
integrin αL-mYFP mice, an intracellular pool of αL
integrins was discovered in CD8+ T cells using
epifluorescence microscopy (Capece et al., 2017). In the
study of the integrin αM-mYFP mice, epifluorescence
images showed that αM integrins enriched in the
lamellipodia during neutrophil migration (Lim et al.,
2015). Epifluorescence-based live-cell fluorescence lifetime
imaging microscopy (FLIM)-FRET has been used to
demonstrate the cis interaction between sialylated
FcγRIIA and the αI-domain of integrin αMβ2 (Saggu et
al., 2018). In another study, epifluorescence imaging of
platelet integrin αIIbβ3 showed that biomechanical
platelet aggregation in disturbed flow is mediated by E+H−

αIIbβ3 integrins (Chen et al., 2019).
For thicker (e.g., 20–100 µm) live-cell specimens, CLSM

was used for imaging integrins (Fan et al., 2019; Lin et al.,
2015a; Lock et al., 2018; Sahgal et al., 2019; Schymeinsky et al.,
2009). For example, the distribution of integrin αLβ2 during
immunological synapse formation was visualized using CLSM
(Lin et al., 2015a). Imaging by CLSM, Integrin αVβ5 was
found to forms novel talin- and vinculin-negative reticular
adhesion structures, which may be required for mediating
attachment during mitosis (Lock et al., 2018). CLSM was also
used to investigate the recycling of active β1 integrins regulated
by GGA2 and RAB13 (Sahgal et al., 2019). CLSM imaging of
β2 integrins illustrated the role of mAbp1 in regulating β2
integrin-mediated phagocytosis and adhesion (Schymeinsky et
al., 2009). CLSM helped to show the distribution of active β2
integrins during lymphocyte migration, and roles of talin,
ZAP-70, rap2, and SHARPIN during lymphocyte migration
(Evans et al., 2011; Pouwels et al., 2013; Smith et al., 2005;
Stanley et al., 2008; Stanley et al., 2012)

However, the slower imaging speed and higher
phototoxicity limit its usage for live-cell imaging. There are
some implementations that significantly increase imaging
speed and reduce phototoxicity under the condition of
CLSM. Such implementations include slit scanning and
pinhole multiplexing methods, including spinning disk
confocal microscopy (SDCM) (Graf et al., 2005; Maddox et
al., 2003). In addition to the fundamental disk containing
thousands of pinholes in a spiral, there is a second collector
disk with a matching pattern of microlenses focusing
excitation light with up to 70% efficiency onto the imaging
pinholes. In combination with an electron-multiplying
charge-coupled device (CCD) detector, SDCM turns to be
an ideal solution for fast live-cell confocal imaging of
thicker specimens (Wang et al., 2005). Using SDCM, it was
found that ADP-ribosylation factor 6 directs the traffic of α9
and β1 integrins on dorsal root ganglion neurons (Eva et al.,
2012). The dynamic changes of β5 integrins were visualized
by SDCM during mitosis, which suggested that a selective
role for integrin β5 in mitotic cell attachment (Lock et al.,
2018). In another study, it was found that
phosphatidylinositol 3,4,5-trisphosphate binder Rasa3 was
translocated to integrin αIIbβ3 and involved in the integrin
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outside-in signaling on platelets during α-thrombin
stimulation (Battram et al., 2017).

Another high-resolution live-cell imaging technique is
total internal reflection fluorescence (TIRF) microscopy. In
TIRF microscopy, a laser incident beam illuminating the
boundary between two media of different refractive indices
(usually the coverslip and the specimen) experiences total
internal reflection. The totally internally reflected laser beam
generates the evanescent wave, which excites fluorophores
that are in the vicinity of the coverslip-specimen interface
(~100–200 nm), resulting in a very high signal-to-
background image with a ~100 nm optical section
compared to ~700 nm of confocal or wide-field (Axelrod,
1981, 2001; Hocde et al., 2009). The high signal-to-
background is at the cost of penetration. TIRF can only
reveal structures close to the coverslip surface, such as
membrane proteins and FAs. As a family of membrane
proteins, integrin molecules are highly suitable for analysis
with TIRF microscopy. Almost all integrin molecules have
been monitored by TIRF microscopy. By using TIRF, it has
been shown that FA disassembly during cell migration
requires endocytosis of β1 integrins, which is regulated by
clathrin (Chao and Kunz, 2009). TIRF imaging also showed
that mechanical stimuli disassemble β1 integrin clusters and
enhance endocytosis of integrins expressed on human
umbilical vein endothelial cells (HUVECs) (Kiyoshima et al.,
2011). H+ β2 integrins reported by monoclonal antibody
327C have been imaged by TIRF microscopy during
neutrophil arrest and demonstrated that H+ β2 integrin-
ICAM-1 binding initiates calcium influx (Dixit et al., 2011),
and kindlin-3 is responsible for β2 integrin H+ (Dixit et al.,
2012). H+ β2 integrins can also be reported by mAb24
(Dransfield and Hogg, 1989; Kamata et al., 2002; Lu et al.,
2001b), as mentioned before. By using TIRF microscopy, the
H+ β2 integrins were found polarized to the lead-edge
during T cell migration (Hornung et al., 2020). It has also
been demonstrated that β2 integrins form podosomes of
dendritic cells imaged by TIRF microscopy (Gawden-Bone
et al., 2014). In another study, a Rap1-GTP-interacting
adapter molecule (RIAM)/lamellipodin-talin-integrin (β3)
complex that guides cell migration was discovered by using
TIRF microscopy (Lagarrigue et al., 2015). The transport of
β3 to FA has been imaged by TIRF microscopy and was

found to be regulated by an AAK1L- and EHD3-dependent
rapid-recycling pathway (Waxmonsky and Conner, 2013).
The PDK1-mediated endocytosis of β3 integrin during FA
disassembly has also been monitored by TIRF microscopy
(Di Blasio et al., 2015).

As an update to TIRF microscopy, quantitative dynamic
footprinting (qDF) microscopy was developed in 2010
(Sundd et al., 2010), based on the calculation of the
evanescent wave intensity and the fluorescence signals of the
cell membrane. In the development of qDF microscopy, a
two-step calibration procedure involved: (1) The distance of
the closest approach of a stationary neutrophil with the
coverslip was measured using variable angle TIRF microscopy
and was designated Δ0 (Suppl. Fig. 3 in Sundd et al. (2010));
and (2) The z-distance (Δ) of any region in the neutrophil
footprint is calculated by fluorescence intensity using the
following equation, Δ = Δ0 + λ/4π × (n1

2 × sin2 θ − n2
2)−1/2

× ln (IFmax(θ)/IF(θ)). Fig. 2 described the Δ0 and Δ (Two
examples Δ1 and Δ2 are shown). In this equation, λ is the
wavelength of the emission light, and n1 and n2 are the
refractive indexes of the two medium types, such as glass
coverslip and cell, respectively. qDF microscopy was used to
reveal neutrophil rolling under high shear stress (Sundd et al.,
2010; Sundd and Ley, 2013) and was used in monitoring the
dynamics of β2 integrin activation during human neutrophil
arrest (Fan et al., 2019; Fan et al., 2016). By combining qDF
with conformational reporting antibodies KIM127 (Lu et al.,
2001a; Robinson et al., 1992) and mAb24 (Dransfield and
Hogg, 1989; Kamata et al., 2002; Lu et al., 2001b), the
canonical switchblade model of β2 integrin activation (Luo et
al., 2007) was confirmed (Fan et al., 2016). Meanwhile, an
unexpected E−H+ conformation of β2 integrins was observed,
which suggested an alternative pathway of β2 integrin
activation that E−H− integrins can acquire high-affinity first
(E−H+) and then extended (E+H+). The E−H+ β2 integrins
can bind ICAM ligands expressed on the same neutrophil in
cis and inhibit integrin activation and neutrophil adhesion
(Fan et al., 2016).

Super-resolution imaging of integrins
The spatial resolution of microscopic techniques is limited by
Abbe’s law, according to which the highest achievable lateral
and axial resolution (dx,y and dz), or diffraction limits, can be:

FIGURE 2. Schematics of qDF (quantitative dynamic footprinting) microscopy.
The side-view neutrophil footprint (~100 nm) converted from the TIRF (total internal reflection fluorescence) membrane fluorescence image
(inset image) was shown (grey surface). The distance of the closest approach of the neutrophil with the coverslip is Δ0. This is the position with
the brightness cell-membrane fluorescence signal (shown in the inset image). The z-distance (Δ) of other positions was calculated by their cell-
membrane fluorescence signal. Two examples (Δ1 and Δ2) were shown.
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dx;y ¼ �

2NA

dz ¼ 2�

NA2

in which λ is the wavelength of the excitation beam, and NA is
the numerical aperture of the microscope objective.
NA ¼ n sina, with n being the refractive index of the
medium and α being the half-cone angle of the focused light
produced by the objective (Abbe, 1881; Hon, 1882). For
example, in a conventional microscope, when a specimen is
excited by blue-green light whose wavelength is about 488–
550 nm, and an oil immersion objective with NA = 1.40 is
used, lateral and axial resolution can be ∼200 nm and ∼500
nm, respectively (Thompson et al., 2002). Abbe’s law holds
only true for wide-field microscopes.

Several super-resolution techniques circumvent the
limits of diffraction and increase both lateral and axial
resolution. One approach beyond the limit of diffraction is
to sharpen the point-spread function of the microscope by
spatially patterned excitation, including STED (Hell and
Wichmann, 1994; Klar et al., 2000), reversible saturable
optically linear fluorescence transitions (RESOLFT) (Hell,
2003, 2007, 2009; Hofmann et al., 2005), structured-
illumination microscopy (SIM) (Gustafsson, 2000), and
saturated structured-illumination microscopy (SSIM)
(Gustafsson, 2005). Another is a pointillist approach that
requires localization of individual fluorescent molecules
(single-molecule localization microscopy, SMLM), such as
stochastic optical reconstruction microscopy (STORM)
(Rust et al., 2006), photoactivated localization microscopy
(PALM) (Betzig et al., 2006), fluorescence photoactivation
localization microscopy (fPALM) (Hess et al., 2006), points
accumulation for imaging in nanoscale topography (PAINT)
(Sharonov and Hochstrasser, 2006), ground-state depletion
(GSD) microscopy (Folling et al., 2008). Expansion
microscopy (ExM) expands the sample using a polymer
system. Positions of labeled molecules were measured by
using conventional microscopes. Based on the factor of
expansion, the localization of these molecules in the
unexpanded cells can be calculated back to achieve
nanoscale resolution (Chen et al., 2015). Several super-

resolution microscopy techniques have been summarized
before (Galbraith and Galbraith, 2011; Pujals et al., 2019;
Wen et al., 2020a), but some will be described here in more
detail (Tab. 2).

Super-resolution imaging techniques have been used to
study integrin molecules in recent years. Interferometric
photoactivation and localization microscopy (iPALM) was
used to visualize the three-dimensional structure of FAs,
which includes the integrin αV and paxillin-enriched
integrin signaling layer, the talin and vinculin-enriched force
transduction layer, and zyxin and vasodilator-stimulated
phosphoprotein-enriched actin regulatory layer
(Kanchanawong et al., 2010). SIM was used to illustrate the
linear β1 integrin distribution in FAs (Hu et al., 2015).
Using a new super-resolution imaging technique with a
similar principle to PALM, signal molecular tracking of β1
and β3 integrin molecules was performed, and they were
found entering and exiting from FAs and repeatedly
exhibiting temporary immobilizations (Tsunoyama et al.,
2018). Using both STED and STORM microscopy, both
active and inactive β1 integrins were visualized in FAs and
were found segregating into distinct nanoclusters (Spiess et
al., 2018). STED was also used in testing the colocalization
of active α5β1 integrins and PPFIA1 to demonstrate the role
of PPFIA1 in active α5β1 integrin recycling. In another
study, both active β1 and β5 integrins were found separately
located in FAs (Stubb et al., 2019) by Airyscan confocal
microscopy, a super-resolution technique with similar
resolution compared to SIM (Huff, 2015). Airyscan confocal
microscopy utilized a 32-channel gallium arsenide
phosphide photomultiplier tube (GaAsP-PMT) area detector
that collects a pinhole-plane image at every scan position.
Each detector element functions as a single, very small
pinhole. Knowledge about the beam path and the spatial
distribution of each detector channel enables very light-
efficient imaging with improved resolution and signal-to-
noise ratio. αV and β5 integrins in FAs were also imaged by
iPALM in this study. Airyscan confocal microscopy was also
used to identify the colocalization of GGA2, RAB13, and
active β1-integrins to demonstrate the role of GGA2 and
RAB13 in β1-integrin recycling (Sahgal et al., 2019), and
image the localization of α11 and β1 integrins on mammary
gland stromal fibroblast spreading on collagen (Lerche et al.,
2020). GSD microscopy was used to visualize the

TABLE 2

Claimed resolution of super-resolution microscopy used in integrin imaging

Name lateral resolution axial resolution

Structured-Illumination Microscopy 100 nm (Gustafsson et al., 2008) 250–350 nm (Gustafsson et al., 2008)

Airyscan Confocal Microscopy 120 nm (Huff et al., 2017) 350 nm (Huff et al., 2017)

Stimulated Emission Depletion Microscopy 45 nm (Neupane et al., 2014) 100 nm (Neupane et al., 2014)

Stochastic Optical Reconstruction Microscopy 20 nm (Rust et al., 2006) 50 nm (Huang et al., 2008)

Photoactivated Localization Microscopy 20 nm (Temprine et al., 2015) 50 nm (Temprine et al., 2015)

Interferometric Photoactivation and Localization Microscopy 20 nm (Shtengel et al., 2009) 10 nm (Shtengel et al., 2009)

Ground State Depletion Microscopy 20 nm (Dixon et al., 2017) 50 nm (Dixon et al., 2017)
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LPS-induced colocalization of chloride intracellular channel
protein 4 (CLIC4) and β1 integrins, demonstrating the role of
CLIC4 in cell adhesion and β1 integrin trafficking (Argenzio et
al., 2014). By using iPALM, the extension of αLβ2 integrins
was monitored by the axial movement of the αLβ2 headpiece
towards the coating substrate during Jurkat T cell migration
(Moore et al., 2018). Using Fab fragments of mAb24 and
KIM127, the distribution of E−H+, E+H−, and E+H+ β2
integrins on neutrophil footprint during arrest was visualized
by STORM (Fan et al., 2019). Combined with molecular
modeling, the SuperSTORM technique was developed (Fan et
al., 2020), and the orientation of E−H+, E+H−, and E+H+ β2
integrins were indicated. This work enabled visualizing
integrin molecules at the single molecular level and was the
first to show the orientation of different conformation
integrins. An unexpected face-to-face orientation of E−H+ β2
integrins is held by cis interaction with ICAM dimers (Fan et
al., 2019). Airyscan confocal microscopy was used in imaging
β2 integrin activation on neutrophils interacting with
HUVECs (Fan et al., 2019). Our work (Fan et al., 2019) and a
previous one (Moore et al., 2018) mentioned above were both
focusing on the conformational changes of β2 integrins. Using
iPALM, Moore et al. (2018) were able to show the E+ of β2
integrins by measuring the distance of β2 integrin headpiece to
the substrate. In our work, we measured not only the E+ but
also the H+ of β2 integrins. We can report all three active β2
integrin conformations (E−H+, E+H−, and E+H+). The pitfall of
our work is that we assessed fixed samples, and iPALM can
assess live cells. STED was used to show the colocalization of
integrin αLβ2 and low-density lipoprotein receptor-related
protein 1 (LRP1) on neutrophils during cytokine midkine-
induced neutrophil recruitment. (Weckbach et al., 2019).
PALM was used to identify integrin β3 nanoclusters within
FAs (Deschout et al., 2016; Deschout et al., 2017) and discover
the role of integrin β3 nanoclusters in bridging thin matrix
fibers and forming cell-matrix adhesions (Changede et al., 2019).

Intravital imaging of integrins
Whereas cellular behavior is different between in vitro and in
vivo settings, biological processes are the sum of individual
cellular behaviors shaped by many environmental factors.
Endless efforts have been made to image cells residing in
live animals at microscopic resolution, giving rise to
intravital microscopy (IVM), an ever-developing field. In its
infancy, blood flow within microvessels and circulating
leukocytes targeting to inflamed tissue have been seen
through bright field transillumination (Kunkel et al., 2000;
Ley et al., 1993; Pittet and Weissleder, 2011; Ramadass et
al., 2019). With the advent of fluorescence microscopy,
genetically encoded fluorescent proteins (Cappenberg et al.,
2019; Deppermann et al., 2020; Girbl et al., 2018; Honda et
al., 2020; Hsu et al., 2019; Lammermann et al., 2013; Lefort
et al., 2012; Marcovecchio et al., 2020; Matlung et al., 2018;
McArdle et al., 2019; Owen-Woods et al., 2020; Powell et
al., 2018; Schleicher et al., 2000; Uderhardt et al., 2019; Wen
et al., 2020b; Wolf et al., 2018) and fluorescent dyes staining
cells ex vivo before adoptive transfer or injected directly into
the animal to enable visualization of endogenous structures
are now available (Arokiasamy et al., 2019; Bousso and
Robey, 2004; Deppermann et al., 2020; Girbl et al., 2018;

Honda et al., 2020; Marcovecchio et al., 2020; Marki et al.,
2018; Owen-Woods et al., 2020; Rapp et al., 2019; Schoen et
al., 2019; Uderhardt et al., 2019; Vats et al., 2020; Wen et
al., 2020b; Wolf et al., 2018). Detection of responses of
individual cells within their natural environment over
extended periods of time and space thus has become possible.

Epifluorescence microscopy can be used as IVM for
studying integrins. One study showed that after 24 h of
cecal ligation puncture, β1 integrins were found in the
neutrophil extracellular traps in the liver and helped to
sequester circulating tumor cells (Najmeh et al., 2017). In
another study, RGD–Quantum Dot was used to report
integrin activation on tumor vessel endothelium (Smith et
al., 2008). Confocal microscopes can also be used for IVM.
Spinning disk confocal IVM was used to visualize β3
integrins expressed on vascular endothelial cells, which
tethers and interacts with Borrelia burgdorferi in circulation
during infection (Kumar et al., 2015). Integrin α2 has been
used as a marker for platelet aggregates in the spinning disk
confocal intravital imaging of hepatic ischemia-reperfusion
injury (Van Golen et al., 2015). Multiphoton laser scanning
microscopy is another popular method for IVM. Its
conception is based on the principle that a fluorophore can
not only be excited by one high-energy photon but also two
simultaneous low-energy near-infrared photons with longer
wavelengths of around 700 to 1,000 nm (Göppert-Mayer,
2009; Kawakami et al., 1999). Two-photon excitation needs
a very high local photon density, which is reached at the
focal plane. Thus, only fluorophores in the focal plane can
be excited in two-photon microscopy. Fluorophores outside
the focal plane are highly unlikely to be excited, making a
high signal-to-background ratio. In confocal microscopy,
fluorophores outside the focal plane will also be exited. In
comparison, two-photon microscopy will have less
photobleaching of fluorophores outside the focal plane,
resulting in the lowest phototoxicity possible (Squirrell et al.,
1999; Svoboda and Block, 1994). Great improvement of
penetration depths (200–300 μm or even 1000 μm) and
longer recording periods can be achieved by this technology
(Benninger and Piston, 2013; Hickman et al., 2009; Kobat et
al., 2011; Theer et al., 2003). Thus, multiphoton microscopy
is a great choice of intravital imaging.

As mentioned before, integrin β2-mCFP mice were
developed (Hyun et al., 2012), and these mice helped
discover a β2 integrin-enriched uropod elongation during
leukocyte extravasation using multiphoton IVM. Integrin
αM-mYFP mice were developed (Lim et al., 2015) as well.
In this study, the migration of αM+ leukocytes in the
cremaster or trachea during fMLP stimulation or influenza
infection was imaged by multiphoton IVM, respectively. In
the follow-up study using αM-mYFP/β2-mCFP and αL-
mYFP/β2-mCFP mice (Hyun et al., 2019), the activation of
integrin αMβ2 and αLβ2 were reported by FRET in vivo for
the first time using multiphoton IVM. It was found that
αLβ2 is more important than αMβ2 in neutrophil
transendothelial migration.

Förster Resonance Energy Transfer (FRET) of integrins
Since there are large conformational changes during integrin
activation, techniques sensitive to distance changes like

INTEGRIN FLUORESCENCE IMAGING 239



FRET become useful tools in studying integrins. FRET used as
a ‘‘molecular ruler’’ ushered in the quantification of
intermolecular interactions (Johnson, 2005; Stryer and
Haugland, 1967). The concept of FRET was originally
proposed by Teodor Förster in 1948. FRET is a phenomenon
of quantum mechanics involving two matched fluorophores
when the emission spectrum of the donor fluorophore
overlaps with the excitation spectrum of the acceptor
fluorophore. When the two fluorophores are in close physical
juxtaposition (≤10 nm), the excitation of the donor results in
emitted photons, which are quenched by and transfer the
energy to the acceptor, resulting in the emission of acceptor
fluorescence (Huebsch and Mooney, 2007; Periasamy, 2001).
The efficiency of energy transfer is inversely related to the 6th
power of the inter-molecular distance:

E ¼ 1

1þ r=R0ð Þ6

E is the efficiency, r is the intermolecular distance, and R0,
known as Förster constant, is the value of r when this pair of
donor and acceptor achieve 50% FRET efficiency. R0 depends
on the overlap integral of the donor emission spectrum with
the acceptor absorption spectrum and their mutual molecular
orientation as expressed by the following equation:

R0 ¼ 9 ln10ð Þ
128p5NA

� QDk
2

h4
� J

in which NA is Avogadro’s number; QD is the fluorescence
quantum yield of the donor in the absence of acceptor; k2.
is the dipole orientation factor; h is the refractive index of
the medium; and J.is the spectral overlap integral of the
donor-acceptor pair (Wang and Chien, 2007). Therefore, the
range over which FRET can be observed is very narrow;
only intra- and inter-molecular distances within ~2–10 nm
can be detected (Huebsch and Mooney, 2007; Periasamy,
2001). The FRET efficiency can be altered by any change of
the orientation or distance between the two fluorophores
(Tsien, 1998).

To obtain a FRET signal for studying the interaction of
two proteins, they must be fluorescently labeled. One
approach is to label the antibodies or antagonist/agonist
binding to the two proteins with proper fluorophores.
Fluorophore-conjugated antagonist/agonist can be
synthesized, while labeling kits facilitating covalent binding
(usually using amide bonds) of many different fluorescent
molecules to antibodies are commercially available (Fan et
al., 2019; Fan et al., 2016; Masi et al., 2010; Wen et al.,
2020b). Another approach is introducing genes of two
fluorescent proteins (FPs) to the donor/acceptor pair of
proteins, respectively. Owing to their excellent extinction
coefficients, quantum yield, and photostability, cyan
fluorescence protein (CFP) and yellow fluorescence protein
(YFP) are the most commonly used pair for FRET
(Giepmans et al., 2006; Tsien, 1998). Green fluorescence
protein (GFP) and red fluorescence protein (RFP) can also
be utilized as a pair of fluorophores for FRET (Bajar et al.,
2016; Lam et al., 2012). Genetic manipulation is conducted
to gain recombinant fused genes, and the 1:1 ratio of donor/

adaptor protein to CFP/YFP greatly simplifies the
calculations of FRET efficiency and the quantification of
protein interactions. One drawback of fusion proteins is the
possibility to exhibit altered biological function or molecular
structure. Thus, careful characterization before FRET is
recommended (Masi et al., 2010; McArdle et al., 2016).

Measurements of (1) signal intensity and (2) fluorescence
lifetimes are two major ways to determine FRET efficiency.
Regarding the signal intensity method, the comparable
changes between the intensification of the acceptor’s
emission and synchronous decrease in donor’s emission
facilitate the detection of FRET by splitting the emission
from the two fluorophores. The split lights are then filtered
through a specific filter set and collected separately. The
downsides of this method are: (1) The excitation light of
acceptor may excite the donor owing to the possible overlap
of their excitation spectrum, (2) The leak of donor emission
to the detecting channel of the acceptor, and (3) The faster
photobleaching of the donor compared with that of the
acceptor (Masi et al., 2010). The fluorescence lifetime is an
intrinsic property of fluorophores. It is the characteristic
time that a fluorophore stays in the excited state before the
emission of the fluorescence photon. Fluorescence lifetime
imaging microscopy (FLIM) uses pulsed excitation lasers to
acquire quantitative information through measurements of
fluorescence lifetimes (Lakowicz et al., 1992; Le Marois and
Suhling, 2017). Based on the fact that fluorescence lifetime
decreases proportionally with the efficiency of FRET, FLIM-
FRET serves as a precise way to determine FRET efficiency
(Suhling et al., 2015). Although spectral overlap must always
be taken into consideration in both methods, FLIM can rule
out the influence of local fluorophore concentration or
fluorescence intensity leading to the defects in signal
intensity measurement (Lakowicz and Masters, 2008). There
are additional strategies to measure FRET efficiency. “Donor
de-quenching” (or “Acceptor photo-bleach”) method photo-
bleaches the acceptor; thus, the increase of fluorescence in
the “de-quenched” donor is proportional to FRET efficiency.
FRET efficiency can be determined by measurement of
donor fluorescence intensity before and after photobleaching
of the acceptor. This method is an endpoint measurement
making it incompatible with dynamic monitoring (Carman,
2012; Periasamy, 2001; Wang and Chien, 2007).

With the help of the improvement in microscopic
techniques and labeling with fluorophores, great advantages
have been made regarding integrin conformation and
signaling. FRET can be used to identify the spatial
movement of integrin cytoplasmic tails (Fig. 3A). In a
classical study, leukocytes were stably transfected with FRET
donor and acceptor pair mCFP and mYFP at the C-termini
of the integrin αL and β2 subunits, respectively. In the
resting state, high FRET efficiency was measured, indicating
that the c-termini of the αL and β2 subunits were close to
each other. Upon the triggering of the integrin inside-out
signaling (chemokine SDF-1 and its receptor CXCR4) or
outside-in signaling (ICAM-1 in the presence of Mn2+), the
FRET efficiency was significantly reduced, indicating a
spatial separation of αL and β2 cytoplasmic tails.
Bidirectional integrin signaling is accomplished by coupling
extracellular conformational changes to the separation of the
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cytoplasmic domains (Kim et al., 2003). A similar strategy has
been applied to study αMβ2 integrin activation (αM-mCFP,
β2-mYFP) as well (Fu et al., 2006; Lefort et al., 2009). The
first dual-fluorescent protein KI mice – αLβ2 FRET (αL-
YFP/ β2-CFP) mice and αMβ2 FRET (αL-YFP/ β2-CFP)
mice – have been successfully constructed. By using two-
photon intravital ratiometric analysis of (CFP/YFP) in
neutrophils from these mice, determination of differential
regulation of integrin αLβ2 and αMβ2 during neutrophil
extravasation became realized (Hyun et al., 2019).

FRET can also be used to identify conformational
changes in the integrin ectodomain domains. One method is
to label the integrin headpiece and cell membrane/integrin
tailpiece with FRET donor and acceptor, respectively, to
measure the extension/unbending of integrins (Fig. 3B). In
some studies, the LDV-FITC probe binding to the α4-
integrin headgroup and octadecyl rhodamine B incorporated
into the plasma membrane were used as the donor/acceptor

pair for FRET assays. Several publications have proved the
feasibility of detecting the extension of integrin α4β1
(Chigaev et al., 2003a; Chigaev et al., 2008; Sambrano et al.,
2018). Integrin αIIbβ3 at the surface of blood platelets plays
a primary role in hemostasis. FRET using fluorescently
labeled Fab fragments of monoclonal antibodies targeting
the βA/I-like domain of β3 subunit (donor, Alexa Fluor 488
conjugated P97 Fab) and the calf-2 domain of αIIb subunit
(acceptor, Cy3-M3 Fab or Cy3-M10 Fab) can determine the
distance between these two domains at rest (about 6 nm) or
activation (about 17 nm) states. Researchers found that
activated αIIbβ3 in living platelets exhibits a conformation
less extended than proposed by the switchblade model
(Coutinho et al., 2007). In another study, a FITC-conjugated
monoclonal antibody against integrin αM headpiece and
octadecyl rhodamine B incorporated into the plasma
membrane were used as the donor/acceptor pair for FRET
assays to measure the extension of integrin αMβ2 (Lefort et

FIGURE 3. Principles of FRET (Förster resonance energy transfer) in integrin studies.
(A) The cytoplasmic tails of α and β subunits were labeled with FRET donor and acceptor, respectively. The separation of cytoplasmic tails is
assessed by the reduction of FRET. (B) The integrin headpiece and cell membrane/integrin tailpiece were labeled with FRET donor and
acceptor, respectively. The extension/unbent of integrin ectodomain is assessed by the reduction of FRET. (C) The cytoplasmic tails of α
or β subunits were labeled with both FRET donor and acceptor. The clustering of integrin molecules is assessed by the increase of FRET.
(D–E) The interaction of integrins and their ligands (D, both in cis and in trans) or cytoplasmic regulators (E, interaction or force
measurement) can be assessed by FRET.
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al., 2009). Two distinct allosteric antagonists (BIRT 377 and
XVA-143) targeting the αLI domain and β2 subunit I–like
domain were used as donors. FRET conducted on live cells
using a real-time flow cytometry approach was used to
measure the distance between these two donors and a novel
lipid acceptor PKH 26. Researchers found that triggering of
the pathway used for T-cell activation (phorbol ester and
thapsigargin) induced rapid extension of the integrin αLβ2
(Chigaev et al., 2015).

Instead of attaching donor and acceptor respectively to α
and β subunits, studying integrin micro-clustering requires
attachment of both the donor and acceptor to either the α
or β subunit within one heterodimeric integrin (Fig. 3C). In
this case, integrin micro-clustering will lead to FRET. In a
study focused on Drosophila αPS2CβPS integrin, mVenus and
mCherry were fused to cytoplasmic and transmembrane
domains of integrin β subunits. Mutations in α subunit
cytoplastic domain (GFFNR to GFANA) or β subunit
(V409D), which showed higher affinity for ligands, showed
~2-3-fold higher FRET values compared to that of wild type
(Smith et al., 2007). In another study, K562 cells were
transiently transfected with αL-mCFP, αL-mYFP, and wild-
type β2, generating approximately equal amounts of αL-
mCFP/2 and αL-mYFP/2 cells. The binding of ICAM-1
oligomers resulted in significant micro-clustering. In
contrast, monomeric ICAM-1 did not induce integrin αLβ2
clustering (Kim et al., 2004). Using the same methodology,
researchers found the disruption of the αLβ2
transmembrane domain by mutation of a key interface
residue Thr-686 in the β2 transmembrane domain
promoted binding of αLβ2 with ICAMs and facilitated αL
microcluster formation (Vararattanavech et al., 2009).

FRET can also be used to assess interactions of the
integrin headpiece with its ligands (Fig. 3D) and integrin
cytoplasmic domains with the cytoskeleton and various
signaling molecules (Fig. 3E) during integrin inside-out and
outside-in signaling. In our previous study, we used FRET
to detect the in-cis interaction of E−H+ β2 integrins and
ICAM-1 (Fan et al., 2016). HA58-FITC, which binds
ICAM-1 domain 1 and blocks its interaction with integrin
αLβ2, but not integrin αMβ2, was used as the FRET donor.
Antibody mAb24-DyLight 550 binding β2 integrin H+

headpiece was used as the acceptor. When integrin αMβ2
bound ICAM-1 in cis, the two antibodies were close enough
to have FRET. When this interaction was blocked by mAb
R6.5, which binds to integrin αMβ2-binding domain 3 of
ICAM-1, or replacing the acceptor by KIM127- DyLight 550
(binding to the knees of E+ β2 integrins), FRET did not
occur. These results indicate that E-H+ integrin αMβ2 binds
ICAM-1 in cis (Fan et al., 2016). In another study,
antibodies against FcγRIIA (Alexa Fluor 488) and integrin
αMβ2 (Alexa Fluor 568) were used as donor and acceptor,
respectively, to demonstrate the cis interaction of integrin
αMβ2 and FcγRIIA by FLIM-FRET (Saggu et al., 2018).
High-throughput dynamic three-color single molecule-FRET
tracking was conceived. Orthogonal labeling of RGD and
PHSRN motifs within fibronectin serve as FRET donor
(Alexa Fluor 555) and acceptor (Alexa Fluor 594) at
residues 1381 and 1500, respectively. FRET signatures are
distinctive for the folded and unfolded state. The

extracellular domain of αvβ3 was labeled with Alexa Fluor
647. By monitoring the intensity of all three dyes, the
impact of fibronectin conformation and dynamics on αvβ3
integrin-binding can be determined. A more stable
fibronectin-αvβ3 complex was observed when fibronectin
exhibited a more folded conformation (Kastantin et al.,
2017). Interaction of PKCα with β1 integrin was detected by
FLIM-FRET performed in MCF7 cells, in which GFP-PKCα
fusion protein was used as the donor, and integrin β1
antibody conjugated with Cy3.5 was used as the acceptor
(Ng et al., 1999). Using FLIM-FRET, GFP-conjugated β1
integrin of mouse embryonic fibroblasts was found to
interact with mRFP conjugates of the talin rod domain and
α-actinin but not the talin head domain or paxillin (Parsons
et al., 2008). Schwartz and colleagues have constructed a
FRET-based tension sensor methodology, which consists of
monomeric teal fluorescent protein (mTFP1) and
monomeric Venus (mVenus) joined by a 40 amino-acid
elastic linker (Faulon Marruecos et al., 2016). The elastic
linker can elongate upon tensile force in the range of 0–6
pN. Incorporation of this reporter into the β2 subunit of
integrin αLβ2 enabled researchers to find that actin
polymerization and extracellular ligand-binding are in a
positive feedback loop (Nordenfelt et al., 2016). FRET was
used to assess the association of β1-integrin and ErbB2,
which is an important integrator of transmembrane
signaling by the EGFR family, on tumor cells. (Mocanu et
al., 2005).

Conclusions

Overall, optical imaging of integrin molecules helps us
understand the regulation of integrin expression,
localization, clustering, conformational changes, and
functions. Although there are various antibodies targeting
integrin to visualize integrins with different conformations,
most of these antibodies are specific for human integrin
molecules. This limits the use of these antibodies for
studying integrins in physiologically-relevant in vivo
systems, such as mouse disease models, as well as in loss-of-
function assays of integrin regulators because it is
impossible to do genetic editing in humans. It has been
reported that introducing human β2 integrins restores the
infectious deficiency in β2 integrin knockout mice (Wilson
et al., 1993). Thus, replacing the mouse integrin gene with
human integrin cDNA might be a way to expand the use of
existing integrin antibodies.

As we discussed, super-resolution microscopy is a
powerful tool for studying integrins. However, their uses in
integrin studies are mostly restricted to phenomenon
reports and morphology studies. Thus, finding a way to dig
into the molecular details of integrin regulation and
function using super-resolution microscopy needs more
attention. For example, super-resolution imaging can better
assess the clustering of integrin molecules. Assessing the
localization of important integrin modulators, such as talin,
kindlin, RIAM, etc., by super-resolution microscopy will
help understand their roles in regulating integrin activation.

FRET is a powerful tool to study dynamic changes in
integrin conformation, but most FRET assays of integrins
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are restricted in cell lines. Only two integrin FRET mouse
strains (αLβ2 and αMβ2) were developed. Thus, the
development of more integrin FRET mouse strains is
needed to visualize integrin conformation changes in vivo.
Those mice could also be used in studying molecular
mechanisms of integrin regulation and functions or in
different disease models.

Although many techniques were developed to visualize
integrin molecules as we reviewed above, whether the
fluorescence labeling affects integrin function needs to be
demonstrated in the specific studies, especially for activating
specific integrin antibodies and fluorescent protein tags. For
example, KIM127 was reported to stimulate leukocyte
aggregation (Robinson et al., 1992), and mAb24 may lock
the H+ conformation of β2 integrins (Smith et al., 2005).
Thus, when using them in imaging, whether they affect the
specific function interested in your study becomes critical.
When we use them in studying integrin activation during
neutrophil rolling and arrest, we tested that they do not
affect ligand binding of β2 integrins and neutrophil arrest
(Fan et al., 2016). This is the same case for fluorescent
protein tags. In the iPALM study of β2 integrin (Moore et
al., 2018), a mEos3.2 tag was inserted in the β-propeller
domain of the αL-subunit of integrin αLβ2. They measure
the axial movement of the mEos3.2 tag to report E+ of
integrin αLβ2. They have tested that the fluorescence
protein insertion in this site does not affect cell adhesion
and ICAM-1 binding (Bonasio et al., 2007). In another
study, a CFP-YFP tension sensor was inserted into the β2
integrin cytoplasmic tail to measure the force bearing of β2
integrins during cell migration using FRET (Nordenfelt et
al., 2016). They have demonstrated that the insertion they
used does not affect cell migration compared to cells
transfected with wild-type β2 integrins.
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