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ABSTRACT

The existing concepts of picture fuzzy sets (PFS), spherical fuzzy sets (SFSs), T-spherical fuzzy sets (T-SFSs) and
neutrosophic sets (NSs) have numerous applications in decision-making problems, but they have various strict
limitations for their satisfaction, dissatisfaction, abstain or refusal grades. To relax these strict constraints, we
introduce the concept of spherical linear Diophantine fuzzy sets (SLDFSs) with the inclusion of reference or control
parameters. A SLDFSwith parameterizations process is very helpful formodeling uncertainties in themulti-criteria
decisionmaking (MCDM) process. SLDFSs can classify a physical systemwith the help of reference parameters.We
discuss various real-life applications of SLDFSs towards digital image processing, network systems, vote casting,
electrical engineering, medication, and selection of optimal choice. We show some drawbacks of operations of
picture fuzzy sets and their corresponding aggregation operators. Some new operations on picture fuzzy sets are
also introduced. Some fundamental operations on SLDFSs and different types of score functions of spherical
linear Diophantine fuzzy numbers (SLDFNs) are proposed. New aggregation operators named spherical linear
Diophantine fuzzy weighted geometric aggregation (SLDFWGA) and spherical linear Diophantine fuzzy weighted
average aggregation (SLDFWAA) operators are developed for a robust MCDM approach. An application of the
proposed methodology with SLDF information is illustrated. The comparison analysis of the final ranking is also
given to demonstrate the validity, feasibility, and efficiency of the proposed MCDM approach.

KEYWORDS

Spherical linear Diophantine fuzzy set; new operations of picture fuzzy sets; spherical linear
Diophantine fuzzy weighted geometric aggregation operator; spherical linear Diophantine fuzzy weighted
average aggregation operator; MCDM

1 Introduction

Classical mathematics is not necessarily useful when solving real-world issues because of the
complexities and vagueness inherent in such questions. Zadeh [1] developed the fuzzy set concept
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by awarding the grades from [0, 1] to alternatives. Since Zadeh’s approach to the fuzzy collection
and fuzzy logic has been utilized in numerous domains to describe imprecision, ambiguity, and
obscureness. Zadeh [2] developed the definition of the linguistic component to linking real-life
conditions to mathematical models. However according to Zadeh [2] linguistic index is a variable,
whose meanings are statements or phrases in imaginary or real expression. When such terms
are represented by fuzzy sets specified over a reference set, then the variable is said to be the
fuzzy linguistic variable. Atanassov [3–5] established the notion of intuitionistic fuzzy sets (IFSs)
as an extension of fuzzy sets by adding the notions of satisfaction degree and dissatisfaction
degree including the constraint that the addition of such two classes would not surpass unity.
Atanassov [6] described the geometrical viewpoint of the IF-objects. In 1998 the concept of the
neutrosophic system was proposed by Smarandache [7] as an annexed form of IFSs and fuzzy sets.
This structure contains satisfaction, indeterminacy, and dissatisfaction grades for every alternative
of the reference set. All the grades are independent of each other and can be taken from [0, 1].

There exist various real situations in which we cannot tackle the input data by using fuzzy
sets, IFSs and neutrosophic sets and human opinion cannot be always between yes or no. For
example, in the last few decades there exists some real-life applications in medical image analysis
and diagnosis [8–14], radar image processing [15–18], biometric and iris recognition [19,20], human
detection [21,22]. Akbarizadeh [10,11] introduced a new statistical-based kurtosis wavelet energy
feature for texture recognition of SAR images and Segmentation of SAR satellite images using cel-
lular learning automata and adaptive chains. Akbarizadeh et al. [12,15] presented a new ensemble
clustering method for PolSAR image segmentation. Akbarizadeh et al. [13] a new curvelet-based
texture classification approach for land cover recognition of SAR satellite images. Akbarizadeh
et al. [14] introduced the idea of a segmentation parameter estimation algorithm based on curvelet
transform coefficients energy for feature extraction and texture description of SAR images. Gong
et al. [23] defined the change detection in synthetic aperture radar images based on image fusion
and fuzzy clustering. Modava et al. [21,22] introduced the coastline extraction from SAR images
using spatial fuzzy clustering and the active contour method. Rahmani et al. [24] presented the
unsupervised feature learning based on sparse coding and spectral clustering for segmentation of
synthetic aperture radar images. Shanmugan et al. [25] introduced the textural features for radar
image analysis. Tirandaz et al. [26] proposed a two-phased algorithm based on kurtosis curvelet
energy and unsupervised spectral regression for segmentation for SAR images.

In many complex real-life circumstances, the knowledge can not necessarily be restricted to
yes or no, although it may be yes, abstain, no, and denial. To deal with these types of situations
Cuong [27–29] introduced the picture fuzzy set (PFS) in 2013. Elements in this system reflect
degrees of happiness, abstinence, and dissatisfaction under the restriction 0≤ T̆ + Ŭ + K̆≤ 1 and
with the refusal degree R̆= 1− (T̆ + Ŭ + K̆). This method is similar to human existence and also
addresses uncertainty about decision-making difficulties.

According to the constraint of the picture fuzzy set, all the grades are dependent on each
other and make us unable to assign the values of these grades independently from [0, 1]. Con-
sidering these limitations Andekah et al. [30] presented the new idea of a spherical fuzzy set
(SFS) with the constraint 0 ≤ T̆ 2 + Ŭ2 + K̆2 ≤ 1. To remove the restrictions of SFS, they
established another structure named as T-spherical fuzzy set (T-SFS) satisfying the constraint
0≤ T̆ n+ Ŭn+ K̆n ≤ 1. As we know Pythagorean fuzzy sets (PyFSs) [31–34] and q-rung orthopair
fuzzy sets (q-ROFSs) [35–37] are generalized models of IFSs. On the same pattern SFS and
T-SFS are generalizations of picture fuzzy set. SFSs and T-SFSs enlarge the space of grades
and easily handle ambiguities in decision-making problems. Si et al. [38] an approach to rank
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picture fuzzy numbers for decision-making problems. Stanujkić et al. [39] proposed an extension
of the WASPAS method for decision-making problems with intuitionistic fuzzy numbers: A case
of website evaluation. Sharma et al. [40] a rough set theory application in forecasting models.

There exist some limitations in SFSs and T-SFSs corresponding to the satisfaction, abstinence,
and dissatisfaction grades. Both constraints show that there exists some dependency between the
grades. To remove these limitations, a novel model of spherical linear Diophantine fuzzy set
(SLDFS) is introduced with the constraints 0 ≤ ᾰT̆ + β̆Ŭ + η̆K̆ ≤ 1 and 0 ≤ ᾰ + β̆ + η̆ ≤ 1,
where ᾰ, β̆ and η̆ are reference parameters corresponding to the satisfaction, abstinence, and
dissatisfaction grades respectively, and taken from the interval [0, 1]. The beauty of this new idea
is that we can take all the grades independently from [0, 1] and reference parameters categorize
the structure and handle uncertainties in a parametric manner. In the neutrosophic set, we can
take all the grades independently but it does not contain parameterizations. So SLDFS is more
efficient and effective as compared to picture fuzzy set, SFS, T-SFS, and neutrosophic set.

1.1 Decision-Making Based Hypothetical Data Interpretation
Molodtsov [41] emerged as a statistical paradigm for working out complexities of the

sentiment of a different category of sets conventionally regarded as soft sets. Numerous math-
ematicians have worked on various hybrid structures of fuzzy and soft sets in the last few
decades. Agarwal et al. [42] introduced different findings and their implementations on simplified
intuitionistic fuzzy soft sets. Çağman et al. [43] developed the philosophy of fuzzy soft sets (FSSs)
and its decision-making implementations. The notion of fuzzy topological spaces was developed
by Chang [44]. Coker [45] developed the idea of IF-topological space.

Garg [46–48] described generalized aggregation of “Pythagorean fuzzy information” utilizing
Einstein operations, generalized “intuitionstic fuzzy informational” geometric interaction operators
utilizing Einstein t-conorm and t-norm, accuracy mapping under “interval-valued Pythagorean
fuzzy environment” and their implementations in selecting optimal solution in different issues.
Chen et al. [49] constructed the methodology of MCDM based on vague set theory. Tversky
et al. [50] provided several developments on the collective representation of ambiguity in the
prospect theory. With the addition of t-conorm and t-norm, Dombi [51] presented the defini-
tion of the Dombi operators. Feng et al. [52,53] established an adaptive solution to fuzzy soft
sets decision-making obstacles. Using empirical examples they offered a novel perspective on
“generalized intuitionistic fuzzy soft sets” (GIFSSs). Jose et al. [54] analyzed various operators,
score with accuracy functions, and MCDM based on IF-numbers (IFNs). Kaur et al. [55] devel-
oped aggregation algorithms on “cubic intuitionistic fuzzy numbers” (CIFNs), and proposed a
decision-making framework.

Mahmood et al. [56] developed cubic hesitant fuzzy numbers (CHFNs) generalized aggre-
gation operators and introduced an algorithm for combinatorial optimization problems. Chen
et al. [57] presented an annex of a bipolar fuzzy set titled an m-polar fuzzy set. Wang et al. [58]
continued to work on single-valued neutrosophic structures and established their applications. Riaz
et al. [59–62] investigated multiple-criteria group agribusiness decision-making utilizing distinct
“cubic m-polar fuzzy aggregation operators.” They created the idea of a “linear Diophantine
fuzzy set” (LDFSs) as an annex of IFSs, PyFSs, and q-ROFSs. They addressed the shortcom-
ings of current systems and built a new model through the use of comparison parameters to
tackle uncertainties. For the correct variety of material handling appliances the defined “linear
Diophantine fuzzy soft rough sets” (LDFSRSs). Riaz et al. [63] established some results on “cubic
bipolar fuzzy ordered weighted” aggregation operators with its implementations. Zhan et al. [64,65]
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introduced the principles of rough soft hemirings, soft rough cover, and their contributions to
MCGDM obstacles. In emergency decision-taking based on WDBA and CODAS, Peng et al. [66]
built several algorithms for interval-valued fuzzy soft sets utilizing new knowledge calculation.

Xu [67] presented the intuitionistic fuzzy aggregation operators. Xu et al. [68] introduced
the principle and implementations of intuitionistic processing of fuzzy knowledge in their book.
Xu [69] presented hesitant fuzzy sets theory and different forms of hesitant fuzzy aggregation
operators in his book. Ye [70] implemented prioritized weighted operators with a valued interval
hesitant fuzzy information and their implementation in MADM. Ye [71] implemented linguistic
neutrosophic cubic numbers and their use in decision-making on various attributes. Guo [72]
proposed the amount of information and attitudinal-based method for ranking Atanassov’s intu-
itionistic fuzzy values. Hong et al. [73] presented the multi-criteria fuzzy decision-making problems
based on vague set theory.

Throughout contemporary science of decision-making, the theory of MCDM plays a signifi-
cant part in addressing the challenges of our everyday lives. It is commonly used in a variety of
fields, including industry, economics, human sciences, and engineering technologies include perfor-
mance evaluation, mission appraisal, business decision-making, and many more. He et al. [74] set
up a project to strengthen the method of the emergency rescue of fatal gas explosion incidents
in Chinese coal mines. Zhang et al. [75,76] proposed a decision-making method focused on a
consensus, multi-attribute community. In a linguistic sense, they presented the style of loss and
the impact study. They also conducted a detailed empirical analysis of the efficiency of consensus
in community decision-making. Yu et al. [77] implemented unbalanced hesitant linguistic word
sets and proposed an expanded TODIM for community decision-making with multi-parameters.
For incomplete preference relations on hesitant fuzzy information, Zhang et al. [78,79] and
Kushwaha et al. [80] set priority weights and associated consistency. Under collective decision-
making, they extracted priority weights from intuitionistic multiplicative choice relationships. They
also developed an innovative method for handling multi-granular measurements of the linguistic
continuum in large-scale MAGDM. Zolfani et al. [81] have implemented an automated frame-
work to help reach consensus. They used techniques of group decision-making for heterogeneous
choice systems.

Some mathematicians have developed several operations in recent years and have implemented
various aggregations operators on fuzzy picture sets. Pamucar et al. [82] photographed the aggre-
gation operators of Dombi and their MADM implementations. Using Muirhead mean operators,
Xu et al. [83] developed a system for MADM with picture fuzzy knowledge. Wang et al. [84]
have developed different approaches for picture fuzzy Muirhead means operators to address
challenges in decision-making. Ramakrishnan and Chakraborty [85] implemented a picture fuzzy
hesitant set and addressed their implementations in combinatorial optimization problems. Khan
et al. [86,87] presented MADM obstacles utilizing logarithmic aggregation operators for PFNs.
They set up picture fuzzy aggregation operators with their implementations focused on Einstein
operations. Zhang et al. [88] have developed certain fuzzy Dombi Heronian mean operators with
their MADM implementations.

1.2 Studies Inspiration, Highlights, and Emphasis
In the above-cited articles depends upon picture fuzzy sets and their aggregation operators,

we found that various operations are not closed. If we input information data by using picture
fuzzy numbers, then the output may be picture fuzzy numbers (PFNs), spherical fuzzy numbers
(SFNs), T-spherical fuzzy numbers (T-SFNs), or neutrosophic numbers. As we know that all the
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defined operators have been constructed by using the operations of picture fuzzy numbers, so
these aggregation operators were not closed. We present counterexamples to show these results
and construct some new operations by using the idea of Wang et al. [89]. He constructed some
new operations on a picture fuzzy set by using the idea of probability. We use the same idea and
constructed some other operations of picture fuzzy numbers. By using the novel idea and new
aggregation operators we observe that all the operations and operators are closed (see Tab. 4).

Due to the usage of reference or comparison parameters, the new SLDFS model is more
effective and robust, rather than current methods. By modifying the physical meaning of reference
parameters, SLDFS often classifies the data into MCDM issues. This collection encompasses the
spaces of current systems and, with the aid of reference or control parameters, enlarges the
space for reality, abstinence, and falsification classes. The inspiration of the developed model is
provided in the entire paper, step by step. Now we are discussing some of the essential priorities
of this article.

1. In certain real-life complexities, the amount of grade of truthness, grade of abstinence,
and grade of falsity for an object fulfilling criteria given by the decision-maker (DM)
can surpass 1 (e.g., 0.8 + 0.7 + 0.4 > 1) and their sum of squares can also surpass 1
(e.g., 0.82 + 0.72 + 0.42 > 1). For these cases, the PFS and the SFSs fails. To resolve such
problems, the constraints on grades of reality/truthness, abstinence, and falsity/falsification
are modified to 0 ≤ T̆ n + Ŭn + K̆n ≤ 1 in case of T-SFSs. We can accommodate certain
ratings independently except with very broad “n” values. In certain functional difficulties,
when all classes are equivalent to 1 (i.e., T̆ = Ŭ = K̆ = 1), we get 1n + 1n + 1n > 1 That
violates the T-SFS constraint. In these cases, MCDM with T-SFS ends in a debacle. It
affects the MCDM process and optimal judgment. Spherical linear Diophantine Fuzzy
set (SLDFS) is more efficient and capable of grappling with such conditions. SLDFS
presents a robust MCDM approach with a wide variety of feasible solutions for modern
world issues.

2. Our first goal is to address this research with an innovative framework of SLDFSs.
Using this model, under the influence of control parameters, we will discuss the fuzzy,
spherical fuzzy, T-spherical fuzzy, and neutrosophic existence of attributes. (For exam-
ple for (0.6 + 0.9 + 0.7 > 1), reference or control parameters should be added so that
(0.6)(0.3) + (0.9)(0.2) + (0.7)(0.1) < 1, where 〈0.3, 0.2, 0.1〉 can be used as comparison
parameters for grades of reality, abstinence and falsification). As the suggested framework
appears identical to the well-known “linear Diophantine equation” ax+by+cz= d of three
variables in pure mathematics, the most appropriate term for the suggested model is the
spherical linear Diophantine fuzzy set (SLDFS).

3. The second objective is to incorporate the reference or control parameters in SLDFSs and
these parameterizations can not be considered by existing models like PFS, SFSs, T-SFSs,
and NSs. SLDFS model enhances the current methodologies in the sense that DMs can
select the degrees freely without any limitations. This definition often classifies the difficulty
by modifying the parameters of the actual frame of reference. Additionally, the grades can
be freely chosen in [0, 1] and their associated reference parameters may express the merits
and demerits of these grades. One can consider the reference parameters as weights of these
grades. The weight vector determined by reference parameters is a key feature of SLDFSs
to deal with uncertainties in MCDM problems.
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4. Our third aim is to show some drawbacks of operations of picture fuzzy sets and their
corresponding aggregation operators. We introduced some new operations on picture fuzzy
sets. We discuss various illustrations to support our results.

5. Our fourth aim is to develop a close relationship between this theoretical model and
the challenges of decision-making under multiple criteria. We develop novel aggregation
operators to manage data uncertainty in a parametric framework. We introduce vari-
ous score functions and accuracy functions in the ranking of feasible alternatives in the
MCDM approach.

This paper’s structure is formulated as follows: Section 2 presents certain primary principles
of PFS, SFSs, T-SFSs, and NSs. In Section 3, we present the innovative definition of SLDFSs.
We discuss the supremacy of the new model and contrast it with current systems. We provide
different examples to link our system to issues in the actual world. In Section 4, we establish
a contrast with the suggested structure by utilizing graphical descriptions of current systems.
We are addressing the limitations of current operations and aggregation operators, and we are
developing several new operations on picture fuzzy numbers. On SLDFNs we describe certain
operations. The concept of spherical linear Diophantine fuzzy weighted geometric aggregation
(SLDFWGA) and spherical linear Diophantine fuzzy weighted average aggregation (SLDFWAA)
operators is set out in Section 5. For the contrast of SLDFNs with specific orders, we provide
numerous score and accuracy functions. In Section 6, we suggest the concept of MCDM to pick
an appropriate emergency strategy in a gas explosion incident, with the aid of identified operators.
We provide a quick contrast between the new framework and the current models and demonstrate
in the aggregated outcomes the effect of score functions on the final decision. Finally, Section 7
summarizes the result of the study.

2 Background

Throughout this segment, we will explore several essential terms like neutrosophic sets, pic-
ture fuzzy sets (PFS), spherical fuzzy sets (SFSs), and T-spherical fuzzy sets (T-SFSs). For the
creation of a hybrid structure called spherical linear Diophantine fuzzy set (SLDFS), we use these
essential components.

Tab. 1 describes the notations included in the entire paper.

Table 1: Overview of notations used throughout the paper

Notation Explanation

Q̆ Universal set
Ğ Elements of set Q̆
Δ Indexing set
T̆ Reality or satisfaction grade
J̆ Indeterminacy or abstinence grade
F̆ falsification or dissatisfaction grade
ᾰ Reference parameter associated to satisfaction grade
β̆ Reference parameter associated to indeterminacy grade
η̆ Reference parameter associated to falsification grade
˘ GD or ˘ G Spherical linear Diophantine fuzzy numbers (SLDFNs)
SLDFN(Q̆) Collection of all SLDFNs
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Definition 2.1 [7] For reference set Q̆, the neutrosophic set (NS) N is portrayed by reality
degree T̆ , an indeterminacy function J̆ and a falsification part K̆. T̆ (Ğ), J̆ (Ğ) and K̆(Ğ) are
real standard or non-standard objects of ]0−, 1+[. We portrayed it as:

N=
{(

Ğ,
〈
T̆
(
Ğ
)
, J̆
(
Ğ
)
, K̆
(
Ğ
)〉)

: Ğ ∈ Q̆
}

satisfying the constraint 0− ≤ T̆ (Ğ)+ J̆ (Ğ)+ K̆(Ğ)≤ 3+.

Afterward, other mathematicians focused on more hybrid fuzzy and IFSs such as neutrosophic
collection, PyFSs, q-ROFSs, SFSs, and T-SFSs. Fuzzy systems and IFSs cannot be extended to
decision-making difficulties in certain cases. The notion of picture fuzzy sets (PFS) was suggested
by Cuong et al. [29], Andekah et al. [30] and Perić et al. [31] to eliminate this downside. Similar
to prior ones this system is similar to human existence and addresses real-life scenarios.

Definition 2.2 [27–29]. For the universal set Q̆ the picture fuzzy set (PFS) can be portrayed as

Pf =
{(

Ğ,
〈
T̆
(
Ğ
)
, Ŭ
(
Ğ
)
, K̆
(
Ğ
)〉)

: Ğ ∈ Q̆
}

where, T̆ , Ŭ , K̆ → [0, 1] represents the satisfaction, uncertainty or abstinence and dissatisfaction
degrees respectively, satisfying the constraint 0 ≤ T̆ (Ğ) + Ŭ(Ğ) + K̆(Ğ) ≤ 1. The value R̆(Ğ) =
1− (T̆ (Ğ)+ Ŭ(Ğ)+ K̆(Ğ)) is known as a grade of refusal for Ğ in Q̆. The triplet 〈T̆ , Ŭ , K̆〉 is
called picture fuzzy number (PFN).

To deal with the limitations of PFS a novel idea of SFSs and T-SFSs was developed by
Mahmood et al. [32] in 2018. Their phenomenon was similar to IFSs, Pythagorean fuzzy sets, and
q-ROFSs, yet the planes are 2-dimensional in those situations. But Mahmood et al. [32] established
extensions of PFS as SFSs and T-SFSs in 3-dimensional space.

Definition 2.3 [32]. For the universal set Q̆ the spherical fuzzy set (SFS) can be portrayed as

S =
{(

Ğ,
〈
T̆s

(
Ğ
)
, Ŭs

(
Ğ
)
, K̆s

(
Ğ
)〉)

: Ğ ∈ Q̆
}

where, T̆s, Ŭs, K̆s → [0, 1] represents the real part, uncertainty or abstinence, and falsification
grades respectively, with the constraint 0 ≤ T̆ 2

s (Ğ) + Ŭ2
s (Ğ) + K̆2

s (Ğ) ≤ 1. The value R̆s(Ğ) =√
1− (T̆ 2

s (Ğ)+ Ŭ2
s (Ğ)+ K̆2

s (Ğ)) is known as a grade of refusal for Ğ in Q̆. The triplet 〈T̆s, Ŭs, K̆s〉
is called spherical fuzzy number (SFN).

Definition 2.4 [32]. For Q̆ the T-spherical fuzzy set (T-SFS) can be portrayed as:

T=
{(

Ğ,
〈
T̆t

(
Ğ
)
, Ŭt

(
Ğ
)
, K̆t

(
Ğ
)〉)

: Ğ ∈ Q̆
}

where, T̆t, Ŭt, K̆t → [0, 1] represents the satisfaction, uncertainty or abstinence and dissatisfaction
grades respectively, with the constraint 0≤ T̆ n

t (Ğ)+ Ŭn
t (Ğ)+ K̆n

t (Ğ)≤ 1; (n= 1, 2, 3, . . .).

The value R̆t(Ğ)= n
√
1− (T̆ n

t (Ğ)+ Ŭn
t (Ğ)+ K̆n

t (Ğ)) is known as a grade of refusal for Ğ in

Q̆. The triplet 〈T̆t, Ŭt, K̆t〉 is called a T-spherical fuzzy number (T-SFN).
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3 Spherical Linear Diophantine Fuzzy Sets

Throughout this section, we illustrate an innovative definition of a spherical linear Dio-
phantine fuzzy set (SLDFS). The suggested framework matches well known linear Diophantine
equation in pure mathematics for three independent variables ax + by+ cz = d. Since, there are
certain restrictions on participation, abstinence, and dissatisfaction categories in NSs, PFSs, SFSs,
and T-SFSs. With the introduction of reference or control parameters, we proposed the idea
of SLDFSs to get rid of certain restrictions. This principle eliminates the limitations on grades
(satisfaction, abstinence, and dissatisfaction), and the decision-maker (DM) can select the grades
equally without constraint. This framework often classifies the issue by picking various kinds of
reference or control parameters. We address the framework of SLDFSs, its graphical depiction,
and use diagrams to illustrate certain principles.

Definition 3.1. A spherical linear Diophantine fuzzy set (SLDFS) SD over Q̆ can be
portrayed as

SD =
{(

Ğ,
〈
T̆D
(
Ğ
)
, ŬD

(
Ğ
)
, K̆D

(
Ğ
)〉

,
〈
ᾰ
(
Ğ
)
, β̆
(
Ğ
)
, η̆
(
Ğ
)〉)

: Ğ ∈ Q̆
}

where, T̆D(Ğ), ŬD(Ğ), K̆D(Ğ), ᾰ(Ğ), β̆(Ğ), η̆(Ğ) ∈ [0, 1] are a reality, uncertainty/abstinence, fal-
sification grades, and reference/control parameters associated with the grades respectively. These
grades fulfill the constraint

0≤ ᾰ
(
Ğ
)

T̆D
(
Ğ
)
+ β̆

(
Ğ
)

ŬD
(
Ğ
)
+ η̆

(
Ğ
)

K̆D
(
Ğ
)
≤ 1; ∀Ğ ∈ Q̆

with 0≤ ᾰ(Ğ)+ β̆(Ğ)+ η̆(Ğ)≤ 1. These comparison parameters may assist to describe or identify
a given system. By modifying the particular interpretation of certain parameters, we may classify
the system. They raise the valuation portion of degrees used in SLDFSs and eliminate constraints
on them. The portion of rejection (refusal part) may be measured as π(Ğ)R̆D = 1−(ᾰ(Ğ)T̆D(Ğ)+
β̆(Ğ)ŬD(Ğ)+ η̆(Ğ)K̆D(Ğ)), where π(Ğ) is the control parameter related to refusal degree. Simply
˘ GD = (〈T̆D, ŬD, K̆D〉, 〈ᾰ, β̆, η̆〉) is called spherical linear Diophantine fuzzy number (SLDFN) with

0≤ ᾰT̆D+ β̆ŬD+ η̆K̆D ≤ 1 and 0≤ ᾰ+ β̆+ η̆≤ 1. The structure of SLDFSs can be shown visually
as Fig. 1.

Definition 3.2 A SLDFS 1SD = {(Ğ, 〈1, 0, 0〉, 〈1, 0, 0〉) : Ğ ∈ Q̆} is said to be absolute SLDFS
and 0SD = {(Ğ, 〈0, 1, 1〉, 〈0, 0, 1〉) : Ğ ∈ Q̆} is said to be empty or null SLDFS.

3.1 Superiority and Comparison of the Proposed Set with Other Approaches
Spherical linear Diophantine fuzzy set (SLDFS) is very important in different situations when

we have opinions about the yes, no, abstinence, and refusal. A question emerges here: Why are
we adopting SLDFS? And what are the drawbacks of preceding methodologies? In this part, we
discuss the facts and needs of SLDFSs and compare our model with the existing approaches.

1. The main drawback of PFSs is due to its constraint, i.e., 0≤ T̆ + Ŭ + K̆ ≤ 1. A decision-
maker (DM) cannot assign the values of his own choice to these grades. Due to this
restriction we can choose these grades independently (e.g., 0.5+0.3+0.4> 1). So this model
cannot work for various decision-making problems.

2. To remove the restrictions and to increase the space of PFS Mahmood at al. [32] intro-
duced the concept of SFSs with the constraint 0 ≤ T̆ 2 + Ŭ2 + K̆2 ≤ 1. By using this idea
we can easily deal with various problems that arise in PFSs (e.g., 0.52 + 0.32 + 0.42 < 1).
This constraint also increases the space of PFS and increases the domain of grades.
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Figure 1: Visual representation for satisfaction, abstinence and dissatisfaction grades of Spherical
linear Diophantine fuzzy set

3. There exist many real-life situations for which SFS does not work (e.g., 0.72+0.82+0.62>
1). To increase the space and to remove these limitations, they established the idea of
T-SFSs in the same manuscript by using the constraint 0 ≤ T̆ n + Ŭn + K̆n ≤ 1, (“n” is a
non-zero positive integer). By using this novel idea one can easily deal with the problems
that arise in SFSs (e.g., 0.74+ 0.84+ 0.64< 1).

4. Mahmood et al. [32] presented the applications of SFS and T-SFS in medical and decision-
making. But still the all three grades are dependent on each other (e.g., 1+ 1+ 1> 1). We
cannot deal with them independently in decision-making and real-life problems.

5. In the neutrosophic set all three grades are independent of each other with the constraint
0 ≤ T̆ + Ŭ + K̆ ≤ 3. The main deficiency in this model is that it cannot deal with
parameterizations. We can only deal with the reality, uncertainty, and falsification grades
of alternatives. As we can see that all the above models cannot deal with parameterizations
of attributes of the universal set.

6. To remove all the above limitations in PFSs, SFSs, T-SFSs, and NSs, we introduced the
idea of spherical linear Diophantine fuzzy sets (SLDFSs). The beauty of this structure is
that it creates independence between all the grades and covers the space of PFSs, SFSs, and
T-SFSs. All the decision-making difficulties, which cannot be tackled by using the existing
approaches, can be easily handled by using SLDFSs.

7. Another main difference between existing structures and SLDFSs is its parameterizations.
PFSs, SFSs, T-SFSs and neutrosophic sets do not deal with parameterizations. In SLDFSs
the constraint is 0≤ ᾰ(Ğ)T̆D(Ğ)+ β̆(Ğ)ŬD(Ğ)+ η̆(Ğ)K̆D(Ğ)≤ 1, where T̆D(Ğ), ŬD(Ğ) and
K̆D(Ğ) are membership, abstinence, and degree of non-membership, respectively. In this
proposed model all, the grades are independent of each other. We can also find the grade
of refusal in this model, which cannot be tackled in the neutrosophic set. In SLDFSs the
triplet 〈ᾰ, β̆, η̆〉 are reference and control parameters, which do not exist in any other model.
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Such comparison parameters fulfill the constraint 0≤ ᾰ+β̆+ η̆≤ 1 and will help to describe
the classification of a defined framework. By modifying the particular interpretation of
certain parameters, we can classify the challenge. That raises grade space and reduces its
limitations (e.g., (0.2)(1)+ (0.8)(1)+ (0.1)(1) < 1, where 〈ᾰ, β̆, η̆〉 = 〈0.2, 0.5, 0.1〉). Tabs. 2
and 3 provide an overview of the SLDFSs compared with current methods.

Table 2: Comparative study of SLDFSs to existing methodologies

Set theories Satisfaction
grade

Abstinence
grade

Dissatisfaction
grade

Refusal
grade

Parameterizations

Fuzzy sets [1] √ × × × ×
Neutrosophic sets [7] √ √ √ × ×
PFSs [27–29] √ √ √ √ ×
SFSs [32] √ √ √ √ ×
T-SFSs [32] √ √ √ √ ×
SLDFSs (proposed) √ √ √ √ √

Table 3: Comparative study of SLDFSs to existing methodologies

Set theories Comments

Fuzzy sets [1] Do not deal with the abstinence, dissatisfaction, and refusal degrees.
Neutrosophic sets [7] Do not deal with the refusal grades.
PFSs [27–29] Cannot deal with the condition, 1< T̆D + ŬD + K̆D ≤ 3.
SFSs [32] Cannot deal with 1< T̆ 2

D + Ŭ2
D + K̆2

D ≤ 3.
T-SFSs [32] Cannot deal with (very very small “n”), 1< T̆ n

D + Ŭn
D + K̆n

D ≤ 3, and
for T̆D = ŬD = K̆D = 1.

SLDFSs (proposed) 0≤ ᾰT̆D(Ğ)+ β̆ŬD(Ğ)+ β̆K̆D(Ğ)≤ 1 gives parameterizations 〈ᾰ, β̆, η̆〉
and T̆D, ŬD and K̆D can be chosen independently from [0, 1].

3.2 Digital Image Processing
LDFS has multiple practical uses in the areas of electronics, medical sciences, artifi-

cial intelligence, and MADM. Within this manuscript, one can observe a broad range of
these implementations.

The analysis of photographs may be defined as both analog and optical image processing.
In image enhancement, image reconstruction, image compression, and image detection, optical
image processing may be very helpful. Researchers who have worked on various image recog-
nition systems include medical imaging [8,9], radar image analysis [16–18], biometric and iris
recognition [19,20], human detection [30,31].

The three image analysis levels are provided below as:

• Low-Level Mechanisms: “At this level, the quality of an image is improved by reducing the
noise and contrast is also enhanced.”
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• Medium-Level Mechanisms: “This level includes the extracting of attributes from image and
segmentation of image.”

• High-Level Mechanisms: “In this step, objects are recognized in an image for analysis.”

These three levels correspond with the membership, abstinence, and dissatisfaction grades of
SLDFSs. The addition of control parameters increases the quality of the procedure and also
includes the details to deal with these corresponding grades (Tab. 4).

Table 4: Characteristics of operations used for picture fuzzy numbers (PFNs)

Authors Aggregation
operators

Input
data

Output data Operations
used for PFNs

Closed

Jana et al. [82] Picture fuzzy
Dombi

PFNs PFNs, spherical,
T-spherical or
neutrosophic numbers

Old ×

Xu et al. [83] Picture fuzzy
Muirhead Mean

PFNs PFNs, spherical,
T-spherical or
neutrosophic numbers

Old ×

Wang et al. [84] Picture fuzzy
Muirhead Mean

PFNs PFNs, Spherical,
T-spherical or
neutrosophic numbers

Old ×

Wang
et al. [85]

Generalized picture
hesitant fuzzy

PFNs PFNs, spherical,
T-spherical or
neutrosophic numbers

Old ×

Khan et al. [86] Picture fuzzy
logarithmic

PFNs PFNs, spherical,
T-spherical or
neutrosophic numbers

Old ×

Zhang et al. [88] Picture fuzzy
Dombi Heronian
Mean

PFNs PFNs, Spherical,
T-spherical or
neutrosophic numbers

Old ×

Khan et al. [87] Picture fuzzy
Einstein

PFNs PFNs, spherical,
T-spherical or
neutrosophic numbers

Old ×

Proposed new
operations

All above
aggregation
operators

PFNs Picture fuzzy numbers
(PFNs)

New √

3.3 Network Systems
In network systems, the important factor is the signal strength. Let ϑ be a static threshold

value for wi-fi signals which link a computer to a router. If the signal intensity exceeds ϑ,
the machine connects. If it is below ϑ, then the device is not connected. There exists another
possibility when signal strength fluctuates about ϑ. Device switches from linked to disconnected in
these cases and vice versa (within a limited time interval) (see Tab. 5). This phenomenon relates
to this real-life situation with SLDFS. The addition of control parameters control measures and
changes the theoretical sense of these three categories, and increases the domain of a decision
maker’s (DM) grade.
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Table 5: Network systems

Threshold ϑ Signal strength (SS) Status of device

ϑ SS> ϑ Connected properly
ϑ SS< ϑ Disconnected
ϑ SS> ϑ or SS< ϑ (fluctuation) Fluctuates between the above two states

3.4 Vote Casting
There are four types of voters in the process of voting. One who votes in favor, others who

not against, others who refuse to vote, and last who abstain. We cannot deal with these real-life
situations by using existing methodologies. Some existing approaches do not contain refusal grades
and some of them do not deal with reference parameters (See Tabs. 6 and 7). These situations
can be easily handled by using the proposed model of SLDFS. This structure combines all grade
information and also classifies the difficulty using the control parameters (see Tab. 6).

Table 6: Type of voters

Type of voters Relation with grade

“Who votes in favor” Satisfaction degree
“Who votes against” Dissatisfaction degree
“Who refuse to vote” Refusal grade
“Who abstain” Uncertainty or abstinence grade

3.5 Electrical Engineering
In Physics and electronic engineering, a conductor is a substance or material type that

facilitates charging (electric current) to flow. There also exists some substances that do not conduct
electricity called non-conductors. But there are other compounds in the presence of conductors
and non-conductors whose internal electrical charges do not circulate freely. Under the power
of an electrical field, a tiny volume of electric current passes into it. These are what are called
insulators. So these types of problems can be handled by SLDFSs in the presence of reference
parameters (see Tab. 7).

Table 7: Electrical engineering

Type of objects Relation with grade

Conductors Satisfaction degree
Non-conductors Dissatisfaction degree
Insulators Uncertainty or abstinence grade

3.6 Medication
Several practical implementations of SLDFSs arise in the area of medicine and MADM

issues. Medical diagnosis is the screening method and process, the prognosis, therapies, and the
avoidance of diseases. Growing medicine has some physicochemical properties and some are used
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to treat several diseases. Let Q̆= {Ğ1, Ğ2, Ğ3, Ğ4, Ğ5} be a collection of some appropriate medicines
dealing with multiple diseases, such as sinus infections, influenza, ear allergic reaction, chest
infections, and skin diseases. We can conveniently categorize such drugs with good or bad results
according to the disease chosen or any physical properties. When we find the parameters listed as:

ᾰ = “Best effect chest infections”

β̆= “Not highly effected to chest infections (uneffected or neutral)”

η̆= “Bad effects or some side effects against chest infections”

Then its SLDFS is given in Tab. 8.

Table 8: Spherical linear Diophantine fuzzy set

SD (〈T̆D(Ğ), ŬD(Ğ), K̆D(Ğ)〉, 〈ᾰ, β̆, η̆〉)
Ğ1 (〈00.952, 00.451, 00.413〉, 〈00.64, 00.13, 00.11〉)
Ğ2 (〈00.873, 00.345, 00.532〉, 〈00.64, 00.11, 00.21〉)
Ğ3 (〈00.631, 00.234, 00.811〉, 〈00.38, 00.12, 00.11〉)
Ğ4 (〈00.684, 00.456, 00.715〉, 〈00.29, 00.24, 00.21〉)
Ğ5 (〈00.882, 00.566, 00.712〉, 〈00.49, 00.11, 00.21〉)

Every drug has diverse combinations of salt and chemicals in it. And we should give them
different statistics of parameters due to their consistency and under the patient’s evaluation of the
consequences. Such parameters indicate how many components we require from the specific drug
and its grade values measures how much the specific element they include. When we adjust the
parameter ᾰ= better result against ear allergic reaction, β̆= not strongly influenced or favorable
to ear allergic reaction and η̆= side effects against ear allergic reaction or ᾰ= fewer or minimal
side effects, β̆= low side effects and η̆= large side effects, etc. We can then create further SLDFSs
on the same collection of alternatives. Such guidelines allow a physician to prescribe the patient
the correct and most suitable treatment for his disease. On the built SLDFSs, the final judgment
can be conveniently tested using the appropriate algorithm. Through the inclusion of comparison
criteria, this method expands the room for acceptable, abstinent, and unsatisfactory classes.

3.7 Selection of Optimal Choice
In the field of decision-making difficulties, when a DM wants to select an optimal object

among the listed objects then he keeps his requirements in his mind. For the selection of the best
“mobile phone,” best “air conditioner” or best “car,” one can choose the objects according to their
own criteria. They can choose the objects on the basis of these reference parameters given as:

ᾰ= cheap or low cost

β̆=Affordable cost

η̆=Expansive or high cost

Suppose someone decides to purchase a cell phone. He wants to choose the latest smartphone
that has multiple applications and a low price. Let Q̆= {Ğ1, Ğ2, Ğ3, Ğ4} be the collection of certain
well-known cell phones. The SLDFSs is provided in Tab. 9.
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Table 9: SLDFSs

SD (〈T̆D(Ğ), ŬD(Ğ), K̆D(Ğ)〉, 〈ᾰ, β̆, η̆〉)
Ğ1 (〈00.711, 00.452, 00.218〉, 〈00.42, 00.11, 00.34〉)
Ğ2 (〈00.933, 00.653, 00.522〉, 〈00.31, 00.11, 00.47〉)
Ğ3 (〈00.374, 00.677, 00.611〉, 〈00.29, 00.24, 00.27〉)
Ğ4 (〈00.516, 00.345, 00.474〉, 〈00.31, 00.21, 00.33〉)

When we alter the physical definition of the comparison parameters then in another way we
may classify the data in the context of SLDFSs. We can use the control parameters for the second
SLDFS, as:

ᾰ= high battery timing

β̆= average battery timing

η̆= low battery timing

The SLDF-information can be taken as Tab. 10 for these reference or control parameters.

Table 10: SLDFSs

SD (〈T̆D(Ğ), ŬD(Ğ), K̆D(Ğ)〉, 〈ᾰ, β̆, η̆〉)
Ğ1 (〈0.932, 0.234, 0.411〉, 〈0.54, 0.12, 0.11〉)
Ğ2 (〈0.793, 0.435, 0.532〉, 〈0.34, 0.23, 0.21〉)
Ğ3 (〈0.531, 0.456, 0.811〉, 〈0.38, 0.32, 0.11〉)
Ğ4 (〈0.782, 0.236, 0.714〉, 〈0.29, 0.34, 0.21〉)

The reference parameters play a significant role here. They reflect any particular specific
property whether it’s inexpensive, reasonable, costly, large, medium, or low battery scheduling,
simple to learn, medium to learn or hard to learn, and so on. The ratings T̆D(Ğ), ŬD(Ğ) and
K̆D(Ğ) reflects the degrees of phone Ğ, which demonstrates how cheap, affordable, or expensive a
phone is, while the parameters demonstrate how cheap, affordable, or expensive a machine should
be. Such criteria are chosen according to the decision-makers’ preference, while alternative ratings
are determined from the actual data. The major benefit of the comparison criteria is that the
categories of alternatives are easily picked. These parameters parameterize the calculation and
allow more space for our mathematical model. Thus we may describe specific SLDFSs for a
specific collection of parameters on the same Q̆ reference set. The values selected for the input
information derived from the space of PFSs, SFSs, T-SFSs, and NSs.

4 Graphical Interpretation of SLDFSs

Throughout this section, we present SLDFS’s graphical representation with comparison
parameters and analyze how its space exceeds the space of PFSs, SFSs, and T-SFSs. Figs. 2–4
provide us the geometrical interpretation of PFSs, SFSs, and SLDFSs. Figs. 5–12 represent the
graphical view of PFS, SFS, T-SFS with different values of “n” and SLDFS with a different
selection of reference parameters.
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Figure 2: Geometrical representation for satisfaction, abstinence, and dissatisfaction grades of
picture fuzzy set

Figure 3: Geometrical representation for satisfaction, abstinence, and dissatisfaction grades of
spherical fuzzy set

Theorem 4.1 The space of spherical linear Diophantine fuzzy number (SLDFN) is larger than
the space of PFN, SFN, and T-SFN.

Proof. (1) Each PFN is also an SLDFN. Let ˘ GD = (〈T̆D, ŬD, K̆D〉, 〈ᾰ, β̆, η̆〉) be an SLDFN

with the constraints 0 ≤ ᾰT̆D + β̆ŬD + η̆K̆D ≤ 1 and 0 ≤ ᾰ + β̆ + η̆ ≤1, where T̆D, ŬD,
K̆D, ᾰ, β̆, η̆ ∈ [0, 1]. The above disparity exists for both PFN and SFN for an unspecified set of
comparison parameters.
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(2) A PFN or SFN can not automatically be an SLDFN. For example, if T̆D = 0.93, ŬD =
0.78 and K̆D = 0.52 then 0.93+ 0.78+ 0.52= 2.23 � 1 and (0.93)2+ (0.78)2+ (0.52)2 = 1.7437� 1

but for an arbitrary choice of reference parameters ᾰ, β̆, η̆ ∈ [0, 1] with the constraint 0 ≤ ᾰ +
β̆ + η̆ ≤ 1 we have 0 ≤ ᾰT̆D + β̆ŬD + η̆K̆D ≤ 1. As for 〈ᾰ, β̆, η̆〉 = 〈0.31, 0.28, 0.26〉 we have
(0.31)(0.93) + (0.28)(0.78) + (0.26)(0.52) = 0.6419 ≤ 1. So we effectively create a space that is
greater than the space of PFSs, SFSs and T-SFSs. We have more choices for incorporating the
values T̆D, ŬD and K̆D, which is unlikely in PFSs and SFSs.

(3) As for T̆D = ŬD = K̆D = 1 in T-SFS the constraint 0 ≤ ᾰT̆ n
D + β̆Ŭn

D + η̆K̆n
D ≤ 1 do not

hold for any value of “n”.

Figure 4: Geometrical representation for satisfaction, abstinence, and dissatisfaction grades of
spherical linear Diophantine fuzzy set

Figure 5: Graphical representation for satisfaction, abstinence, and dissatisfaction grades of picture
fuzzy set
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From all the above arguments it is clear that the space of SLDFS is greater than the space of
PFS, SFS, and T-SFS. We can also choose different values of reference parameters to deal with
the grades and to categorize the problem.

Figure 6: Graphical representation for satisfaction, abstinence, and dissatisfaction grades of spher-
ical fuzzy set

Figure 7: Graphical representation for satisfaction, abstinence, and dissatisfaction grades of
T-spherical fuzzy set with n= 5
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Figure 8: Graphical representation for satisfaction, abstinence, and dissatisfaction grades of
T-spherical fuzzy set with n= 10

Figure 9: Graphical representation for satisfaction, abstinence, and dissatisfaction grades of
T-spherical fuzzy set with n= 20
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Figure 10: Graphical representation for satisfaction, abstinence, and dissatisfaction grades of
T-spherical fuzzy set with n= 50

Figure 11: Graphical representation for satisfaction, abstinence, and dissatisfaction grades of
T-spherical fuzzy set with n= 100
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Figure 12: Graphical representation for satisfaction, abstinence, and dissatisfaction grades of
spherical linear Diophantine fuzzy set for reference parameters ᾰ, β̆, η̆∈ [0, 1]

4.1 Some New Operations on Picture Fuzzy Sets (PFSs)
In this part, we define some new operations on picture fuzzy sets (PFSs) which are also

applicable for PFNs. Many mathematicians worked on PFSs its operations and aggregation
operators. We establish some contradictory illustrations to their definitions and introduce some
new ideas.

1. For the PFS Pf = {(Ğ, 〈T̆ (Ğ), Ŭ(Ğ), K̆(Ğ)〉) : Ğ ∈ Q̆} many mathematicians [82–88] used
complement of PFS as

Pc
f = {(Ğ, 〈K̆(Ğ), Ŭ(Ğ), T̆ (Ğ)〉) : Ğ ∈ Q̆}. (1)

But they did not define the null and absolute PFSs. We define the null and absolute PFSs as
0Pf = {(Ğ, 〈0, 0, 1〉) : Ğ ∈ Q̆} and 1Pf = {(Ğ, 〈1, 0, 0〉) : Ğ ∈ Q̆} respectively. Now by following
the defined null and absolute PFSs the existing definition implies;
0Pc

f =1 Pf (2)

1Pc
f =0 Pf (3)

If we change the definitions of null and absolute PFSs then (2) and (3) fails to hold for (1).
2. In the field of MCDM obstacles aggregation operators plays an immense role. Many

mathematicians [82–88] have worked on aggregation operators for PFSs and PFNs. In order
to define the mathematical formula of aggregation operators,we need some operations of
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PFNs. The operations used by [82–88] for PFNs P1 = 〈T̆1, Ŭ1, K̆1〉 and P2 = 〈T̆2, Ŭ2, K̆2〉
are given as

P1⊕P2 = 〈T̆1+ T̆2− T̆1T̆2, Ŭ1Ŭ2, K̆1K̆2〉 (4)

P1⊗P2 = 〈T̆1T̆2, Ŭ1+ Ŭ2− Ŭ1Ŭ2, K̆1+ K̆2 − K̆1K̆2〉 (5)

XP1 = 〈1− (1− T̆1)
X, ŬX

1 , K̆
X
1 〉; X ∈ (0, 1] (6)

PX
1 = 〈T̆ X

1 , 1− (1− Ŭ1)
X, 1− (1− K̆1)

X〉; X ∈ (0, 1] (7)

All cited mathematicians claim that these operations produce PFNs and their constructed
aggregation operators produce results for PFNs. No, we check these operations for arbi-
trary PFNs. Let P1 = 〈0.38, 0.21, 0.34〉 and P2 = 〈0.25, 0.26, 0.41〉 be two PFNs then

P1⊕P2 = 〈0.535, 0.054, 0.139〉
P1⊗P2 = 〈0.095, 0.415, 0.610〉
XP1 = 〈0.091, 0.731, 0.805〉; X= 0.2

PX
1 = 〈0.824, 0.046, 0.079〉 ; X= 0.2

As we can see that for P1 ⊗ P2, “0.095 + 0.415 + 0.610 > 1” and for XP1, “0.091 +
0.731+ 0.805 > 1”. This implies that defined operations do not produce PFNs again by
contradicting the constraint 0≤ T̆ + Ŭ + K̆≤ 1. So these operations are not closed. These
values go in the sense of neutrosophic numbers with the constraint 0 ≤ T̆ + Ŭ + K̆ ≤ 3.
Clearly, we can see that the input data is based on the PFNs and defined operations give
neutrosophic numbers (i.e., operations are not closed). Cited mathematicians used these
operations for Einstein [87], Dombi Heronian mean [88], Logarithmic [86], generalized
picture hesitant fuzzy [85], Muirhead mean [83,84], picture fuzzy Dombi [82] aggregation
operators in the context of PFNs. Results produced by their decision-making algorithms
were not closed. Due to the defined operations, all these aggregation operators produce
picture fuzzy numbers (PFNs) or sometimes spherical fuzzy numbers (SFNs), T-spherical
fuzzy numbers (T-SFNs), or neutrosophic numbers.

3. To remove this drawback Wang et al. [89] introduced certain novel operations on PFSs
and they explained these operations from the point of view of probability. In the real-life
example of voting, the intuitionistic fuzzy number (IFN) ω= (T̆ω, K̆ω) represents the ratio
of those who vote for ω as T̆ω and ratio who vote against ω as K̆ω. For the two IFNs ω
and θ, the formula T̆ωθ = T̆ω.T̆θ is the ratio of those who vote for ω and θ. This formula
is constructed by using the multiplication formula of probability given as

P (Y∩S)= P (Y)∩P (S) .

Then by the complementary formula of probability and Y∩S= (Yc ∪Sc)c, we can get the
ratio of those who vote against ω or vote against θ as;

K̆ω+ K̆θ− K̆ωK̆θ = 1−
(
1− K̆ω

)(
1− K̆θ

)
From this we can construct the ω ⊗ θ = (T̆ω.T̆θ, K̆ω + K̆θ − K̆ωK̆θ) for IFNs

(see Tab. 11).
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Next by explaining ωX =ω.ω . . .ω︸ ︷︷ ︸
X

, we can obtain ωX = (T̆ X
ω , 1− (1− K̆ω)

X);X >0

(see Tab. 11).
4. For picture fuzzy set (PFS), voters are divided into four categories”: vote for (it is ratio

denoted as T̆ ), abstain (it is ratio denoted as Ŭ), vote against (it is ratio denoted as K̆)
and refusal (it is ratio denoted as R̆). For two PFNs ω = (T̆ω, Ŭω, K̆ω,R̆ω) and θ =
(T̆θ, Ŭθ, K̆θ,R̆θ), we can construct the joint probability as in Tab. 12.
To compute T̆ω.θ, we choose those who vote for both ω and θ. So by using Tab. 12 we
can write that

T̆ω.θ = T̆ωT̆θ+ ŬωT̆θ+ T̆ωŬθ =
(
T̆ω+ Ŭω

)(
T̆θ+ Ŭθ

)
− ŬωŬθ

Those who are abstaining for ω and abstain for θ can be computed as

Ŭω.θ = ŬωŬθ
Similarly, we can compute other values as

K̆ω.θ=K̆ωŬθ+K̆ωT̆θ+ŬωK̆θ+T̆ωK̆θ+K̆ωK̆θ+R̆ωK̆θ+K̆ωR̆θ=1−
(
1−K̆ω

)(
1−K̆θ

)
R̆ω.θ = T̆ωR̆θ+ ŬωR̆θ+ R̆ωT̆θ+ R̆ωŬθ+ R̆ωR̆θ.

Next by explaining ωX =ω.ω . . .ω︸ ︷︷ ︸
X

, we can obtain that

ωX =
((

T̆ω+ Ŭω
)X− ŬX

ω , ŬX
ω, 1−

(
1− K̆ω

)X)
; X> 0 (see Tab. 12) .

Based on the above theory and by using Wang et al. [89] idea, we can define some new
operations on PFSs given below.

Table 11: ω⊗θ and ωX for IFNs from the point of view of the joint probability

For IFN Vote for ω Vote against ω

Vote for θ T̆ωT̆θ K̆ωT̆θ
Vote against θ T̆ωK̆θ K̆ωK̆θ

Table 12: ω⊗θ and ωX for PFNs from the point of view of the joint probability

For IFN Vote for ω Abstain for ω Vote against ω Refusal for ω

Vote for θ T̆ωT̆θ ŬωT̆θ K̆ωT̆θ R̆ωT̆θ
Abstain for θ T̆ωŬθ ŬωŬθ K̆ωŬθ R̆ωŬθ
Vote against θ T̆ωK̆θ ŬωK̆θ K̆ωK̆θ R̆ωK̆θ

Refusal for θ T̆ωR̆θ ŬωR̆θ K̆ωR̆θ R̆ωR̆θ



CMES, 2021, vol.126, no.3 1147

Definition 4.2 Let P1 = 〈T̆1, Ŭ1, K̆1〉 and P2 = 〈T̆2, Ŭ2, K̆2〉 be two PFNs and X> 0, then

• P1⊕P2 = 〈1− (1− T̆1)(1− T̆2), Ŭ1Ŭ2, (K̆1+ Ŭ1)(K̆2+ Ŭ2)− Ŭ1Ŭ2〉
• P1⊗P2 = 〈(T̆1+ Ŭ1)(T̆2+ Ŭ2)− Ŭ1Ŭ2, Ŭ1Ŭ2, 1− (1− K̆1)(1− K̆2)〉
• XP1 = 〈1− (1− T̆1)

X, ŬX
1 , (K̆1+ Ŭ1)

X − ŬX
1 〉; X ∈ (0, 1]

• PX
1 = 〈(T̆1+ Ŭ1)

X − ŬX
1 , Ŭ

X
1 , 1− (1− K̆1)

X〉; X ∈ (0, 1]
Remark When Ŭ1 = Ŭ2 = 0 in Definition 4.2, then all the defined operations are reduced to

the operations of intuitionistic fuzzy numbers.

Theorem 4.3 Let P1 = 〈T̆1, Ŭ1, K̆1〉 and P2 = 〈T̆2, Ŭ2, K̆2〉 be two PFNs and X> 0, then P1⊕
P2,P1 ⊗ P2,XP1 and PX

1 are also PFNs. (Note: Operations of Definition 4.2 will be used for
this proof).

Proof. The proof is apparent and can be achieved conveniently using Definition 4.2.

Remark The operations of picture fuzzy numbers (PFNs) used by various mathemati-
cians [82–88] as given in Eqs. (4)–(7) were not closed. They established various aggregation
operators on PFNs by using old operations (Eqs. (4)–(7)) and get a result in the form of PFNs,
SFNs, T-SFNs, and neutrosophic numbers. But by using the new operations on PFNs defined in
Definition 4.2, we can reconstruct all the aggregation operators and they are closed. (i.e., if the
input is a PFN then the output will also be a PFN). To observe this phenomenon one can see
Tab. 12.

4.2 Fundamental Operations on Spherical Linear Diophantine Fuzzy Numbers
We define a few operations in this subsection on spherical linear Diophantine fuzzy numbers

(SLDFNs). For the analysis of SLDFNs, we describe various score and accuracy functions.

Definition 4.4 Let ˘GH = (〈HT̆D,H ŬD,H K̆D〉, 〈Hᾰ,H β̆,H η̆〉) for H ∈ Δ (indexing set) be an

assembling of SLDFNs over Q̆ and X> 0 then

• ˘ GcH = (〈HK̆D, 1−H ŬD,H T̆D〉, 〈Hη̆,H β̆,H ᾰ),

• ˘ G1 = ˘ G2 ⇔1 T̆D =2 T̆D,1 ŬD =2 ŬD,1 K̆D =2 K̆D,1 ᾰ=2 ᾰ,1 β̆ =2 β̆,1 η̆=2 η̆,

• ˘ G1 ⊆ ˘ G2 ⇔1 T̆D ≤2 T̆D,1 ŬD ≥2 ŬD,1 K̆D ≥2 K̆D,1 ᾰ ≤2 ᾰ,1 β̆ ≥2 β̆,1 η̆≥2 η̆,

• ⋃H∈Δ ˘ GH = (〈 sup
H∈Δ

HT̆D, inf
H∈Δ

HŬD, inf
H∈Δ

HK̆D〉, 〈 sup
H∈Δ

Hᾰ, inf
H∈Δ

Hβ̆, inf
H∈Δ

Hη̆〉),

• ⋂H∈Δ ˘ GH = (〈 inf
H∈Δ

HT̆D, sup
H∈Δ

HŬD, sup
H∈Δ

HK̆D〉, 〈 inf
H∈Δ

Hᾰ, sup
H∈Δ

Hβ̆, sup
H∈Δ

Hη̆〉),

• ˘ G1 ⊕ ˘G2 = (〈1T̆D +2 T̆D −1 T̆ 2
DT̆D,1 Ŭ2

DŬD,1 K̆2
DK̆D〉, 〈1 − (1 −1 ᾰ)(1 −2 ᾰ),1 β̆2β̆, (1η̆ +1

β̆)(2η̆+2 β̆)−1 β̆2β̆〉),
• ˘ G1 ⊗ ˘ G2 = (〈1T̆ 2

DT̆D,1 ŬD +2 ŬD −1 Ŭ2
DŬD,1 K̆D +2 K̆D −1 K̆2

DK̆D〉, 〈(1ᾰ +1 β̆)(2ᾰ +2 β̆)−1

β̆2β̆,1 β̆2β̆, 1− (1−1 η̆)(1−2 η̆)〉),
• X ˘ G1 = (〈1− (1−1 T̆D)

X,1 ŬX
D,1 K̆X

D〉, 〈1− (1−1 ᾰ)X,1 β̆X, (1η̆+1 β̆)X −1 β̆X〉);X> 0,

• ˘ GX1 = (〈1T̆ X
D , 1− (1−1 ŬD)

X, 1− (1−1 K̆D)
X〉, 〈(1ᾰ+1 β̆)X −1 β̆X,1 β̆X, 1− (1−1 η̆)X〉);X>0.
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Remark If 1ŬD =2 ŬD =1 β̆ =2 β̆ = 0, then all above operations reduces to the operations for
linear Diophantine fuzzy numbers [57].

Proposition 4.5 Let ˘ GH = (〈HT̆D,H ŬD,H K̆D〉, 〈Hᾰ,H β̆,H η̆〉) for H ∈ Δ (indexing set) be an

assembling of SLDFNs over Q̆ and X>0 then
⋃

H∈Δ ˘ GH,
⋂

H∈Δ ˘ GH, ˘ GcH, ⊕
H∈

˘ GH, ⊗
H∈Δ

˘GH,X ˘ GH
and ˘ GXH are also SLDFNs.

Proof. The proof is apparent and can be achieved conveniently using Definition 4.4.

Example 4.6 Let ˘ G1 = (〈0.93, 0.25, 0.31〉, 〈0.38, 0.21, 0.34〉) and ˘ G2 = (〈0.83, 0.38, 0.32〉, 〈0.25, 0.26,
0.41〉) be two SLDFNs, then

• ˘ Gc1 = (〈0.31, 0.75, 0.93〉, 〈0.34, 0.21, 0.38〉)
• Obviously by Definition 4.4 ˘ G2 ⊆ ˘G1
• ˘ G1 ∪ ˘G2 = (〈0.93, 0.25, 0.31〉, 〈0.38, 0.21, 0.34〉)= ˘ G1
• ˘ G1 ∩ ˘G2 = (〈0.83, 0.38, 0.32〉, 〈0.25, 0.26, 0.41〉)= ˘ G2
• ˘ G1⊕ ˘G2 = (〈0.9881, 0.095, 0.0992〉, 〈0.535, 0.0546, 0.3139〉)
• ˘ G1⊗ ˘G2 = (〈0.7719, 0.535, 0.5308〉, 〈0.2463, 0.0546, 0.6106〉)
If X= 0.1 then

• X ˘ G1 = (〈0.2335, 0.7578, 0.8894〉, 〈0.0466, 0.8555, 0.0864〉)
• ˘ GX1 = (〈0.9927, 0.0283, 0.0364〉, 〈0.0931, 0.8555, 0.0407〉)
Proposition 4.7 Let ˘ G1 and ˘ G2 be two SLDFNs with X,X1,X2 >0 then the listed

are satisfied

(1): ˘ G1⊕ ˘ G2 = ˘ G2⊕ ˘G1
(2): ˘ G1⊗ ˘ G2 = ˘ G2⊗ ˘G1
(3): X( ˘G1⊕ ˘ G2)=X ˘G1⊕X ˘ G2
(4): ( ˘ G1⊗ ˘ G2)X = ˘ GX1 ⊗ ˘ GX2
(5): X1 ˘ G1⊕X2 ˘ G1 = (X1+X2) ˘ G1
(6): ˘ GX1

1 ⊗ ˘ GX2
1 = ˘G(X1+X2)

1

(7): ( ˘ GX1
1 )

X2 = ˘ GX1X2
1

Proof. The proof is straightforward.

5 Spherical Linear Diophantine Fuzzy Weighted Aggregation Operators

We define certain score and accuracy functions for the comparative study of SLDFNs in
MADM models. Chen et al. [49] invented the idea of the score feature on IFSs. Tversky et al. [50]
suggested a related definition. The definition can be generalized for fuzzy hybrid versions and
SLDFNs. According to specific techniques of multiple operators used in the algorithm, there are
many more mappings for finding the value. In this manuscript, we specify various score functions
to evaluate SLDFN’s behavior under the effect of these score functions, and after then relate
their performance.

Definition 5.1 Let ˘ GD = (〈T̆D, ŬD, K̆D〉, 〈ᾰ, β̆, η̆〉) be an SLDFN, then mapping P :

SLDFN(Q̆)→ [−1, 1] is called score function (SF) on ˘ GD and portrayed as:

P ˘G=P
( ˘G)= 1

2

[(
T̆D − ŬD − K̆D

)
+
(
ᾰ− β̆ − η̆

)]
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where SLDFN(Q̆) be the collection of SLDFNs over Q̆.

Definition 5.2 The mapping ψ : SLDFN(Q̆)→ [0, 1] displays the accuracy function (AF) and
depicted as:

ψ ˘G=ψ
( ˘G)= 1

2

[(
T̆D + ŬD + K̆D

3

)
+
(
ᾰ+ β̆ + η̆

)]

Definition 5.3 Let ˘ G1 and ˘ G2 be two SLDFNs so we can conveniently equate these two
SLDFNs using the SF and AF as:

(i): For P ˘G1 <P ˘G2 we have ˘ G1< ˘ G2,
(ii): For P ˘G1 =P ˘G2 we have,
(a): For ψ ˘G1 <ψ ˘G2 we have ˘ G1 < ˘ G2,
(b): For ψ ˘G1 =ψ ˘G2 we have ˘ G1 ≈ ˘ G2.

Further, we can displays it as a relation ≤(P,ψ) on SLDFN(Q̆) given as:

˘ G1 ≤(P,ψ) ˘ G2 ⇔
(
P ˘G1 <P ˘G2

)
∨
(
P ˘G1 =P ˘G2∧ ˘G1 ≤ψ ˘G2

)
Definition 5.4 The mapping J : SLDFN(Q̆)→ [−1, 1] displays the quadratic score function

(QSF) for SLDFN ˘ Gand portrayed as:

J ˘ G= J
( ˘ G)= 1

2

[(
T̆ 2

D − Ŭ2
D − K̆2

D

)
+
(
ᾰ2− β̆2 − η̆2

)]
Definition 5.5 The mapping φ : SLDFN(Q̆)→ [0, 1] depicts the quadratic accuracy function

(QAF) for SLDFN ˘Gwhich can be displayed as:

φ ˘G= φ
( ˘ G)= 1

2

[(
T̆ 2

D + Ŭ2
D + K̆2

D
3

)
+
(
ᾰ2+ β̆2+ η̆2

)]

Definition 5.6 Let ˘ G1 and ˘ G2 be two SLDFNs so we can conveniently equate these two
SLDFNs using QSF and QAF as:

(i): For J ˘G1 < J ˘G2 we have ˘G1 < ˘ G2,
(ii): For J ˘G1 = J ˘G2 we have,
(a): For φ ˘G1 <φ ˘G2 we have ˘ G1 < ˘ G2,
(b): For φ ˘G1 = φ ˘G2 we have ˘ G1 ≈ ˘ G2.

Further, we can display it as a relation ≤(J,ψ) on SLDFN(Q̆) given as:

˘ G1 ≤(J,φ) ˘ G2 ⇔
(
J ˘G1 < J ˘G2

)
∨
(
J ˘G1 = J ˘G2∧ ˘G1 ≤ φ ˘G2

)
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Definition 5.7 The expectation score function (ESF) on SLDFN(Q̆) is depicted by the mapping
M̆ : SLDFN(Q̆)→ [0, 1] and defined as

M̆ ˘G= M̆
( ˘ G)= 1

3

⎡
⎣
(
T̆D − ŬD − K̆D + 2

)
2

+
(
ᾰ− β̆ − η̆+ 2

)
2

⎤
⎦

The ESF is a generalized form of SF. The ESF values are bounded in [0, 1] rather than
[−1, 1]. ESF satisfies several of the properties described below.

Definition 5.8 Let ˘ G1 and ˘G2 be SLDFNs. The binary relation ≤
(T̆ ,M̆)

on SLDFN(Q̆) can be

defined as:

˘ G1 ≤(T̆ ,M̆)
˘ G2 ⇔ ((1T̆D <2 T̆D)∧ (1ᾰ <2 ᾰ))∨ ((1T̆D =2 T̆D)∧ (1ᾰ =2 ᾰ)∧ (M̆ ˘G1 ≤ M̆ ˘G2)).

Definition 5.9 Let ˘ G1 and ˘G2 be SLDFNs. The binary relation ≤
(M̆,T̆ ) on SLDFN(Q̆) can be

defined as ˘G1 ≤(M̆,T̆ ) ˘ G2 ⇔ (M̆ ˘G1 < M̆ ˘G2)∨ ((M̆ ˘G1 = M̆ ˘G2)∧ (1T̆D ≤2 T̆D)∧ (1ᾰ ≤2 ᾰ)).

Now we define some aggregation operators based on spherical linear Diophantine fuzzy
numbers (SLDFNs).

Theorem 5.10 For the assembling of SLDFNs ˘ G�̆ = {(〈�̆T̆D,�̆ ŬD,�̆ K̆D〉, 〈�̆ᾰ,�̆ β̆,�̆ η̆〉) : �̆ =
1, 2, 3, . . . ,n} over Q̆ with weight vector £̈ = (£̈1, £̈2, . . . , £̈n)T satisfying

∑n
�̆=1

£̈�̆ = 1, we have

�G : SLDFN(Q̆)→ SLDFN(Q̆), which is said to be “spherical linear Diophantine fuzzy weighted
geometric aggregation” (SLDFWGA) operator and portrayed as:

SLDFWGA
( ˘ G1, ˘ G2, ˘ G3, . . . , ˘ Gn)= n∏

�̆=1

˘ G£̈�̆

�̆
= (〈

n∏
�̆=1

�̆T̆ £̈
�̆

D , 1−
n∏

�̆=1

(1−�̆ ŬD)
£̈

�̆, 1−
n∏

�̆=1

(1−�̆ K̆D)
£̈

�̆〉,

〈
n∏

�̆=1

(�̆ᾰ+�̆ β̆)£̈�̆ −
n∏

�̆=1

�̆β̆ £̈�̆,
n∏

�̆=1

�̆β̆ £̈�̆ , 1−
n∏

�̆=1

(1−�̆ η̆)£̈�̆〉) (A)

In SLDFWGA operator, we use T̆D, ŬD and K̆D as satisfaction, abstinence, and dissatisfac-
tion degrees respectively. ᾰ, β̆ and η̆ are control parameters for T̆D, ŬD and K̆D respectively and
˘ G�̆ are the SLDFNs, where �̆= 1, 2, . . . ,n. SLDFN(Q̆) be the assembling of all LDFNs.

Proof. Through utilizing the SLDFS operations and mathematical induction as described
in [67] through Xu and [89] by Wang et al. we can easily prove this result.

Properties:

1. (Idempotency). Let ˘G�̆ = {(〈�̆T̆D,�̆ ŬD,�̆ K̆D〉, 〈�̆ᾰ,�̆ β̆,�̆ η̆〉) : �̆ = 1, 2, 3, . . . ,n} be a collection

of SLDFNs over Q̆. If ˘ G1 = ˘G2 = ˘ G3 = . . .= ˘Gn = ˘ G, then
SLDFWGA

( ˘ G1, ˘ G2, ˘ G3, . . . , ˘ Gn)= ˘G

2. (Boundedness). Let ˘ G�̆ = {(〈�̆T̆D,�̆ ŬD,�̆ K̆D〉, 〈�̆ᾰ,�̆ β̆,�̆ η̆〉) : �̆ = 1, 2, 3, . . . ,n} be a collection

of SLDFNs over Q̆. �̆R̆D is the grade of refusal for all ˘ G�̆. If ŬD∗ = min�̆{�̆ŬD}, K̆D∗ =
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min�̆{�̆K̆D},R̆D∗ = min�̆{�̆R̆D}, β̆∗ = min�̆{�̆β̆}, η̆∗ = min�̆{�̆η̆},π∗ = min�̆{�̆π} with ᾰ∗T̆D∗ = 1 −
β̆ŬD∗ − η̆K̆D∗ − πR̆D∗ and ŬD∗ = max�̆{�̆ŬD}, K̆D∗ = max�̆{�̆K̆D},R̆D∗ = max�̆{�̆R̆D}, β̆∗ =
max�̆{�̆β̆}, η̆∗ =max�̆{�̆η̆},π∗ =max�̆{�̆π} with ᾰ∗T̆D∗ = 1− β̆ŬD∗ − η̆K̆D∗ −πR̆D∗ , then

˘ G∗ ≤ SLDFWGA
( ˘ G1, ˘G2, ˘ G3, . . . , ˘ Gn)≤ ˘ G∗

where ˘ G∗ = (〈T̆D∗ , ŬD∗ , K̆D∗〉, 〈ᾰ∗, β̆∗, η̆∗〉) and ˘ G∗ = (〈T̆D∗ , ŬD∗ , K̆D∗〉, 〈ᾰ∗, β̆∗, η̆∗〉).
3. (Monotonicity). Let ˘ G�̆ = {(〈�̆T̆D,�̆ ŬD,�̆ K̆D〉, 〈�̆ᾰ,�̆ β̆,�̆ η̆〉) : �̆= 1, 2, 3, . . . ,n} and

˘ G′�̆ = {(〈�̆T̆ ′
D,�̆ Ŭ ′

D,�̆ K̆′
D〉, 〈�̆ᾰ′,�̆ β̆ ′,�̆ η̆′〉) : �̆ = 1, 2, 3, . . . ,n} be assemblings of SLDFNs over

Q̆. If �̆T̆D ≤�̆ T̆ ′
D,�̆ ŬD ≤�̆ Ŭ ′

D,�̆ K̆D ≤�̆ K̆′
D,�̆ ᾰ ≤�̆ ᾰ′,�̆ β̆ ≤�̆ β̆ ′ and �̆η̆≤�̆ η̆′, then

SLDFWGA
( ˘ G1, ˘G2, ˘ G3, . . . , ˘ Gn)≥ SLDFWGA

( ˘ G′1, ˘ G′2, ˘ G′3, . . . , ˘ G′n)
We can check all the properties by using basic operations defined on SLDFNs.

Theorem 5.11 For SLDFNs ˘ G�̆ = {(〈�̆T̆D,�̆ ŬD,�̆ K̆D〉, 〈�̆ᾰ,�̆ β̆,�̆ η̆〉) : �̆ = 1, 2, 3, . . . , n} over Q̆
with weight vector £̈ = (£̈1, £̈2, . . . , £̈n)T satisfying

∑n
�̆=1

£̈�̆ = 1, the mapping �A : SLDFN(Q̆)→
SLDFN(Q̆) is said to be a “spherical linear Diophantine fuzzy weighted average aggregation”
(SLDFWAA) operator and portrayed as

SLDFWAA
( ˘ G1, ˘ G2, ˘ G3, . . . , ˘Gn)= n⊕

�̆=1

(
£̈�̆ ˘ G�̆

)= (〈1− n∏
�̆=1

(1−�̆ T̆D)
£̈

�̆,
n∏

�̆=1

�̆Ŭ £̈
�̆

D ,
n∏

�̆=1

�̆K̆£̈
�̆

D 〉,

〈1−
n∏

�̆=1

(1−�̆ ᾰ)£̈�̆ ,
n∏

�̆=1

�̆β̆ £̈�̆,
n∏

�̆=1

(�̆η̆+�̆ β̆)£̈�̆ −
n∏

�̆=1

�̆β̆ £̈�̆〉). (8)

Proof. We can prove this on the same pattern as Theorem 5.10.

Properties:

1. (Idempotency). Let ˘ G�̆ = {(〈�̆T̆D,�̆ ŬD,�̆ K̆D〉, 〈�̆ᾰ,�̆ β̆,�̆ η̆〉) : �̆= 1, 2, 3, . . . , n} be a collection

of SLDFNs over Q̆. If ˘ G1 = ˘ G2 = ˘ G3 = . . .= ˘Gn = ˘ G, then
SLDFWAA

( ˘ G1, ˘G2, ˘ G3, . . . , ˘ Gn)= ˘ G

2. (Boundedness). Let ˘ G�̆ = {(〈�̆T̆D,�̆ ŬD,�̆ K̆D〉, 〈�̆ᾰ,�̆ β̆,�̆ η̆〉) : �̆ = 1, 2, 3, . . . , n} be a col-

lection of SLDFNs over Q̆. �̆R̆D is the grade of refusal for all ˘ G�̆. If ŬD∗ =
min�̆{�̆ŬD}, K̆D∗ = min�̆{�̆K̆D},R̆D∗ = min�̆{�̆R̆D}, β̆∗ = min�̆{�̆β̆}, η̆∗ = min�̆{�̆η̆},π∗ =
min�̆{�̆π} with ᾰ∗T̆D∗ = 1 − β̆ŬD∗ − η̆K̆D∗ − πR̆D∗ andŬD∗ = max�̆{�̆ŬD}, K̆D∗ =
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max�̆{�̆K̆D},R̆D∗ = max�̆{�̆R̆D}, β̆∗ = max�̆{�̆β̆}, η̆∗ = max�̆{�̆η̆},π∗ = max�̆{�̆π} with

ᾰ∗T̆D∗ = 1− β̆ŬD∗ − η̆K̆D∗ −πR̆D∗ , then

˘ G∗ ≤ SLDFWAA
( ˘ G1, ˘ G2, ˘G3, . . . , ˘ Gn)≤ ˘ G∗

where ˘G∗ = (〈T̆D∗ , ŬD∗ , K̆D∗〉, 〈ᾰ∗, β̆∗, η̆∗〉) and ˘ G∗ = (〈T̆D∗ , ŬD∗ , K̆D∗〉, 〈ᾰ∗, β̆∗, η̆∗〉).
3. (Monotonicity). Let ˘ G�̆ = {(〈�̆T̆D,�̆ ŬD,�̆ K̆D〉, 〈�̆ᾰ,�̆ β̆,�̆ η̆〉) : �̆ = 1, 2, 3, . . . ,n} and ˘G′�̆ =

{(〈�̆T̆ ′
D,�̆ Ŭ ′

D,�̆ K̆′
D〉, 〈�̆ᾰ′,�̆ β̆′,�̆ η̆′〉) : �̆ = 1, 2, 3, . . . ,n} be assemblings of SLDFNs over Q̆.

If �̆T̆D ≤�̆ T̆ ′
D,�̆ ŬD ≤�̆ Ŭ ′

D,�̆ K̆D ≤�̆ K̆′
D,�̆ ᾰ ≤�̆ ᾰ′,�̆ β̆ ≤�̆ β̆ ′ and �̆η̆≤�̆ η̆′, then

SLDFWAA
( ˘ G1, ˘ G2, ˘ G3, . . . , ˘ Gn)≥ SLDFWAA

( ˘ G′1, ˘G′2, ˘ G′3, . . . , ˘ G′n)
We can check all the properties by using basic operations defined on SLDFNs.

6 An Innovative Approach to MCDM Focused on Spherical Linear Diophantine Fuzzy Operators

Throughout this segment we propose, a novel framework to MCDM focused on SLDFWGA
and SLDFWAA operators. For the same numerical case, we use two novel operators, and, use
specific score function forms, we get separate ordering for the final judgment.

6.1 Case Study and Numerical Example
A gas explosion has historically been one of the serious disasters in coal mines and an

effective emergency evacuation mechanism is one of the main safeguards for reducing accident
damages. For emergency decision-making difficulties of mine injuries jobs, we would call the sug-
gested MCDM algorithms focused on SLDFWGA and SLDFWAA operators, under the influence
of various score functions. The mine accident risks job and life protection tremendously and
imperils mine safety growth. As the events of the explosion frequently arise spontaneously and
instantly, it is not possible to foresee the incident to a crumb and to have adequate plans and
rescue measures in advance. Hence the emergency management strategies and incident scenarios
are the required solution in crisis preparedness and effective responses. The great quality and
effectiveness of the emergency decisions will directly affect the subsequent emergency motives
and effect disaster development. Most mathematicians served with various conditions on emer-
gency scenarios (see [66,74]). Fig. 13 reflects the procedure of a large coal mine’s condensed Gas
Explosion Accident (GEA) emergency rescue.

6.2 Mathematical Modeling
In this portion, we create an optimization technique on SLDFWGA and SLDFWAA opera-

tors. The scores are calculated using distinct score functions and finally, we correlate the outcomes
achieved from both operators. The explanation for presenting two separate operators is that the
definition of SLDFSs and its versatility to be used in various scenarios are expanded. Flowchart
diagrams of the suggested algorithm can be seen in Fig. 14.
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The algorithm based on SLDFWGA and SLDFWAA operators
Input:
Step 1: We input the initial SLDF-information using SLDFSs for selected alternatives Oχ ; (χ =
1, 2, 3, . . . , m).
Step 2: Normalization of the initial SLDF-information:
To obtain the strongest and precise outcomes, the input information must be normalized before
further estimations. The SLDF assessment will then be simplified by

Õχ =
⎛
⎝
(〈

T̆D, ŬD, K̆D
〉
,
〈
ᾰ, β̆, η̆

〉)
; for the same type(〈

K̆D, 1− ŬD, T̆D
〉
,
〈
η̆, β̆, ᾰ

〉)
; for a distinct type

When the sort is the same with both options, so the detail does not need to be normalized. All
the alternatives are of the same types in our particular assessment and then we do not normalize
our input data and use it instantaneously for our discussions.
Step 3: Associated to the κ decision parameters; κ = 1, 2, 3, . . . , n, we get V = (V1, V2, . . . , Vn)

T

associated weight vector according to the opinion of experts with the condition
∑n
κ=1 Vκ = 1.

Step 4: Input the fuzzy linguistic terms to define the linguistic variables and input all the data by
using linguistic information.
Calculations:
Step 5: The aggregated value of every alternative is determined Oχ by utilizing the SLDFWGA
operator from Definition 5.10.
Step 6: The aggregated value of every alternative is determined Oχ by utilizing the SLDFWAA
operator from Definition 5.11.
Step 7: For each aggregated values of alternatives Oχ find SF, QSF, ESF values by using Defini-
tions 5.1, 5.4, and 5.7 respectively, corresponding to the SLDFWGA and SLDFWAA operators.
Output:
Step 7: Rank the alternatives by using Definitions 5.3, 5.6, and 5.9 for SF, QSF, ESF respectively,
corresponding to the SLDFWGA and SLDFWAA operators.
Step 8: Alternative with the maximum score has the highest rating, and the final judgment should
be selected.

Suppose that Q̆= {O1,O2,O3,O4,O5} be an assembling of emergency plans, that is regarded
by specialists in the coal mine for an explosion disaster. The specialists select the variables for the
decision given as G = {ð̆1, ð̆2, ð̆3, ð̆4, ð̆5}, where
ð̆1 = “The noxious gas concentration (gas)”

ð̆2 = “Reducing casualty of current events (casualty)”

ð̆3 = “The smoke and dust level (smoke)”

ð̆4 = “The feasibility of rescue operations (feasibility)”

ð̆5 = “Reparing facility damages caused by emergency (facility)”

We should decide whether all the parameters are sufficient parameters based on the general
changing theory and all the features of the mine incidents. We use other ambiguous linguistic
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concepts to describe the vector of weight according to specialists. Some values are provided
in Tab. 13.

Figure 13: Simplified gas explosion accidents (GEA) emergency rescue workflow of a large
coal mine

Figure 14: Diagram of the flow map of planned algorithm
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Table 13: Fuzzy linguistic values

Linguistic terms Fuzzy numeric values

High (H) 1≤H ≤ 0.60
Medium high (MH) 0.60<MH ≤ 0.30
Medium (M) 0.30<M ≤ 0.20
Medium low (ML) 0.20<ML≤ 0.10
Low (L) 0.10<L≤ 0.00

The weight vector according to experts’ opinion and experiences is given as V =
(MH, M, M,ML, L)T . We can write it as V = (0.45, 0.21, 0.20, 0.10, 0.04)T , with the condition∑n
κ=1 Vκ = 1.

The assessments for emergency plans are according to experts and given in the form of SLDF-
data in Tab. 14. Tab. 14 is constructed by using the information given in Tab. 13.

Table 14: SLDF-input information

Alternatives (Oχ) Criteria SLDFNs

ð̆1 (〈00.85, 00.24, 00.45〉, 〈00.25, 00.34, 00.18〉)
ð̆2 (〈00.73, 00.31, 00.48〉, 〈00.34, 00.11, 00.23〉)

O1 ð̆3 (〈00.63, 00.45, 00.38〉, 〈00.41, 00.28, 00.11〉)
ð̆4 (〈00.81, 00.41, 00.32〉, 〈00.31, 00.23, 00.31〉)
ð̆5 (〈00.78, 00.17, 00.45〉, 〈00.33, 00.12, 00.27〉)
ð̆1 (〈00.77, 00.41, 00.52〉, 〈00.34, 00.21, 00.22〉)
ð̆2 (〈00.82, 00.51, 00.43〉, 〈00.13, 00.25, 00.21〉)

O2 ð̆3 (〈00.58, 00.43, 00.41〉, 〈00.31, 00.23, 00.15〉)
ð̆4 (〈00.78, 00.45, 00.31〉, 〈00.51, 00.11, 00.18〉)
ð̆5 (〈00.83, 00.21, 00.43〉, 〈00.72, 00.13, 00.14〉)
ð̆1 (〈00.95, 00.41, 00.38〉, 〈00.41, 00.25, 00.18〉)
ð̆2 (〈00.77, 00.62, 00.43〉, 〈00.31, 00.25, 00.21〉)

O3 ð̆3 (〈00.86, 00.41, 00.38〉, 〈00.41, 00.23, 00.17〉)
ð̆4 (〈00.89, 00.38, 00.46〉, 〈00.46, 00.32, 00.11〉)
ð̆5 (〈00.83, 00.21, 00.38〉, 〈00.51, 00.18, 00.17〉)
ð̆1 (〈00.82, 00.41, 00.38〉, 〈00.41, 00.21, 00.11〉)
ð̆2 (〈00.91, 00.61, 00.53〉, 〈00.38, 00.21, 00.22〉)

O4 ð̆3 (〈00.73, 00.61, 00.48〉, 〈00.25, 00.31, 00.18〉)
ð̆4 (〈00.83, 00.63, 00.47〉, 〈00.38, 00.21, 00.17〉)
ð̆5 (〈00.76, 00.58, 00.43〉, 〈00.31, 00.23, 00.33〉)
ð̆1 (〈00.73, 00.61, 00.53〉, 〈00.41, 00.21, 00.18〉)
ð̆2 (〈00.83, 00.51, 00.68〉, 〈00.31, 00.21, 00.15〉)

O5 ð̆3 (〈00.73, 00.61, 00.58〉, 〈00.41, 00.23, 00.16〉)
ð̆4 (〈00.81, 00.32, 00.58〉, 〈00.38, 00.31, 00.14〉)
ð̆5 (〈00.93, 00.21, 00.41〉, 〈00.41, 00.21, 00.13〉)
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By using spherical linear Diophantine fuzzy weighted geometric aggregation (SLDFWGA)
operator given in Equation (A) over the input Tab. 14, we get aggregated values of alternatives
given as

O1 = (〈0.7690, 0.3169, 0.4313〉, 〈0.3258, 0.2380, 0.1952〉)
O2 = (〈0.7404, 0.4338, 0.4585〉, 〈0.3182, 0.2039, 0.1972〉)
O3 = (〈0.8805, 0.4530, 0.3992〉, 〈0.3968, 0.2487, 0.1773〉)
O4 = (〈0.8173, 0.5312, 0.4459〉, 〈0.3671, 0.2278, 0.1638〉)
O5 = (〈0.7651, 0.5550, 0.5770〉, 〈0.3854, 0.2223, 0.1638〉)

Now we evaluate the score values by using Definition 5.1 given as

P(O1)=−0.0433, P(O2)=−0.1174, P(O3)=−0.0273, P(O4)=−0.0921,

P(O5)=−0.1838.

From Definition 5.3 we conclude that the preference order is O3 �O1 �O4 �O2 �O5.

Now we evaluate the quadratic score values by using Definition 5.4 given as

J(O1)= 0.1581, J(O2)= 0.0852, J(O3)= 0.2374, J(O4)= 0.1215, J(O5)= 0.0083.

From Definition 5.6 we conclude that the preference order is O3 �O1 �O4 �O2 �O5.

Now we evaluate the expectation score values by using Definition 5.7 given as

M̆(O1)= 0.6522, M̆(O2)= 0.6275, M̆(O3)= 0.6665, M̆(O4)= 0.6359, M̆(O5)= 0.6054.

From Definition 5.9 we conclude that the preference order is O3 �O1 �O4 �O2 �O5.

The comparison between the ranking of all alternatives by using different score functions
corresponding to the SLDFWGA operator is given in Fig. 15.

Figure 15: The comparison of “score function” (SF), “quadratic score function” (QSF), and
“expectation score function” (ESF) for SLDFWGA operator
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By using spherical linear Diophantine fuzzy weighted average aggregation (SLDFWAA)
operator given in Eq. (8) over the input Tab. 14, we get aggregated values of alternatives given as

O1 = (〈0.7886, 0.2988, 0.4261〉, 〈0.3129, 0.2380, 0.2075〉)
O2 = (〈0.7576, 0.4258, 0.4490〉, 〈0.3006, 0.2039, 0.1976〉)
O3 = (〈0.9038, 0.4320, 0.3975〉, 〈0.4001, 0.2487, 0.1776〉)
O4 = (〈0.8302, 0.5107, 0.4383〉, 〈0.3674, 0.2278, 0.1579〉)
O5 = (〈0.7758, 0.5277, 0.5679〉, 〈0.3872, 0.2223, 0.1645〉)

Now we evaluate the score values by using Definition 5.1 given as

P(O1)=−0.0344, P(O2)=−0.1090, P(O3)=−0.0240, P(O4)=−0.0228,

P(O5)=−0.1597.

From Definition 5.3 we conclude that the preference order is O3 �O4 �O1 �O2 �O5.

Now we evaluate the quadratic score values by using Definition 5.4 given as

J(O1)= 0.1746, J(O2)= 0.1003, J(O3)= 0.2694, J(O4)= 0.1472, J(O5)= 0.0371.

From Definition 5.6 we conclude that the preference order is O3 �O1 �O4 �O2 �O5.

Now we evaluate the expectation score values by using Definition 5.7 given as

M̆(O1)= 0.6551, M̆(O2)= 0.6303, M̆(O3)= 0.6746, M̆(O4)= 0.6438, M̆(O5)= 0.6134.

From Definition 5.9 we conclude that the preference order is O3 � O1 � O4 � O2 �
O5. The comparison between the ranking of all alternatives by using different score functions
corresponding to the SLDFWAA operator is given in Fig. 16.

Figure 16: The comparison of “score function” (SF), “quadratic score function” (QSF), and
“expectation score function” (ESF) for SLDFWAA operator
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6.3 Study of the Discussions and Comparative Analysis
Throughout this subsection, we address the feasibility of the proposed process, it’s aggregation

versatility to work with specific inputs and outputs, the effect of score functions, sensitivity anal-
ysis, supremacy, and finally the contrast of the presented methodology with current techniques.

Reliability of method and its consistency:

The recommended technique is accurate and appropriate for input data of all types. The
developed framework is suitable for addressing uncertainties. Using control parameters it contains
the space of PFSs, SFSs, T-SFSs, and NSs. Such parameters expand the space between satis-
faction and dissatisfaction classes so we can utilize our model efficiently in various contexts by
adjusting the practical meaning of certain parameters. We experience a variety of factors and
input parameters according to the appropriate circumstances in certain MADM difficulties. The
suggested SLDFS is straightforward and quick to grasp and can be readily extended to different
alternatives and attributes.

Aggregation versatility, for specific inputs and outputs:

The recommended algorithms are robust and can be conveniently utilized for multiple inputs
and output scenarios. Since the diverse score functions, there is no distinction in the classifica-
tion of the suggested algorithms. This methodology is more robust than others as comparison
parameters raise grade space and can differ based on the MADM system circumstances.

The impact of score function:

Feng et al. [53] provides different score functions for IFSs and addresses their relation. We add
three forms of functions called score (SF), quadratic score (QSF), and expectation value (ESF)
respectively. For the comparison of SLDFNs, we also define the associated accuracy functions.
Every score method requires its estimation and specific ordering methods such that the slightly
different result is accessible. From Tabs. 15 and 16, we can observe that there are identical scores
for SF and ESF, but for QSF it is distinct from the others. Although it is essential to note that
for all score functions, the outcome from both algorithms is nearly equivalent (Figs. 17 and 18).

Table 15: Ranking order of alternatives for SLDFWGA operator under different score functions

Score function Scores of O1,O2,O3,O4,O5 Final ranking Orders Result

P −0.0433, −0.1174, −0.0273, −0.0921, −0.1838 O3 �O1 �O4 �O2 �O5 ≤(P,ψ) O3
J 0.1581, 0.0852, 0.2374, 0.1215, 0.0083 O3 �O1 �O4 �O2 �O5 ≤(J,φ) O3

M̆ 0.6522, 0.6275, 0.6665, 0.6359, 0.6054 O3 �O1 �O4 �O2 �O5 ≤
(M̆,A) O3

Table 16: Ranking order of alternatives for SLDFWAA operator under different score functions

Score function Scores of O1, O2, O3, O4, O5 Final ranking Orders Result

P 0.147, 0.353, 0.154, 0.296 O3 �O4 �O1 �O2 �O5 ≤(P,ψ) O3
J 0.156, 0.288, 0.165, 0.316 O3 �O1 �O4 �O2 �O5 ≤(J,φ) O3

M̆ 0.573, 0.676, 0.577, 0.648 O3 �O1 �O4 �O2 �O5 ≤
(M̆,A) O3
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Figure 17: The comparison of 5 alternatives under SF, QSF, and ESF for SLDFWGA operator

Figure 18: The comparison of 5 alternatives under SF, QSF, and ESF for SLDFWAA operator

7 Conclusion

The existing fuzzy models like picture fuzzy sets (PFSs), spherical fuzzy sets (SFSs), T-
spherical fuzzy sets (T-SFSs), and neutrosophic sets (NSs) have had various strict limitations for
their satisfaction, dissatisfaction, abstain or refusal grades. To relax these restrictions, we proposed
a new extension of fuzzy sets named the spherical linear Diophantine Fuzzy set (SLDFS) which is
more efficient to address various uncertainties in a parametric way. Spherical linear Diophantine
fuzzy information includes additional features of the reference or control parameters denoted by
ᾰ, β̆ and η̆. We described the graphical analysis of SLDFSs to compare it with other fuzzy
sets. For the selection of grades in MCDM, SLDFSs provide a broader space than PFSs, SFSs,
T-SFSs, and NSs. To overcome the drawbacks of operations of picture fuzzy numbers and
their corresponding aggregation operators, we defined novel operations on picture fuzzy numbers
and their smooth aggregation operators. We introduced numerous score and accuracy functions
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for the analysis of spherical linear Diophantine fuzzy numbers (SLDFNs). We defined new
aggregation operators named spherical linear Diophantine fuzzy geometric weighted aggregation
(SLDFWGA) and spherical linear Diophantine fuzzy weighted average aggregation (SLDFWAA).
We developed a new MCDM process focused on the suggested operators. We elaborated the
distinction of suggested operators and practiced the influence of proposed score functions in the
information aggregation.

Our future work will be focused on solving other real-life problems with “spherical linear
Diophantine fuzzy rough set” (SLDFRS), “spherical linear Diophantine Hesitant fuzzy set” (SLD-
HFS), “spherical linear Diophantine fuzzy graphs” (SLDF-graphs), and “interval-valued spherical
linear Diophantine fuzzy set” (IVSLDFS). SLDFSs may be extended to any other aggregation
operators, such as prioritized AOs, power mean AOs, Dombi’s AOs, Bonferroni mean AOs, Hero-
nian mean AOs, and so on. We hope that our research results will be successful for researchers
working in the fields of information aggregation, information fusion, robotics, pattern recognition,
artificial intelligence, machine learning, neural networks, and medical diagnosis.
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