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ABSTRACT

The main focus of this study is to investigate the impact of heat generation/absorption with ramp velocity and
ramp temperature on magnetohydrodynamic (MHD) time-dependent Maxwell fluid over an unbounded plate
embedded in a permeable medium. Non-dimensional parameters along with Laplace transformation and inversion
algorithms are used to find the solution of shear stress, energy, and velocity profile. Recently, new fractional
differential operators are used to define ramped temperature and ramped velocity. The obtained analytical solutions
are plotted for different values of emerging parameters. Fractional time derivatives are used to analyze the impact
of fractional parameters (memory effect) on the dynamics of the fluid. While making a comparison, it is observed
that the fractional-order model is best to explain the memory effect as compared to classical models. Our results
suggest that the velocity profile decrease by increasing the effective Prandtl number. The existence of an effective
Prandtl number may reflect the control of the thickness of momentum and enlargement of thermal conductivity.
The incremental value of the M is observed for a decrease in the velocity field, which reflects to control resistive
force. Further, it is noted that the Atangana-Baleanu derivative in Caputo sense (ABC) is the best to highlight the
dynamics of the fluid. The influence of pertinent parameters is analyzed graphically for velocity and energy profile.
Expressions for skin friction and Nusselt number are also derived for fractional differential operators.
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1 Introduction

Viscoelasticity has important implications due to the characterization of viscoelastic param-
eters (relaxation and retardation phenomenon), elastic shearing strain, thermal relaxation, time-
dependent an elastic aspect, and other rheological properties [1–3]. In such fluid, stress and rate
of strain have a nonlinear relationship and enhance their order which makes the flow equation
more complicated [4,5]. Elastic and memory effect for the flow of rate type fluid discussed
by Maxwell.

Firstly, Maxwell [6] analyzed the visco-elastic attributes of air. Fetecau et al. [7] investigate
the closed-form solution of the Maxwell model over an unbounded plate. Moreover, authors [8]
discussed the Maxwell model over unbounded plate swing in the plane. Some significant results
of the Maxwell model can be studied in [9–12]. Aman et al. [13] investigated the heat transfer
analysis of Maxwell fluid flow with carbon nanotubes. The analytical solution of a Maxwell fluid
with slip effects was investigated by Asif et al. [14]. Further, authors [15] discussed the unsteady
rotational flow of Maxwell fluid in a Cylinder subject to shear stress. Noor [16] analyzed the
impacts of chemical reaction on MHD Maxwell fluid flow for a vertical stretching sheet. In
the literature, all the above-mentioned articles dealing with the flow of uniform and constant
boundary conditions. There is an insufficient study that deals with flows under ramped wall
temperature and ramped wall velocity conditions. Physically, the implementation of ramped wall
velocity and temperature in real-life problems has a significant role. The diagnoses of prognosis,
establishing treatments, analysis of heart functions, and blood vessel system [17–20] are major
applications of ramp velocity. Firstly, the authors [21] discussed the simultaneous use of ramped
velocity and temperature. Seth et al. [22–24] investigated heat and mass transfer phenomena with
ramp temperature conditions. Recently, Tiwana et al. [25] and Anwar et al. [26] analyzed MHD
Oldroyd-B fluid in the presence of thermal radiation under the effect of ramped temperature and
ramped velocity. Anwar et al. [27] analyzed the flow of MHD Maxwell fluid under the impact
of ramped wall temperature and velocity. Shah et al. [28] analyzed the convection flow of viscous
fluids with analytical results by employing the time-fractional Caputo–Fabrizio derivative.

The technique of fractional calculus has been used to formulate mathematical modeling
in various technological development, engineering applications, and industrial sciences. Different
valuable work has been discussed for modeling fluid dynamics, signal processing, viscoelastic-
ity, electrochemistry, and biological structure through fractional time derivatives. This fractional
differential operator found useful conclusions for experts to treat cancer cells with a suitable
amount of heat source and have compared the results to see the memory effect of tempera-
ture function. As compared to classical models, the memory effect is much stronger in frac-
tional derivatives. From the past to the present, modeling of the different processes is handled
through various types of fractional derivatives and fractal-fractional differential operators, such
that Caputo (Power law), Atangana–Baleanu (Mittage–Leffler law), Caputo–Fabrizio (exponen-
tial law), Riemann–Liouville, modified Riemann–Liouville (Power law with boundaries) and few
others [29–36]. Recently, Imran et al. [37] studied the comparison approach between Caputo–
Fabrizio and Atangana–Baleanu fractional derivative and found that Atangana–Baleanu fractional
derivative is excellent in exhibiting the memory effect in fluid flow problems. Convective flow
with ramped wall temperature for non-singular kernel analyzed by Riaz et al. [38]. Further, Riaz
et al. [39] discuss MHD Maxwell fluid with heat effect using local and non-local operators.
Moreover, the authors [40] analyze the comparative study of heat transfer of MHD Maxwell
fluid in view of fractional operators. Khan et al. [41,42] discussed the heat transfer analysis in
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a Maxwell fluid using fractional Caputo-Fabrizio derivatives. Some recent studies related to the
applications of modern techniques of fractional derivatives can be seen [43–48].

The main objective of this paper is to investigate the MHD Maxwell model with the definition
of fractional order derivative in a Darcy medium. The solution of fluid velocity, energy, and shear
stress are obtained by Caputo-Fabrizio (CF) and Atangana-Baleanu derivative in Caputo sense
(ABC) fractional derivative models under influence of ramped velocity and temperature. These
non-integer order derivatives are good for handling the mathematical calculation. Section 2 helps
to derive the governing partial differential equations. The solution of the temperature profile,
velocity profile, and shear stress can be achieved through CF and ABC fractional models with help
of Laplace transformation and inversion algorithm in Sections 3 and 4 respectively. In Section 5,
the influence of physical parameters is discussed graphically by MATHCAD-15 software. Finally,
the conclusion of the present article is given at the end.

2 Development of Governing Equations Based on Problem Statement

Consider the MHD time-dependent Maxwell model over an unbounded vertical plate
immersed in a permeable surface. The plate is along the x-axis, while the ξ -axis is perpendicular
to the plate. At the wall end, both velocity and temperature have time-dependent conditions up
to some certain limit of time known as the characteristic time; after that time, both velocity and
temperature attain constant values u0 and T∞. The physical model expressed in Fig. 1. Under
these presumptions, the governing equation for MHD Maxwell fluid with appropriate conditions
are given below [27,41]:

(
1+λ

∂

∂t

)
∂W(ξ , t)

∂t
= υ

∂2W(ξ , t)
∂ξ2

+ gβ
(
1+λ

∂

∂t

)
(T −T∞)−

(
μφ

ρk∗
+ σB2

0

ρ

)(
1+λ

∂

∂t

)
W(ξ , t),

(1)

ρCp
∂T(ξ , t)

∂t
= k

∂2T(ξ , t)
∂ξ2

− ∂qr
∂ξ

−QoT(ξ , t)+QoT∞(ξ , t), (2)

(
1+λ

∂

∂t

)
S=μ

∂W(ξ , t)
∂ξ

. (3)

Figure 1: Geometrical presentation for MHD Maxwell model
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Eqs. (1)–(3) represent as governing equations of velocity, energy and shear stress distributions
respectively subject to imposed conditions as:

ξ ≥ 0 : W(ξ , 0)= 0, T(ξ , 0)=T∞, Wt(ξ , 0)= 0, Wξ (ξ , 0)= 0, (4)

W(0, t)=
⎧⎨
⎩Uo

t
t0
, 0< t≤ t0

W(0, t)=Uo, t> t0,
, T(0, t)=

⎧⎨
⎩T∞ + (Tw−T∞)

t
t0
, 0< t≤ t0

T(0, t)=Tw, t> t0,
(5)

t≥ 0 : W(ξ , t)→ 0,T(ξ , t)→T∞, as ξ →∞. (6)

Introduce dimensionless elements to form the problem free from geometric

ζ = ξUo

υ
, τ = tU2

o

υ
, w= W

Uo
, θ = T −T∞

Tw−T∞
, λ1 = λU2

o

υ
, Pr =

μCp
k

,
1
K

= φυ2

k∗U2
o
, (7)

S1 = S
ρU2

o
, t0 = υ

U2
o
, Gr= gβυ(Tw−T∞)

U3
o

, M = σB2
oυ

ρU2
o
, Q= υQo

ρCpU2
o
, Nr = 16σ1T3∞

3kk∗
. (8)

After simplification, we have the set of dimensionless governing equations:(
1+λ1

∂

∂τ

)
∂w(ζ , τ )

∂τ
= ∂2w(ζ , τ )

∂ζ 2 +Gr

(
1+λ1

∂

∂τ

)
θ(ζ , τ )−

(
M + 1

K

)(
1+λ

∂

∂τ

)
w(ζ , τ ), (9)

∂θ(ζ , τ )

∂τ
= 1
Preff

∂2θ(ζ , τ )

∂ζ 2 +Qθ(ζ , τ ), (10)

(
1+λ1

∂

∂τ

)
S1 = ∂w(ζ , τ )

∂ζ
, (11)

with corresponding conditions

ζ ≥ 0 : w(ζ , 0)= 0, θ(ζ , 0)= 0, wt(ζ , 0)=wζ (ζ , 0)= 0, (12)

w(0, τ )= θ(0, τ )=
{

τ 0< τ ≤ 1;= τH(τ )− (τ − 1)H(τ − 1)

1 τ > 1,
, (13)

τ ≥ 0 : w(ζ , τ )→ 0, θ(ζ , τ )→ 0, as ζ →∞. (14)
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3 Solution of Temperature Profile

3.1 Caputo–Fabrizio Fractional Derivative
Fractional operators are quite flexible for describing the behaviors of energy transfer of

MHD Maxwell fluid through the characterization of governing equations. Generating fractional
governing equation of temperature (10) via CF-fractional operator (16) by exchanging the partial
time derivative with fractional derivative of order κ,

CFDκ
τ θ(ζ , τ )= 1

Preff

∂2θ(ζ , τ )

∂ζ 2 +Qθ(ζ , τ ), (15)

where, CFDκ
t is known as CF fractional operator [32] is defined by

CFDκ
τN (ζ , τ )= 1

1− κ

∫ τ

0
exp

(
−κ(τ − ξ)

1− κ

)
N/(ξ) dξ , 0< κ < 1. (16)

Solving the uncoupled and fractionalized governing equation of temperature (15) by Laplace
transform method. One has to need the following typical property of Caputo–Fabrizio fractional
operator defined in Eq. (17)

L
(
CFDκ

τN (ζ , τ )

)
= sL (N(ζ , τ ))−N(ζ , 0)

(1− κ)s+ κ
, (17)

employing Laplace transformation on (15) with the help of (17), we explored second order partial
differential equation

∂2θ̄cf (ζ , s)

∂ζ 2 −Preff

(
s

(1− κ)s+ κ
+Q

)
θ̄cf (ζ , s)= 0. (18)

More suitable form of temperature field is

∂2θ̄cf (ζ , s)

∂ζ 2 −Preff

(
g1s+ g2
g3s+ g4

)
θ̄cf (ζ , s)= 0. (19)

The solution of homogenous part of second order partial differential equation say (19) is,

θ̄cf (ζ , s)= c1e
−ζ

√
Preff

(
g1s+g2
g3s+g4

)
+ c2e

ζ

√
Preff

(
g1s+g2
g3s+g4

)
, (20)

with the help of Eqs. (12)–(14), we find out the values of constants c1 and c2 for
temperature equation

θ̄cf (ζ , s)=
(
1− e−s

s2

)
e
−ζ

√
Preff

(
g1s+g2
g3s+g4

)
, (21)

where

g1 = 1+Q− κQ, g2 = κQ, g3 = 1− κ, g4 = κ.
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The expression of Nusselt number Nu for CF differentiation is given as:

Nucf =−∂θ

∂ζ
(0, τ )=L−1

(√
Preff

(
g1s+ g2
g3s+ g4

)
×
(
1− e−s

s2

))
. (22)

3.2 Atangana–Baleanu Fractional Derivative
Generating a fractional governing equation of temperature (15) via ABC-fractional opera-

tor (24) by exchanging the partial time derivative with fractional derivative of order γ ,

ABCDγ
τ θ(ζ , τ )= 1

Preff

∂2θ(ζ , τ )

∂ζ 2 +Qθ(ζ , τ ), (23)

where ABCDγ
t is known as ABC fractional operator [33] is defined by

ABCDα
t f (ξ , τ )= M(α)

1−α

∫ τ

0
Eα

(
−α(t− τ )α

1−α

)
∂f (ξ , τ )

∂τ
dτ , with

∞∑
m=0

(−t)αm
�(1+αm)

=Eα(−t)α, (24)

where M(α) denotes a normalization function obeying M(0)=M(1)= 1.

Solving governing equation of temperature (23) by Laplace transform method. One has to
need the following typical property of ABC-fractional operator defined in Eq. (25)

L
(
ABCDα

t f (ξ , t)
)
= sαL (f (ξ , t))− sα−1f (ξ , 0)

(1−α)sα +α
, (25)

employing Laplace transformation on (23) with the help of (25), we explored second order partial
differential equation:

∂2θ̄abc(ζ , s)
∂ζ 2 −Preff

(
sγ

(1− γ )sγ + γ
+Q

)
θ̄abc(ζ , s)= 0. (26)

More suitable form of temperature field is,

∂2θ̄abc(ζ , s)
∂ζ 2 −Preff

(
h1sγ + h2
h3sγ + h4

)
θ̄abc(ζ , s)= 0, (27)

The solution of homogenous part of second order partial differential equation say (27),

θ̄abc(ζ , s)= c1e
−ζ

√
Preff

(
h1s

γ +h2
h3s

γ +h4

)
+ c2e

ζ

√
Preff

(
h1s

γ +h2
h3s

γ +h4

)
, (28)

with the help of Eqs. (12)–(14), we find out the values of constants c1 and c2 for temperature
equation:

θ̄abc(ζ , s)=
(
1− e−s

s2

)
e
−ζ

√
Preff

(
h1s

γ +h2
h3s

γ +h4

)
, (29)

where

h1 = 1+Q− γQ, h2 = γQ, h3 = 1− γ , h4 = γ .
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The expression of Nusselt number Nu for ABC differentiation is given as:

Nuabc =−∂θ

∂ζ
(0, τ )=L−1

(√
Preff

(
h1sγ + h2
h3sγ + h4

)
×
(
1− e−s

s2

))
. (30)

4 Solution of Velocity Profile

4.1 Caputo-Fabrizio Fractional Derivative
Generating a fractional governing equation of velocity Eq. (9) via CF-fractional operator say

equation Eq. (16) by exchanging the partial time derivative with fractional derivative of order κ

then solving the governing equation Eq. (9) by Laplace transform method, we get((
1+ λ1s

(1− κ) s+ κ

)(
s+M + 1

K

))
w̄cf (ζ , s)=

∂2w̄cf (ζ , s)

∂ζ 2 +Gr

(
1+ λ1s

(1− κ) s+ κ

)
θ̄cf (ζ , s). (31)

The required homogeneous part of the Eq. (31) is given as:

w̄h (ζ , s)= c1e
−ζ

√(
s+M+ 1

K

)(
g5s+g4
g3s+g4

)
+ c2e

ζ

√(
s+M+ 1

K

)(
g5s+g4
g3s+g4

)
, (32)

and particular solution can be give as follow after making use of Eq. (18),

w̄p (ζ , s)= Gr
(
1− e−s

)
(g5s+ g4)

g5s2
(
s2+ g8s+ g9

) e
−ζ

√
Preff

(
g1s+g2
g3s+g4

)
, (33)

and solution of Eq. (31) can be given as follow:

w̄cf (ζ , s)= w̄h (ζ , s)+ w̄p (ζ , s) , (34)

w̄cf (ζ , s)= c1e
−ζ

√(
s+M+ 1

K

)(
g5s+g4
g3s+g4

)
+ c2e

ζ

√(
s+M+ 1

K

)(
g5s+g4
g3s+g4

)

+ Gr
(
1− e−s

)
(g5s+ g4)

g5s2
(
s2 + g8s+ g9

) e
−ζ

√
Preff

(
g1s+g2
g3s+g4

)
, (35)

using conditions given in Eqs. (12)–(14) for velocity in order to find constants, we have

w̄cf (ζ , s)=
(
1− e−s

s2

)
e
−ζ

√(
s+M+ 1

K

)(
g5s+g4
g3s+g4

)
+ Gr

(
1− e−s

)
(g5s+ g4)

g5s2
(
s2+ g8s+ g9

)

×
⎛
⎝e−ζ

√
Preff

(
g1s+g2
g3s+g4

)
− e

−ζ

√(
s+M+ 1

K

)(
g5s+g4
g3s+g4

)⎞⎠ . (36)

The suitable and simplified form for inversion algorithm, we have

w̄cf (ζ , s)=
(
1− e−s

s2

)
Z̄ (ζ , s) , (37)
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and

Z̄ (ζ , s)= e
−ζ

√(
s+M+ 1

K

)(
g5s+g4
g3s+g4

)
+ Gr
g5

(
D1

s+B1
+ D2

s+B2

)⎛⎝e−ζ

√
Preff

(
g1s+g2
g3s+g4

)
− e

−ζ

√(
s+M+ 1

K

)(
g5s+g4
g3s+g4

)⎞⎠ ,

(38)

where, letting parameters are described as

g5 = 1+λ1− κ, g6 = g4+ g5
K

+ g5M − g1Preff , g7 = g4
K

+ g4M − g2Preff , g8 = g6
g5

, g9 = g7
g5

,

g10 =
√
g28 − 4g9

4
, B1 = g8

2
− g10, B2 = g8

2
+ g10, D1 = −g5g8+ 2g10g5+ 2g4

4g10
,

D2 = g5g8+ 2g10g5− 2g4
4g10

.

Differentiate Eq. (37) with respect to ζ , we have

w̄cf (ζ , s)=
(
1− e−s

s2

)
∂Z̄ (ζ , s)

∂ζ
, (39)

where

∂Z̄ (ζ , s)
∂ζ

=
√(

s+M + 1
K

)(
g5s+ g4
g3s+ g4

)
e
ζ

√(
s+M+ 1

K

)(
g5s+g4
g3s+g4

)
+ Gr
g5

(
D1

s+B1
+ D2

s+B2

)

×
(√

Preff

(
g1s+ g2
g3s+ g4

))
e
−ζ

√
Preff

(
g1s+g2
g3s+g4

)
− Gr
g5

(
D1

s+B1
+ D2

s+B2

)

×
(√(

s+M + 1
K

)(
g5s+ g4
g3s+ g4

))
e
ζ

√(
s+M+ 1

K

)(
g5s+g4
g3s+g4

)
. (40)

Plugging Eq. (38) into Eq. (11) gives the resultant solution of shear stress

S̄1(ζ , s)=
(
g3s+ g4
g5s+ g4

)(
1− e−s

s2

)
∂Z̄ (ζ , s)

∂ζ
. (41)

The expression of skin friction Sf for CF differentiation is given as:

Sfcf =−∂w(0, τ )

∂ζ
=L−1

(
1− e−s

s2
× ∂Z̄ (0, s)

∂ζ

)
. (42)
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4.2 Atangana-Baleanu Fractional Derivative
Generating a fractional governing equation of velocity Eq. (9) via ABC-fractional operator

say equation Eq. (24) by exchanging the partial time derivative with fractional derivative of order
γ then solving the governing equation Eq. (9) by Laplace transform method, we get((

1+ λ1sγ

(1− γ ) sγ + γ

)(
s+M + 1

K

))
w̄abc(ζ , s)=

∂2w̄abc(ζ , s)
∂ζ 2 +Gr

(
1+ λ1sγ

(1− γ ) sγ + γ

)
θ̄abc (ζ , s) .

(43)

The homogeneous part of the Eq. (43) is given as:

w̄h (ζ , s)= c1e
−ζ

√(
s+M+ 1

K

)(
h5s

γ +h4
h3s

γ +h4

)
+ c2e

ζ

√(
s+M+ 1

K

)(
h5s

γ +h4
h3s

γ +h4

)
, (44)

and particular solution can be give as follow after making use of Eq. (29) for the values θ̄abc (ζ , s),

w̄p (ζ , s)= Gr
(
1− e−s

)
(h5sγ + h4)

h5s2
(
s2γ + h8sγ + h9

) e
−ζ

√
Preff

(
h1s

γ +h2
h3s

γ +h4

)
, (45)

using conditions given in Eqs. (9)–(11) for velocity in order to find constants, we have

w̄abc (ζ , s)=
(
1− e−s

s2

)
e
−ζ

√(
s+M+ 1

K

)(
h5s

γ +h4
h3s

γ +h4

)
+ Gr

(
1− e−s

)
(h5sγ + h4)

h5s2
(
s2γ + h8sγ + h9

)

×
⎛
⎝e−ζ

√
Preff

(
h1s

γ +h2
h3s

γ +h4

)
− e

−ζ

√(
s+M+ 1

K

)(
h5s

γ +h4
h3s

γ +h4

)⎞⎠ . (46)

The suitable and simplified form for inversion algorithm, we have

w̄abc (ζ , s)=
(
1− e−s

s2

)
H̄ (ζ , s) , (47)

and

H̄ (ζ , s)= e
−ζ

√(
s+M+ 1

K

)(
h5s

γ +h4
h3s

γ +h4

)
+ Gr
h5

(
D3

sγ +B3
+ D4

sγ +B4

)

×
⎛
⎝e−ζ

√
Preff

(
h1s

γ +h2
h3s

γ +h4

)
− e

−ζ

√(
s+M+ 1

K

)(
h5s

γ +h4
h3s

γ +h4

)⎞⎠ , (48)

where, letting parameters are described as

h5 = 1+λ1 − γ , h6 = h4+ h5
K

+ h5M − h1Preff , h7 = h4
K

+ h4M − h2Preff , h8 = h6
h5

, h9 = h7
h5

,



830 CMES, 2021, vol.126, no.2

h10 =
√
h28− 4h9

4
, B3 = h8

2
− h10, B4 = h8

2
+ h10, D3 = −h5h8+ 2h10h5+ 2h4

4h10
,

D4 = h5h8+ 2h10h5− 2h4
4h10

.

Differentiate Eq. (47) with respect to ζ , we have

w̄abc (ζ , s)=
(
1− e−s

s2

)
∂H̄ (ζ , s)

∂ζ
, (49)

where

∂H̄ (ζ , s)
∂ζ

=
√(

s+M + 1
K

)(
h5sγ + h4
h3sγ + h4

)
e
−ζ

√(
s+M+ 1

K

)(
h5s

γ +h4
h3s

γ +h4

)
+ Gr
h5

(
D3

sγ +B3
+ D4

sγ +B4

)

×
(√

Preff

(
h1sγ + h2
h3sγ + h4

))
e
−ζ

√
Preff

(
h1s

γ +h2
h3s

γ +h4

)
− Gr
h5

(
D3

sγ +B3
+ D4

sγ +B4

)

×
(√(

s+M + 1
K

)(
h5sγ + h4
h3sγ + h4

))
e
−ζ

√(
s+M+ 1
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. (50)

Plugging Eq. (50) into Eq. (11) gives the resultant solution of shear stress:

S̄1(ζ , s)=
(
h3sγ + h4
h5sγ + h4

)(
1− e−s

s2

)
∂H̄ (ζ , s)

∂ζ
. (51)

The expression of skin friction Sf for ABC differentiation is given as:

Sfcf =−∂w(0, τ )

∂ζ
=L−1

(
1− e−s

s2
× ∂H̄ (0, s)

∂ζ

)
. (52)

In our flow models we use classical computational technique (Laplace transform) to solve
the given models using different definitions of fractional derivatives. There are many algorithms
for the numerical calculation of the inverse Laplace transform. The Stehfest’s formula, which
approximates the inverse Laplace transform is simple, easy to use compared with other algorithms.
In this paper we use Stehfest’s algorithm and also give comparison with other in tabular form.
Tzou’s calculation for approval of our numerical inverse Laplace

v(r, t)= e4.7

t

⎡
⎣1
2
v̄
(
r,
4.7
t

)
+Re

⎧⎨
⎩

N1∑
k=1

(−1)kv̄
(
r,
4.7+ kπ i

t

)⎫⎬
⎭
⎤
⎦ ,

where Re(.) is the real part, i is the imaginary unit and N1 is a natural number [49,50].
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5 Results and Discussion

This section is dedicated to present physical interpretation of the obtained results via CF
and AB differential operators under heat generation, ramp velocity, and ramp temperature on
the MHD Maxwell model. Results are investigated via Laplace transformation with an inversion
algorithm for velocity, energy, and shear stress based on singular verses non-singular and local
versus non-local kernels. The graphical representations are depicted for showing the influences of
different physical parameters such as effective Prandtl number Preff , thermal Grashof number Gr,
fractional parameters γ and magnetic effect M on velocity and energy profile using the package
of MATHCAD-15. Additionally, we focus our depicted graphs for the comparison of ramped
temperature with constant temperature using a fractional operator.

Figure 2: Plot via CF and AB-approaches for temperature with variation of Preff and time

Figure 3: Plot via CF and AB-approaches for temperature with different values of time effect
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Fig. 2 is plotted for the impact of Preff on the energy profile. It is seen that the thermal
layer and temperature decrease by a large value of Preff . As Preff increases, the temperature
profile reduces more rapidly on the ABC model as compared to the CF model. Physically, for
a small value of Preff thermal conductivity enhances which allows heat to diffuse away rapidly
for a higher value of Preff . For the isothermal case, the energy solution has a higher profile. The
influence of time on the temperature field can be analyzed in Fig. 3. For CF and ABC models,
as an increase in time effect the resultant energy profile reduces for both ramped and isothermal
wall conditions.

Figure 4: Plot via CF and AB-approaches for velocity with variation of time and M

Figure 5: Plot via CF and AB-approaches for velocity with variation of time and Preff
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Fig. 4 investigates the influence of M on velocity components. This graphical representation
indicates that an increase in the magnetic field, the velocity reduce due to Lorentz force. It behaves
as a drag force. By increasing the parameter of the magnetic field, the Lorentz force also increases.
Fluid flow on the boundary layer is slow down due to this force. Fig. 5 investigates the behavior
of Preff . Specific heat and conductivity depend on Preff . The thickness of the momentum and
boundary layer is control by an effective Prandtl number. It is seen from the graph, decreasing
the velocity, observed by increase the value of Preff . The lower effective Prandtl number enhances
thermal conductivity and increase the boundary layer.

Figure 6: Plot via CF and AB-approaches for velocity with variation of time and Gr

Figure 7: Plot via CF and AB-approaches for velocity with variation of time and λ1
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Fig. 6 shows that the impact on Gr for the velocity field versus time. It is the ratio of the
buoyancy to a viscous force acting on the fluid. It can be seen in the velocity field enhance by
increasing in Gr. In a physical sense, as expected, when the Grashof number is increased, then
fluid flow rises due to the thermal buoyancy effects. The velocity for the ABC model is good as
compare to CF models. It is observed that velocity for the isothermal condition is always larger
than ramped conditions. Fig. 7 analyzes the unique role of λ1 for ramped wall and isothermal wall
conditions. The value of λ1 enhances leads to reduce in velocity. In the physical sense, relaxation
describes the return of a perturbed system to a state of equilibrium.

Figure 8: Plot via CF and AB-approaches for velocity with variation of time and γ

Figure 9: Comparison via Stehfest’s and Tzou’s algorithm
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The influence of α on the velocity field can be analyzed in Fig. 8. The velocity field reduces
by increasing the value of α for both ABC and CF models. The flow behavior for isothermal
and ramped conditions are the same in all cases. To validate our solutions obtained by means of
numerical inversion Laplace transform namely, Stehfest’s and Tzou’s algorithm. We represent the
equivalence relation between those techniques in Fig. 9.

Fig. 10 is plotted to see the validity of our obtained results. We have compared our tem-
perature results with the results from the studies by [26,27]. In Fig. 11, our obtained results are
compared with the results of [22,26].

Figure 10: Temperature profile of our models compared with [26,27]

Figure 11: Velocity profile of our models compared with [26,27]
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Tabs. 1 and 2 represent a comparison of the temperature profile between CF and ABC using
Stehfest’s and Tzou’s algorithms with a variation of Preff . It is observed that the temperature
profile reduces with large values of Preff . It is noted that the temperature is maximum in the ABC
model as compared to CF . Tabs. 3 and 4 represent a comparison of the fluid velocity between
CF and ABC for increasing values of ζ by using inversion algorithms. Velocity increases for all
models. The velocity obtained via the ABC approach is greater than the velocity computed with
the help of the CF approach. Some numerical calculations for the Nusselt number for Preff have
been carried out by Stehfest’s and Tzou’s algorithms in Tabs. 5 and 6. It can be seen that the rate
of heat transfer rate is high for the ABC model as compare to other models.

Table 1: Numerical inversion Laplace transform for temperature by Stehfest’s and Tzou’s

Preff Temperature (CF) [Stehfest’s] Temperature (CF) [Tzou’s]

1 0.074 0.071
2 0.068 0.063
3 0.055 0.051
4 0.044 0.040
5 0.039 0.037
6 0.035 0.033
7 0.026 0.023
8 0.024 0.021
9 0.016 0.017
10 0.014 0.013

Table 2: Numerical inversion Laplace transform for temperature by Stehfest’s and Tzou’s

Preff Temperature (ABC) [Stehfest’s] Temperature (ABC) [Tzou’s]

1 0.088 0.083
2 0.069 0.065
3 0.067 0.061
4 0.057 0.054
5 0.045 0.041
6 0.036 0.034
7 0.029 0.027
8 0.025 0.022
9 0.019 0.018
10 0.015 0.012
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Table 3: Numerical inversion Laplace transform for velocity by Stehfest’s and Tzou’s

ζ Velocity (CF) [Stehfest’s] Velocity (CF) [Tzou’s]

0.2 0.978 0.965
0.4 0.921 0.925
0.6 0.876 0.879
0.8 0.833 0.821
1.0 0.791 0.782
1.2 0.752 0.731
1.4 0.713 0.708
1.6 0.677 0.663
1.8 0.641 0.628
2.0 0.617 0.609

Table 4: Numerical inversion Laplace transform for velocity by Stehfest’s and Tzou’s

ζ Velocity (ABC) [Stehfest’s] Velocity (ABC) [Tzou’s]

0.2 0.957 0.946
0.4 0.924 0.913
0.6 0.883 0.881
0.8 0.843 0.839
1.0 0.805 0.799
1.2 0.768 0.759
1.4 0.732 0.724
1.6 0.698 0.685
1.8 0.665 0.657
2.0 0.634 0.621

Table 5: Numerical inversion Laplace transform for Nusselt number by Stehfest’s and Tzou’s

Preff Nu (CF) [Stehfest’s] Nu (CF) [Tzou’s]

1 0.335 0.331
2 0.502 0.487
3 0.614 0.603
4 0.709 0.756
5 0.793 0.721
6 0.869 0.833
7 0.938 0.913
8 1.003 1.034
9 1,064 1.078
10 1.122 1.176
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Table 6: Numerical inversion Laplace transform for Nusselt number by Stehfest’s and Tzou’s

Preff Nu (ABC) [Stehfest’s] Nu (ABC) [Tzou’s]

1 0.478 0.452
2 0.544 0.523
3 0.678 0.634
4 0.739 0.765
5 0.799 0.732
6 0.876 0.821
7 0.959 0.926
8 1.009 1.052
9 1.078 1.098
10 1.129 1.189

6 Conclusion

The basic purpose of this article was to investigate the effect of the simultaneous use of
ramped velocity and ramped temperature conditions on MHD Maxwell fluid. It is difficult to
calculate the solutions of MHD Maxwell fluid using both ramp conditions. Fractional differential
operators are used to finding solutions using Laplace transformation and inversion algorithm.
Some comparisons have been drawn and they are in good agreement with the results published
in [22,26,27]. The important finding of this investigation are:

• The velocity decreases by magnifying the value of the magnetic profile.
• The velocity increases with increasing values of Gr.
• The Nusselt number describes that the heat transfer rate enhances with increasing

thermal diffusivity.
• The velocity decreases by magnifying the value of the Preff .
• ABC fractional derivative is more considerable as compared to the classical model and other

fractional models.
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