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ABSTRACT

Understanding a phenomenon fromobserved data requires contextual and efficient statistical models. Such models
are based on probability distributions having sufficiently flexible statistical properties to adapt to a maximum of
situations. Modern examples include the distributions of the truncated Fréchet generated family. In this paper,
we go even further by introducing a more general family, based on a truncated version of the generalized Fréchet
distribution. This generalization involves a new shape parameter modulating to the extreme some central and
dispersion parameters, as well as the skewness and weight of the tails. We also investigate the main functions of the
new family, stress-strength parameter, diverse functional series expansions, incomplete moments, various entropy
measures, theoretical and practical parameters estimation, bivariate extensions through the use of copulas, and the
estimation of the model parameters. By considering a special member of the family having theWeibull distribution
as the parent, we fit two data sets of interest, one about waiting times and the other about precipitation. Solid
statistical criteria attest that the proposedmodel is superior over other extendedWeibull models, including the one
derived to the former truncated Fréchet generated family.
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1 Introduction

Determining the underlying distribution of data is a crucial topic in many applied fields,
such as medicine, reliability, finance, economics, engineering and environmental sciences. Among
the possible approaches, one can define general families of continuous distributions from well-
established parental distributions, having enough interesting properties to offer statistical models
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that adapt to all possible situations. The constructions of such families are based on specific
mathematical techniques which may depend on one or several tunable parameters. For an overview
on classic families of distributions and the associated techniques, we refer the reader to the surveys
of [1–3].

In recent studies, the composition-truncation technique by [4] has been used to develop
families of distributions achieving the goals of simplicity and efficiency. Among them, there are
the truncated exponential-G family by [5], truncated Fréchet-G family by [6], truncated inverted
Kumaraswamy-G family by [7], truncated Weibull-G family by [8], truncated Cauchy power-
G family by [9], truncated Burr-G family by [10], type II truncated Fréchet-G family by [11],
truncated log-logistic-G family by [12], right truncated T-X family by [13] and truncated Lomax-G
family by [14]. The functions defining these families have the advantages of being simple, with
a reasonable number of parameters, and having original monotonic and non-monotonic forms,
which makes them attractive for statistical applications.

Especially, the truncated Fréchet-G family innovates in the following aspects: (i) Its functions
are quite manageable, with a corresponding cumulative distribution function (CDF) having a
simple exponential expression, (ii) It has a reasonable number of parameters: two plus those
of the parental distribution, and (iii) Provides distributions with original monotonic and non-
monotonic shapes, as shown in [6] with the gamma distribution as the parent. The combination
of these qualities makes this family unique compared to others, and also attractive for statistical
purposes. However, the price of the simplicity is that the nice flexibility of these distributions
depends strongly on the choice of the parental distribution. And, to our knowledge, only the
special distribution based on the gamma distribution has been explored in detail.

In this paper, we take one more step in this direction, by proposing a generalization of
the truncated Fréchet-G family. It is also based on the composition-truncation technique, but
uses a generalized version of the truncated Fréchet distribution called generalized Fréchet (GFr)
distribution. First, the GFr distribution is defined by the following CDF:

FGFr(x;α,β,λ)= 1−
(
1− e−αx

−λ)β
, x> 0, (1)

where α,β,λ > 0, (and FGFr(x;α,β,λ) = 0 otherwise). This distribution is also known under
the names of exponentiated Fréchet distribution and exponentiated Gumbel type-2 distribution
pioneered by [15,16]. As an alpha property, the GFr distribution is connected with the famous
exponentiated exponential (EE) distribution introduced by [17] in the following sense: if X denotes
a random variable (RV) following the GFr distribution with parameters α, β and λ, then X−λ
follows the EE distribution with parameters α and β. The GFr distribution contains the former
Fréchet distribution, obtained by taking β = 1. Also, it is proved in [15,16] that the parameter
β makes the GFr model really more pliant than the former Fréchet model. This has motivated
the study of some of its extensions, as the successful one proposed in [18]. Here, we exploit the
features of the GFr distribution to define a new general family of distributions. Following the
spirit of [4], we first derive the truncated generalized Fréchet distribution over the interval (0, 1),
specified by the following CDF:

FTGFr(x;α,β,λ)=
FGFr(x;α,β,λ)
FGFr(1;α,β,λ)

, x ∈ (0, 1),
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that is

FTGFr(x;α,β,λ)= 1

1− (1− e−α
)β
[
1−
(
1− e−αx

−λ)β]
, x ∈ (0, 1). (2)

We complete this definition by assuming that FTGFr(x;α,β,λ) = 0 for x ≤ 0 and
FTGFr(x;α,β,λ) = 1 for x ≥ 1. As far as we know, this truncated distribution is unlisted in the
literature, and can be of independent interest. Here, we use it to define the truncated generalized
Fréchet generated (TGFr-G) family of (continuous) distributions by considering the CDF obtained
as

FTGFr−G(x;ψ)= FTGFr(G(x;η);α,β, 1), x ∈R,

that is

FTGFr−G(x;ψ)= 1

1− (1− e−α
)β
[
1−
(
1− e−αG(x;η)

−1
)β]

, x ∈R, (3)

where G(x;η) denotes the CDF of a parent (continuous) distribution and ψ = (α,β,η). Note
that we have put λ = 1 in the definition of (2) to avoid the over-parameterization phenomenon;
if necessary, one may re-introduce it easily by replacing G(x;η) by G(x;η,λ) = H(x;η)λ, where
H(x;η) is a continuous CDF. One can observe that the TGFr-G and truncated Fréchet-G families
coincide by taking β = 1. The main innovation of the TGFr-G family remains in its definition
involving the shape parameter β which opens new modelling perspectives, in the same spirit as
the GFr distribution extends those of the classic Fréchet distribution. In this study, we formalize
this claim by pointing out the desirable mathematical properties and applicability of the TGFr-G
family. In particular, we investigate the precise role of β in the features of the main functions,
stress-strength parameter, incomplete moments and various entropy measures. The parameters
estimation and bivariate extensions are also discussed, as well as a complete estimation work
on the parameters. The applicable aspect of the new family is mainly highlighted by a special
three-parameter distribution, defined with the Weibull distribution as the parent. It is called the
truncated generalized Fréchet Weibull (TGFrW) distribution. For the related model, the maximum
likelihood estimates of the parameters are derived and a simulation study is also made to check
their accuracy. Then, two data sets are considered to evaluate how good the fit of the proposed
model is. Diverse criteria are used in this regard, pointing out that the fit of the TGFrW model is
better to those of comparable Weibull type models, with possible more parameters. In particular,
the proposed model surpasses the analogous truncated Fréchet model, attesting to the importance
of the findings.

The following organization is adopted. The TGFr-G family is defined in Section 2. Diverse
properties are discussed in Section 3, including the analytical study of the main functions,
stress-strength parameter, series expansions, incomplete moments with derivations, various entropy
measures, theoretical and practical parameters estimation and various bivariate extensions of the
proposed family through the use of copulas. Section 4 is devoted to the TGFrW distribution, with
an emphasis on its applicability in simulated and concrete statistical settings. Section 5 contains
some concluding notes.
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2 The TGFr-G Family

The basics of the TGFr-G family are proposed in this section, exhibiting its main functions
of interest, as well as a short list of special distributions.

2.1 First Approach
First of all, we recall that the CDF given as (3) defines the TGFr-G family. Hereafter, a RV

X having the CDF given as (3) is denoted by X ∼ TGFr-G(ψ). By taking β = 1, it corresponds
to the special case of the truncated Fréchet-G family by [6].

Among the important functions of the TGFr-G family, there are the PDF given as

fTGFr−G(x;ψ)= αβ

1− (1− e−α
)β g(x;η)
G(x;η)2

e−αG(x;η)
−1
(
1− e−αG(x;η)

−1
)β−1

, x ∈R, (4)

and the hazard rate function (HRF) obtained as

hTGF−G(x;ψ)= αβ g(x;η)
G(x;η)2

e−αG(x;η)
−1

(
1− e−αG(x;η)−1

)β−1

(
1− e−αG(x;η)−1

)β − (1− e−α
)β , x ∈R.

Table 1: Some special distributions belonging to the TGFr-G family

TGFr-G Parent’s name Support G(x;η) ψ FTGFr−G(x;ψ)

TGFrU Uniform (0,v)
x
v

(α,β,v)
1

1− (1− e−α
)β
[
1−
(
1− e−αvx−1

)β]

TGFrP Power (0,1) xλ (α,β,λ)
1

1− (1− e−α
)β
[
1−
(
1− e−αx−λ

)β]

TGFrK Kumaraswamy (0,1) 1− (1−xa)b (α,β,a,b)
1

1− (1− e−α
)β
⎡
⎣1−

(
1− e

−α
[
1−(1−xa)b

]−1)β⎤⎦

TGFrE Exponential (0,+∞) 1− e−θx (α,β,θ)
1

1− (1− e−α
)β
[
1−
(
1− e−α

(
1−e−θx)−1

)β]

TGFrW Weibull (0,+∞) 1− e−θxλ (α,β,λ,θ)
1

1− (1− e−α
)β
⎡
⎣1−

(
1− e

−α
(
1−e−θxλ

)−1)β⎤⎦

TGFrLom Lomax (0,+∞) 1− (1+ρx)−θ (α,β,ρ,θ)
1

1− (1− e−α
)β
[
1−
(
1− e−α

[
1−(1+ρx)−θ ]−1

)β]

TGFrC Cauchy R
1
π
arctan(bx)+ 1

2
(α,β,b)

1

1− (1− e−α
)β
⎡
⎣1−

(
1− e

−α
[
1
π arctan(bx)+ 1

2

]−1)β⎤⎦
TGFrGu Gumbel R exp(−e−bx) (α,β,b)

1

1− (1− e−α
)β
[
1−
(
1− e−α exp(e−bx)

)β]

TGFrLog Logistic R

(
1+ e−bx

)−1
(α,β,b)

1

1− (1− e−α
)β
⎡
⎣1−

(
1− e

−α
(
1+e−bx

))β⎤⎦
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The analytical properties of these functions are very informative on the data fitting possibil-
ities of the associated models. This aspect will be the subject of further discussions. Also, the
quantile function (QF), obtained by inverting the CDF in (3), is given as

QTGFr−G(u;ψ)=Q

({
− 1
α
log
[
1−
{
1− u

[
1− (1− e−α

)β]}1/β]}−1

;η

)
, u ∈ (0, 1), (5)

where Q(u;η) denotes the QF of the parental distribution. The fact that QTGFr−G(u;ψ) has a
closed-form expression is a plus for the TGFr-G family. In particular, we can simply determine the
median as M =QTGFr−G(1/2;ψ), derive several functions related to this QF and generate random
values through the inverse transform sampling method.

In order to illustrate the heterogeneity of the TGFr-G family, Tab. 1 lists several of
its members based on standard parental distributions, with various supports and numbers
of parameters.

In our applications, a focus will be put on the TGFrW distribution defined with θ = 1. This
choice is motivated by upstream numerical and graphical investigations.

3 General Properties

In this section, we develop some notable properties of the TGFr-G family, and discuss some
new motivations.

3.1 Equivalences
Here, some analytical results on the functions of the TGFr-G family are studied. Firstly,

we investigate the equivalences of FTGFr−G(x;ψ), fTGFr−G(x;ψ) and hTGFr−G(x;ψ). Mathematical
facts force us to distinguish the cases: G(x;η)→ 0, G(x;η)→ 1, α → 0, α → +∞, β → 0 and
β → +∞. It is assumed that G(x;η) ∈ (0, 1) for these four last cases, but G(x;η) → 0 and
G(x;η)→ 1 are not excluded.

Let us mention that G(x;η)→ 0 is equivalent to say that x tends to the lower limit of the
adherence of the set {x ∈ R;G(x;η) > 0}, and G(x;η)→ 1 is equivalent to say that x tends to
the upper limit of the adherence of the set {x ∈ R;G(x;η) < 1}. The obtained equivalences for
FTGFr−G(x;ψ) and fTGFr−G(x;ψ) are described in Tab. 2 .

From Tab. 2, the following remarks hold. When G(x;η) → 0, we see that α has a signif-

icant impact on the limit of fTGFr−G(x;ψ). In particular, the term e−αG(x;η)−1
can dominate

g(x;η)/G(x;η)2 and thus fTGFr−G(x;ψ)→ 0 with an exponential decay. When G(x;η)→ 1, for
the limit of fTGFr−G(x;ψ), both α and β influence the proportionality constant, but the limit
comportment of g(x;η) remains determinant. When α → 0 or α → +∞ with G(x;η) < 1 and
fix g(x;η), we have fTGFr−G(x;ψ)→ 0. When β → 0, the limiting function of FTGFr−G(x;ψ) is
obtained as

F∗(x;α,η)= 1
log(1− e−α)

log
(
1− e−αG(x;η)

−1
)
, x ∈R,

and one can remark that F∗(x;α,η) is a valid CDF. As far as we know, it is unlisted in the
literature, offering a new and original “logarithmic-exponential-G family”. This finding also reveals
the richness of the proposed TGFr-G family.

Tab. 3 completes Tab. 2 by investigating the equivalences of hTGFr−G(x;ψ).
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Table 2: Equivalences for the CDF and PDF of the TGFr-G family

FTGFr−G(x;ψ)∼ fTGFr−G(x;ψ)∼

G(x;η)→ 0
β

1− (1− e−α
)β e−αG(x;η)−1 αβ

1− (1− e−α
)β g(x;η)
G(x;η)2

e−αG(x;η)
−1

G(x;η)→ 1 1− αβ
(
1− e−α

)β
(eα − 1)

[
1− (1− e−α

)β] (1−G(x;η))
αβ
(
1− e−α

)β
(eα − 1)

[
1− (1− e−α

)β]g(x;η)
α→ 0 (1+ αβ) (1− αβG(x;η)−β) αββg(x;η)G(x;η)−β−1

α→+∞ e−α
(
G(x;η)−1−1

)
α
g(x;η)
G(x;η)2

e−α
(
G(x;η)−1−1

)

β→ 0
1

log(1− e−α)
log
(
1− e−αG(x;η)

−1
) α

log(1− e−α)
g(x;η)

G(x;η)2
[
eαG(x;η)−1 − 1

]

β→+∞
[
1+ (1− e−α

)β][1− (1− e−αG(x;η)
−1
)β]

αβ
g(x;η)
G(x;η)2

e−αG(x;η)
−1
(
1− e−αG(x;η)

−1
)β−1

Table 3: Equivalences for the HRF of the TGFr-G family

hTGFr−G(x;ψ)∼

G(x;η)→ 0
αβ

1− (1− e−α
)β g(x;η)
G(x;η)2

e−αG(x;η)
−1

G(x;η)→ 1
g(x;η)

1−G(x;η)

α→ 0 αββ
g(x;η)G(x;η)−β−1

1− (1+αβ) (1−αβG(x;η)−β)
α→+∞ α

g(x;η)

G(x;η)2
[
eα(G(x;η)−1−1)− 1

]
β→ 0 α

g(x;η)

G(x;η)2
[
eαG(x;η)−1 − 1

][
ln(1− e−α)− ln

(
1− e−αG(x;η)−1

)]

β→+∞ αβ
g(x;η)
G(x;η)2

e−αG(x;η)
−1

(
1− e−αG(x;η)−1

)β−1

1−
[
1+ (1− e−α

)β][1−(1− e−αG(x;η)−1
)β]
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From Tab. 3, when G(x;η)→ 0, we see that the limit of hTGFr−G(x;ψ) truly depends on α,
which is not the case when G(x;η)→ 1, where the limiting function correspond to the HRF of
the parental distribution. In the case where G(x;η)→ 1 is excluded and α→ 0, we have

hTGFr−G(x;ψ)∼ β g(x;η)G(x;η)
−β−1

G(x;η)−β − 1
,

showing the importance of the parameter β in this regard. Note that, when both G(x;η)→ 1 and
α→ 0, with a fix g(x;η), we have hTGFr−G(x;ψ)∼ (β/αβ)g(x;η)→+∞. Also, when G(x;η)→ 1
is excluded, with fix g(x;η) and G(x;η), and α→+∞, we have hTGFr−G(x;ψ)→ 0. The obtained
limit when β → 0 is a complex function with respect to x, and, when G(x;η)→ 1 is excluded,
with fix g(x;η) and G(x;η), and β→+∞, we have

hTGFr−G(x;ψ)∼ αβ g(x;η)
G(x;η)2

e−αG(x;η)
−1
(
1− e−αG(x;η)

−1
)−1

,

implying that hTGFr−G(x;ψ)→+∞.

3.2 Mode(s) Analysis
A mode of the TGFr-G family belongs to the set argmaxx∈R fTGFr−G(x;ψ). Such a mode, say

xm,

• is a solution of the following equation:

g(x;η)′

g(x;η)
− 2

g(x;η)
G(x;η)

+α g(x;η)
G(x;η)2

−α(β − 1)
g(x;η)

G(x;η)2
(
eαG(x;η)−1 − 1

) = 0,

where g(x;η)′ denotes the derivative of g(x;η) with respect to x,
• satisfies the following inequality:

g(x;η)′′g(x;η)−[g(x;η)′]2

g(x;η)2
−2

g(x;η)′G(x;η)−g(x;η)2
G(x;η)2

+α g(x;η)
′G(x;η)−2g(x;η)2

G(x;η)3
−α(β−1)

×
G(x;η)2g(x;η)′

(
eαG(x;η)

−1−1
)
−2G(x;η)g(x;η)2

(
eαG(x;η)

−1−1
)
+αeαG(x;η)−1

g(x;η)2

G(x;η)4
(
eαG(x;η)−1−1

)2
∣∣∣∣∣∣∣
x=xm

<0,

where g(x;η)′′ denotes the two times derivative of g(x;η) with respect to x.

The number and definition(s) of the mode(s) depend on the parental distribution, α and β.
However, even though all of these quantities are known, the complexity of the above equations
constitutes an obstacle to get an analytical expression of the mode(s). Thus, mathematical software
seems necessary for any numerical appreciation.

3.3 Stress-Strength Parameter
The stress-strength parameter provides one of the most important measurements in reliability

analysis. From two independent RVs X and Y , the stress-strength parameter is defined by R =
P(Y < X). As a common application, it is a measure of performance of a system; it evaluates
the probability that a random strength modeled by X exceeds an independent random stress
modeled by Y . For the theory and applications on this probabilistic object, we may refer the
reader to [19,20].
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The following result shows that, under a certain scenario on the parameters, a stress-strength
parameter associated to the TGFr-G family has a tractable analytical expression.

Proposition 3.1. Let ψ1 = (α,β1,η), ψ2 = (α,β2,η), X1 ∼ TGFr-G(ψ1), X2 ∼ TGFr-G(ψ2), with X1
and X2 independent, and R=P(X2 <X1). Then, we have

R= 1

1− (1− e−α
)β2
[
1− β1

β1+β2
1− (1− e−α

)β1+β2
1− (1− e−α

)β1
]
.

Proof. The independence of X1 and X2, and (3), imply that

R=P(X2 <X1)=
∫ +∞

−∞
FTGFr−G(x;ψ2)fTGFr−G(x;ψ1)dx

= 1

1− (1− e−α
)β2
[
1−
∫ +∞

−∞

(
1− e−αG(x;η)

−1
)β2

fTGFr−G(x;ψ1)dx
]
.

Now, by virtue of (4) and some developments, we get(
1− e−αG(x;η)

−1
)β2

fTGFr−G(x;ψ1)

= αβ1

1− (1− e−α
)β1 g(x;η)

G(x;η)2
e−αG(x;η)

−1
(
1− e−αG(x;η)

−1
)β1+β2−1

= β1

β1+β2
1− (1− e−α

)β1+β2
1− (1− e−α

)β1 fTGFr−G(x;ψ∗),

where ψ∗ = (α,β1 + β2,η). By putting the above equations together and using∫ +∞
−∞ fTGFr−G(x;ψ∗)dx= 1, we obtain

R= 1

1− (1− e−α
)β2
[
1− β1

β1+β2
1− (1− e−α

)β1+β2
1− (1− e−α

)β1
]
.

This ends the proof of Proposition 3.1.

From Proposition 3.1, we can note that R is finally independent of the chosen parental
distribution. Also, when β1 = β2, X1 and X2 are identically distributed and R takes the value 1/2
as expected in this simple case. The manageable expression of R is useful for estimation purposes;
with the plug-in approach, α, β1 and β2 can be substituted by adequate estimates to derive an
estimate for R. Further developments in this regard are however out the scope of this study.



CMES, 2021, vol.126, no.2 799

3.4 Representation
The following proposition proves that the “possibly complex” exponentiated PDF fTGFr−G(x;ψ)τ

can be simply expressed as a series depending on parental exponentiated functions. Such expan-
sion is useful for diverse algebraic manipulations of fTGFr−G(x;ψ)τ involving differentiation or
integration, as discussed in full generality in [21].

Proposition 3.2. Let τ > 0. The two following complementary expansions hold for fTGFr−G(x;ψ)τ :

A1: In terms of g(x;η)τ and exponentiated survival functions of the parental distribution, i.e.,
Ḡ(x;η)= 1−G(x;η), we have

fTGFr−G(x;ψ)τ =
+∞∑

k,�,m=0

�
[τ ]
k,�,m

{
g(x;η)τ Ḡ(x;η)m

}
,

where

�
[τ ]
k,�,m = ατβτ[

1− (1− e−α
)β]τ
(
τ (β − 1)

k

)(−�− 2τ
m

)
(−1)k+�+m

1
�!
α�(k+ τ )�.

A2: In terms of g(x;η)τ and exponentiated G(x;η), we have

fTGFr−G(x;ψ)τ =
+∞∑

k,�,m=0

m∑
u=0

ϒ
[τ ]
k,�,m,u

{
g(x;η)τG(x;η)u

}
,

where

ϒ
[τ ]
k,�,m,u=

ατβτ[
1− (1− e−α

)β]τ
(
τ (β − 1)

k

)(−�− 2τ
m

)(
m
u

)
(−1)k+�+m+u 1

�!
α�(k+ τ )�.

Proof. Owing to (4), we get

fTGFr−G(x;ψ)τ = ατβτ[
1− (1− e−α

)β]τ g(x;η)τG(x;η)−2τe−ατG(x;η)
−1
(
1− e−αG(x;η)

−1
)τ(β−1)

.

Since e−αG(x;η)−1 ∈ (0, 1), the generalized binomial theorem gives

e−ατG(x;η)
−1
(
1− e−αG(x;η)

−1
)τ(β−1) =

+∞∑
k=0

(
τ (β − 1)

k

)
(−1)ke−α(k+τ)G(x;η)

−1
.

Now, the exponential expansion gives

G(x;η)−2τe−α(k+τ)G(x;η)
−1 =

+∞∑
�=0

(−1)�
1
�!
α�(k+ τ )�G(x;η)−�−2τ .

At this stage, two complementary decompositions for G(x;η)−�−2τ can be studied separately.
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To obtain A1: One can express G(x;η)−�−2τ in terms of exponentiated Ḡ(x;η) via the
generalized binomial theorem as

G(x;η)−�−2τ =
+∞∑
m=0

(−�− 2τ
m

)
(−1)mḠ(x;η)m.

To obtain A2: One can express G(x;η)−�−2τ in terms of exponentiated G(x;η) via the
generalized and standard binomial theorems as

G(x;η)−�−2τ =
+∞∑
m=0

m∑
u=0

(−�− 2τ
m

)(
m
u

)
(−1)m+uG(x;η)u.

The proof of Proposition 3.2 ends by putting all the above expansions together.

Several applications of Proposition 3.2 will be presented later.

3.5 Incomplete Moments with Discussion
The incomplete moments of X ∼TGFr-G are useful to derive crucial measures and functions

of the TGFr-G family, with a high potential of applicability. Mathematically, the rth incomplete
moment of X ∼TGFr-G at any t ∈R can be expressed as

μ′
r(t)=E(Xr1X≤t)=

∫ t

−∞
xrfTGFr−G(x;ψ)dx,

that is, thanks to (4),

μ′
r(t)=

αβ

1− (1− e−α
)β
∫ t

−∞
xr

g(x;η)
G(x;η)2

e−αG(x;η)
−1
(
1− e−αG(x;η)

−1
)β−1

dx. (6)

For some special parental distributions, the calculus of this integral by usual integration
techniques is not excluded. However, for further analytical manipulations or evaluation, a series
expression is sometimes preferable. In this regard, several possibilities are presented below,
depending on the level of complexity in the definition of G(x;η).

B1: From (6), by applying the change of variable v= e−αG(x;η)−1
, i.e., x=Q

(
[−(1/α) lnv]−1 ;η

)
,

and the generalized binomial expansion, assuming that the integral and sum signs are
interchangeable, we get

μ′
r(t)=

+∞∑
k=0

�k

∫ e−αG(t;η)−1

0
vk
[
Q

([
− 1
α
ln v
]−1

;η

)]r
dv,

where

�k =
β

1− (1− e−α
)β
(
β − 1
k

)
(−1)k

If the QF of the parental distribution is not too complex, the integral term can be
made explicit.
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B2: For more universal series developments, Proposition 3.2 applied with τ = 1 gives series
expansions of fTGFr−G(x;ψ) that can be injected into (6). For instance, by considering the
expression A1, assuming that the integral and sum signs are interchangeable, we get

μ′
r(t)=

+∞∑
k,�,m=0

�
[1]
k,�,m

∫ t

−∞
xrg(x;η)Ḡ(x;η)mdx. (7)

Alternatively, under the same conditions, the application of A2 gives

μ′
r(t)=

+∞∑
k,�,m=0

m∑
u=0

ϒ
[1]
k,�,m,u

∫ t

−∞
xrg(x;η)G(x;η)udx.

For a wide panel of parental distributions, the integrals
∫ t
−∞ xrg(x;η)Ḡ(x;η)mdx and∫ t

−∞ xrg(x;η)G(x;η)udx are available in the literature or easily calculable. Also, for practical
aims, one can truncate the infinite sums by any large integer to have suitable approximation
functions for μ′

r(t). Further detail on the interest of such series expansions in the treatment
of various probabilistic measures can be found in [21].

As example of applications, from the incomplete moments of X ∼ TGFr-G, we can derive
the rth raw moments of X defined by μ′

r = E(Xr)= limt→+∞μ′
r(t), the r

th central moment of X

specified by the following relation: μr = E((X −μ′
1)
r)=

r∑
k=0

(r
k

)
(−1)r−kμ′

k(μ
′
1)
r−k, the variance of

X given as σ 2 =V(X)=μ2, the general coefficient of X defined by Cr =μr/σ r allowing to define
the skewness coefficient corresponding to S=C3 and the kurtosis coefficient obtained as K =C4,
among others.

Also, from the mean incomplete moment μ′
1(t), that is μ

′
r(t) taken with r= 1, one can express

the mean deviation of X about μ′
1 as δ1 =E(|X −μ′

1|)= 2μ′
1FTGFr−G(μ

′
1;ψ)− 2μ′

1(μ
′
1), the mean

deviation about M as δ2 =E(|X −M|)=μ′
1 − 2μ′

1(M), the mean residual life as m(t)= E(X − t |
X > t) = [1− μ′

1(t)]/[1− FTGFr−G(t;ψ)]− t, the mean waiting time as M(t) = E(t− X | X ≤ t) =
t− μ′

1(t)/FTGFr−G(t;ψ), the Bonferroni curve as B(u)= μ′
1(QTGFr−G(u;ψ))/(uμ′

1), u ∈ (0, 1), and
the Lorenz curve as L(u)= uB(u), u ∈ (0, 1).
3.6 Entropy

The entropy is a fundamental concept in information theory, with applications in statistical
inference, neurobiology, linguistics, cryptography, quantum computer science and bioinformatics.
In the literature, there exists several entropy measures to determine the randomness of a distri-
bution. Most of them are discussed in the survey of [22]. By considering a generic (continuous)
distribution with PDF denoted by f (x), some of them are presented in Tab. 4. In this table, it is
supposed that θ > 0 and θ 
= 1.

From Tab. 4, we see that the main term in the definitions of the entropy measures is the
following integral term:

∫ +∞
−∞ f (x)θdx. We now investigate it in the context of the TGFr-G family.

So, we set

Iθ (ψ)=
∫ +∞

−∞
fTGFr−G(x;ψ)θdx, (8)
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Table 4: Some entropy measures of a distribution with PDF denoted by f (x)

Entropy Definition Reference

Rényi Rθ = 1
1− θ ln

[∫ +∞

−∞
f (x)θdx

]
[23]

Havrda and Charvat HCθ = 1
21−θ − 1

[∫ +∞

−∞
f (x)θdx− 1

]
[24]

Arimoto Aθ = θ

1− θ

{[∫ +∞

−∞
f (x)θdx

]1/θ
− 1

}
[25]

Awad and Alawneh AAθ = 1
θ − 1

ln

{[
sup
x∈R

f (x)
]1−θ ∫ +∞

−∞
f (x)θdx

}
[26]

Tsallis Tθ = 1
θ − 1

[
1−
∫ +∞

−∞
f (x)θdx

]
[27]

with θ > 0 and θ 
= 1. Thanks to (4), it can be expressed as

Iθ (ψ)= αθβθ[
1− (1− e−α

)β]θ
∫ +∞

−∞
g(x;η)θ

G(x;η)2θ
e−αθG(x;η)

−1
(
1− e−αG(x;η)

−1
)θ(β−1)

dx.

For some special parental distributions, we can inspect the calculus of this integral by
standard techniques. A more universal approach consists in expressing it as a tractable series
expansion. Hence, once can apply Proposition 3.2 with the choice τ = θ to obtain series expan-
sions of fTGFr−G(x;ψ)θ and use it into (8). Thus, assuming that the integral and sum signs are
interchangeable, from A1, we get

Iθ (ψ)=
+∞∑

k,�,m=0

�
[θ ]
k,�,m

∫ +∞

−∞
g(x;η)θ Ḡ(x;η)mdx.

Alternatively, under the same conditions, the application of A2 gives

Iθ (ψ)=
+∞∑

k,�,m=0

m∑
u=0

ϒ
[θ ]
k,�,m,u

∫ +∞

−∞
g(x;η)θG(x;η)udx.

For most of the standard parental distributions, the integrals
∫ +∞
−∞ g(x;η)θ Ḡ(x;η)mdx and∫ +∞

−∞ g(x;η)θG(x;η)udx can be determined with mathematical efforts. Thus, one can deduce expan-
sions of all the entropy measures presented in Tab. 4. In particular, the Tsallis entropy of the
TGFr-G family can be expanded as

Tθ (ψ)= 1
θ − 1

⎡
⎣1− +∞∑

k,�,m=0

�
[θ ]
k,�,m

∫ +∞

−∞
g(x;η)θ Ḡ(x;η)mdx

⎤
⎦ . (9)
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One can deduce a precise approximation of it by truncating the infinite sum by any
large integer.

3.7 Parameters Estimation: Theory and Practice
The main objective of the TGFr-G family is to provide pliant semi-parametric models for

statistical applications. To reach this aim, the estimation of the model parameters is a crucial
step, and several methods of estimation are possible. Here, we provide the essential theory on
the maximum likelihood (ML) method of estimation in the context of the TGFr-G family. The
generalities can be found in [28].

First of all, let X1, . . . ,Xn be n independent and identically distributed RVs from X ∼
TGFr-G(ψ) and X= (X1, . . . ,Xn). Then, assuming that they are unique, the ML estimators of the
parameters α, β and η, say α̂, β̂ and η̂, respectively, are the RVs obtained as

ψ̂ = argmax
ψ

L(ψ ,X),

where ψ̂ = (α̂, β̂, η̂), ψ = (α,β,η), and L(ψ ,X) is the likelihood function defined from (4) as

L(ψ ,X)=
n∏
i=1

fTGFr−G(Xi;ψ)

= αnβn[
1− (1− e−α

)β]n
{

n∏
i=1

g(Xi;η)
G(Xi;η)2

}
e−α

∑n
i=1G(Xi;η)

−1

{
n∏
i=1

(
1− e−αG(Xi;η)

−1
)}β−1

.

Assuming that L(ψ ,X) is differentiable with respect to ψ , the ML estimators are the solu-
tions of the following equations: ∂�(ψ ,X)/∂α = 0, ∂�(ψ ,X)/∂β = 0 and ∂�(ψ ,X)/∂η = 0, where
�(ψ ,X)= ln[L(ψ ,X)]. In most of the cases, there are no analytical expressions for these estimators,
but practical solutions exist and will be discussed later. Then, under some regularity conditions,
the ML estimators satisfy remarkable convergence properties, including the asymptotically normal
property presented below. Let m be the number of components in ψ (which can be numerous
since η is itself a vector of components) and ψu be the uth component of ψ . Then, the asymptotic
distribution of ψ̂ is the multivariate normal distribution Nm(ψ ,J(ψ)−1), where J(ψ) denotes the
m×m covariance matrix defined by J(ψ)= {E(−∂2�(ψ ,X)/(∂ψu∂ψv))}u,v.

In a concrete statistical scenario, we deal with data corresponding to observations of
X1, . . . ,Xn. Let us denoted them by x1, . . . ,xn. Then, the ML vector of estimates of ψ , say
ψ̃ = (α̃, β̃, η̃), is defined by the corresponding observation of ψ̂ . Thanks to the argmax definition,
it can be obtained numerically by optimization via the use of any Newton-Raphson type algo-
rithm. With the R software, this numerical work can be done via the functions of the package
AdequacyModel.

For the practice of the asymptotic normality, the covariance matrix J(ψ) is often difficult to
determine analytically and depends on the unknown parameters. A standard approach consists in
using the following approximation: J(ψ)≈ {−∂2�(ψ ,x)/(∂ψu∂ψv)}u,v |ψ=ψ̃ , where x= (x1, . . . ,xn).
Thus, the asymptotic distribution of ψ̂ can be considered as the multivariate normal distribution
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Nm(ψ , I−1), where I = {−∂2�(ψ ,x)/(∂ψu∂ψv)}u,v |ψ=ψ̃ . This result is useful to construct asymp-

totic two-sided confidence intervals (CIs) of the parameters. More precisely, for any u= 1, . . . ,m
and ν ∈ (0, 1), the 100(1− ν)% CI of ψu is obtained as

CI= [LB,UB],

where LB and UB are the lower and upper bounds of the interval, defined by LB= LBψu(ν)=
ψ̃u− z1−ν/2

√
du and UB=UBψu(ν)= ψ̃u+ z1−ν/2

√
du, respectively, where du is the uth component

in the diagonal of I−1 and z1−ν/2 is the quantile of the normal distribution N (0, 1) taken at
1−ν/2. As the main interpretation, there is 100(1−ν)% of chances that ψu belongs to CI, which
is of interest by taking ν small enough. The typical values for ν are 0.01, 0.05 or 0.1.

Finally, by the invariance property of the ML estimates, we can deduce ML estimates of
several measures of the TGFr-G family. For instance, we can inspect the estimation of the Tsallis
entropy of the TGFr-G family as defined in (9); the ML estimate of Tθ (ψ) is naturally obtained
as T̃θ =Tθ (ψ̃).

The ML estimates, CIs and estimate of the Tsallis entropy will be the object of a numerical
study later, by the consideration of a special distribution of the TGFr-G family.

3.8 Bivariate TGFr-G Family
Bivariate families of distributions are of interest to model distributions behind two dimen-

sional phenomena or measures, observed via bivariate data. This remains an actual demand in
regression or clustering analysis, among others. The univariate TGFr-G family can be extended
to the bivariate case via several approaches. The most natural one is to use a bivariate parental
distribution characterized by a bivariate CDF, say G(x,y;η), where η is the vector of parameters.
Thus, based on (3), we can define the 2TGFr-G family by the following bivariate CDF:

F2TGFr−G(x,y;ψ)=
1

1− (1− e−α
)β
[
1−
(
1− e−αG(x,y;η)

−1
)β]

, (x,y)∈R
2,

where ψ = (α,β,η). Then, it is clear that, if (X ,Y ) ∼ 2TGFr-G, then X ∼ TGFr-G and Y ∼
TGFr-G. However, the structure of dependence between X and Y remains unmanageable. A more
technical approach but with a clear dependence structure consists in employing special functions
called copulas.

• By using the Farlie-Gumbel-Morgenstern copula, a bivariate extension of the TGFr-G
family, called FGMTGFr-G family, is defined by the bivariate CDF given as

FFGMTGFr−G(x,y;λ,ψ)= F (1)TGFr−G(x;ψ1)F
(2)
TGFr−G(y;ψ2)

+λF (1)TGFr−G(x;ψ1)F
(2)
TGFr−G(y;ψ2)

[
1−F (1)TGFr−G(x;ψ1)

][
1−F (2)TGFr−G(y;ψ2)

]
, (x,y) ∈R

2,

where λ ∈ [−1, 1], F (1)TGFr−G(x;ψ1) and F (2)TGFr−G(y;ψ2) are defined as (3) with possibly dif-
ferent parental CDFs, say G1(x;ψ1) and G2(y;ψ2), respectively. Note that the independence
copula corresponds to the case λ= 0.

• By using the Clayton copula, a bivariate extension of the TGFr-G family, called CTGFr-G
family, is defined by the bivariate CDF specified by
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FCTGFr−G(x,y;λ,ψ)=
[
max
(
[F (1)TGFr−G(x;ψ1)]

−λ+ [F (2)TGFr−G(y;ψ2)]
−λ− 1, 0

)]−1/λ
,

(x,y) ∈R
2,

where λ≥−1 and λ 
= 0, by keeping the previous notations.

Other interesting bivariate extensions can be derived from other notorious copulas. A com-
plete list of them, with more theoretical elements, can be found in [29].

4 The TGFrW Distribution: Theory and Applications

The TGFr-G family contains a plethora of potential interesting distributions. Here, we empha-
size with the truncated generalized Fréchet Weibull (TGFrW) distribution as presented in Tab. 1,
discussing its numerous qualities.

4.1 The TGFrW Distribution
Let us recall that the TGFrW distribution as described in Tab. 1 with θ = 1 corresponds the

following configuration: η = λ, G(x;λ) = 1 − e−xλ , x > 0, (G(x;λ) = 0 otherwise), and g(x;λ) =
λxλ−1e−xλ , x> 0. Concretely, it is defined by the following CDF:

FTGFrW (x;α,β,λ)= 1

1− (1− e−α
)β
[
1−
(
1− e−α(1−e

−xλ)−1
)β]

, x> 0

(and FTGFrW (x;α,β,λ)= 0 otherwise). The corresponding PDF is given as

fTGFrW (x;α,β,λ)= αβλ

1− (1− e−α
)β xλ−1e−xλ

(1− e−xλ)2
e−α(1−e

−xλ)−1
(
1− e−α(1−e

−xλ)−1
)β−1

, x> 0.

The HRF is obtained as

hTGFrW (x;α,β,λ)= αβλ xλ−1e−xλ

(1− e−xλ )2
e−α(1−e

−xλ)−1

(
1− e−α(1−e−x

λ
)−1
)β−1

(
1− e−α(1−e−x

λ
)−1
)β − (1− e−α

)β , x> 0.

The pliancy of the curvatures of fTGFrW (x;α,β,λ) and hTGFrW (x;α,β,λ) is illustrated in
Figs. 1 and 2, respectively.

In Fig. 1, various degrees of skewness (asymmetry) and kurtosis are observed for
fTGFrW (x;α,β,λ), showing decreasing and bell shapes, as well various weights on the right tail
mainly. In Fig. 2, we see that hTGFrW (x;α,β,λ) possesses reversed J, bathtub decreasing and
increasing shapes, with possibly several critical points.

Thanks to (5), the QF can be expressed as

QTGFrW (u;α,β,λ)=
[
− ln

(
1−
{
− 1
α
ln
[
1−
{
1− u

[
1− (1− e−α

)β]}1/β]}−1
)]1/λ

, u ∈ (0, 1).
(10)
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Figure 1: Some curves of the PDF of the TGFrW distribution

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

x

hr
f

α = 0.8  β = 0.5  λ = 0.5
α = 0.8  β = 2  λ = 0.8
α = 0.8  β = 0.5  λ = 1.5
α = 0.8  β = 0.5  λ = 0.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

6
7

x

hr
f

α = 0.2  β = 2  λ = 2
α = 0.1  β = 2  λ = 2
α = 0.3  β = 2  λ = 2
α = 5  β = 2  λ = 2

Figure 2: Some curves of the HRF of the TGFrW distribution

Hence, quartiles and random generations numbers from the TGFrW distribution can be
easily investigated.

4.2 Some Properties and Numerical Works
The general properties studied for the TGFr-G family in Section 2 can be applied to the

TGFrW distribution. A selection of them are presented below. First of all, in order to com-
plete the observations made on Figs. 1 and 2, let us investigate the equivalences and limits of
fTGFrW (x;α,β,λ) and hTGFrW (x;α,β,λ). When x→ 0, we have

fTGFrW (x;α,β,λ)∼ hTGFrW (x;α,β,λ)∼ αβλ

1− (1− e−α
)β x−λ−1e−α(1−e

−xλ)−1
.
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Also, when x→+∞, we have

fTGFrW (x;α,β,λ)∼
αβλ
(
1− e−α

)β
(eα − 1)

[
1− (1− e−α

)β]xλ−1e−x
λ

, hTGFrW (x;α,β,λ)∼ λxλ−1.

In particular, we note that λ plays the major role in these convergence, limx→0 fTGFrW (x;α,
β,λ)= limx→+∞ fTGFrW (x;α,β,λ)= 0 in all cases, and, when x→+∞, hTGFrW (x;α,β,λ) has the
same comportment to the HRF of the parental distribution, i.e., hTGFrW (x;α,β,λ)→ 0 when λ<
1, hTGFrW (x;α,β,λ)→ 1 when λ= 1, and hTGFrW (x;α,β,λ)→+∞ when λ> 1.

Also, by the Riemann integral criteria, the equivalence results for fTGFrW (x;α,β,λ) ensure that
the raw moments of all orders of X ∼TGFrW exist, for all the values of the parameters. In this
setting, let us now discuss the rth incomplete moment of X , rth raw moment of X with related
measures, and the Tsallis entropy.

As usual, the rth incomplete moment of X can be expressed as its principal inte-
gral form. Alternatively, owing to (7) and the equality:

∫ t
0 x

rg(x;λ)Ḡ(x;λ)mdx = (m +
1)−r/λ−1γ

(
r/λ+ 1, (m+ 1)tλ

)
, where γ (a,x) = ∫ x0 ta−1e−tdt denotes the lower incomplete gamma

function, we have

μ′
r(t)=

+∞∑
k,�,m=0

�
[1]
k,�,m(m+ 1)−r/λ−1γ

(
r/λ+ 1, (m+ 1)tλ

)
.

We can manipulate this expansion to derive approximations of the measures and functions
presented in Subsection 3.5. Also, by applying t→+∞, we get the rth raw moment of X , i.e.,

μ′
r=

+∞∑
k,�,m=0

�
[1]
k,�,m(m+ 1)−r/λ−1� (r/λ+ 1) ,

where �(a)= ∫ +∞
0 ta−1e−tdt. As numerical works, Tabs. 5 and 6 collected the numerical values of

some measures of the TGFrW distribution derived to the raw moments.

Among others, Tabs. 5 and 6 show how the values of some moments measures of X ∼
TGFrW can vary according to the values of the parameters. Here, a great variation of the values
on the mean and kurtosis are mainly observed.

As described in Subsection 3.6, the Tsallis entropy of the TGFrW distribution is initially
defined by an integral expression. A tractable series expansion can be deduced from (9). Indeed,
since

∫ +∞
0 g(x;λ)θ Ḡ(x;λ)mdx = λθ−1(m + θ)−(θ−1)(λ−1)/λ−1� ((θ − 1)(λ− 1)/λ+ 1) provided that

λ>max(1− 1/θ , 0), we have

Tθ (ψ)= 1
θ − 1

⎡
⎣1−λθ−1

+∞∑
k,�,m=0

�
[θ ]
k,�,m(m+ θ)−(θ−1)(λ−1)/λ−1� ((θ − 1)(λ− 1)/λ+ 1)

⎤
⎦ .

Possible values for the Tsallis entropy are shown in Tab. 7.
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Table 5: Values of some measures of the TGFrW distribution for several values of λ and at
α= β = 0.5

Measures λ= 2 λ= 4 λ= 6 λ= 8 λ= 10 λ= 12

μ′
1 2.051 3.037 3.704 4.206 4.608 4.944
μ′
2 8.162 14.247 19.206 23.432 27.134 30.442
μ′
3 49.068 91.927 130.437 165.658 198.27 228.746
μ′
4 392.912 760.85 1109 1440 1757 2062
σ 2 3.956 5.024 5.49 5.741 5.896 5.999
S 2.046 1.611 1.449 1.367 1.319 1.288
K 9.155 7.026 6.393 6.107 5.948 5.848

Table 6: Values of some measures of the TGFrW distribution for several values of λ and at
α= 0.7 and β = 3.0

Measures λ= 2 λ= 4 λ= 6 λ= 8 λ= 10 λ= 12

μ′
1 0.634 0.881 1.04 1.159 1.254 1.333
μ′
2 0.639 1.062 1.393 1.669 1.909 2.122
μ′
3 0.925 1.689 2.357 2.959 3.51 4.021
μ′
4 1.786 3.417 4.936 6.368 7.728 9.028
σ 2 0.236 0.286 0.311 0.326 0.336 0.344
S 1.916 1.64 1.518 1.446 1.4 1.366
K 8.863 7.378 6.811 6.51 6.323 6.196

Table 7: Values of the Tsallis-entropy of the TGFrW distribution for several values of
the parameters

α β λ Tsallis entropy

θ = 0.5 θ = 0.8 θ = 1.5 θ = 2.0

0.5 0.5 0.5 4.2799 1.6245 0.3671 0.0730
0.5 0.5 1.0 1.6986 1.0025 0.4899 0.3510
0.5 0.5 1.5 0.9963 0.6504 0.3515 0.2592
0.5 0.5 2.0 0.6151 0.3974 0.1935 0.1247
0.5 0.5 3.0 0.1691 0.0403 −0.1071 −0.1761
0.5 0.5 4.0 −0.1010 −0.2096 −0.3776 −0.4904
0.7 3.0 0.5 3.1563 1.0282 0.0233 −0.2706
0.7 3.0 1.0 1.2760 0.6612 0.2274 0.1063
0.7 3.0 1.5 0.7176 0.3860 0.1026 0.0082
0.7 3.0 2.0 0.3973 0.1708 −0.0553 −0.1485
0.7 3.0 3.0 0.0077 −0.1479 −0.3668 −0.5063
0.7 3.0 4.0 −0.2346 −0.3778 −0.6525 −0.8829
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Tab. 7 reveals that the amount of randomness of the TGFrW distribution measured by the
Tsallis entropy is versatile. Indeed, it can take negative values, as well as small or large positive
values. The rest of the study focuses on the statistical usefulness of the TGFrW model in a
statistical framework.

4.3 Estimation: Numerical Study
The ML estimates of the parameters of the TGFrW model, the corresponding CIs and

the estimate of the Tsallis entropy can be obtained via the approach described in Subsection
3.7. Here, we provide a numerical study on these statistical objects through the simple random
sampling scheme. This scheme is based on the QF defined by (10). A performance study of the
estimates is conducted relatively to the mean square errors (MSEs), (average) LBs and UBs of
the corresponding 90% and 95% CIs, as well as the corresponding average lengths (ALs), i.e.,
AL = UB − LB. The software Mathematica 9 is used in this regard. The following steps are
followed.

Step 1: A random sample of values of size n = 100, 200, 300, 1000 and 3000 is generated
from the TGFrW distribution.

Step 2: We consider the following sets of parameters: set1: (α = 0.5, β = 2.0, λ = 0.5), set2:
(α = 0.5, β = 2.0, λ= 0.3), set3: (α = 0.3, β = 1.6, λ= 0.3) and set4: (α = 0.5, β = 0.8, λ= 0.3).

Step 3: For each of the above sets and each sample of size n, the ML estimates are computed.

Step 4: We repeat the previous steps N times, dealing with different samples, where N = 5000.
Then, the MSEs of the estimates are computed.

Step 5: Also, the LBs, UBs and ALs of the 90% and 95% CIs are calculated.

Step 6: Numerical outcomes are given in Tabs. 8–11.

Table 8: Values of ML estimates and IC measures related to the TGFrW model for set1: (α = 0.5,
β = 2.0, λ= 0.5)

n ML Est. MSE 90% 95%

LB UB AL LB UB AL

100 0.5704 0.3024 −14.7979 15.9387 30.7366 −17.7408 18.8815 36.6223
3.1564 2.8814 −297.3980 303.7100 601.1080 −354.9510 361.2630 716.2140
0.5225 0.1271 −1.7419 2.7869 4.5288 −2.1755 3.2205 5.3960

200 0.5045 0.1963 0.1065 0.9025 0.7960 0.0303 0.9787 0.9484
2.2409 1.6482 −1.1790 5.6608 6.8398 −1.8339 6.3157 8.1496
0.5155 0.0765 0.3840 0.6471 0.2632 0.3588 0.6723 0.3136

300 0.4444 0.1383 0.1982 0.6906 0.4924 0.1510 0.7377 0.5867
1.8926 0.9776 0.1736 3.6115 3.4380 −0.1556 3.9407 4.0963
0.5336 0.0564 0.4342 0.6330 0.1988 0.4152 0.6520 0.2368

1000 0.5173 0.1166 0.3472 0.6874 0.3402 0.3147 0.7200 0.4054
2.1735 0.8951 0.9330 3.4139 2.4809 0.6955 3.6515 2.9560
0.4976 0.0356 0.4407 0.5545 0.1138 0.4298 0.5654 0.1356

3000 0.5015 0.0446 0.4037 0.5993 0.1956 0.3850 0.6180 0.2330
2.0131 0.2899 1.3450 2.6811 1.3361 1.2171 2.8090 1.5919
0.5013 0.0160 0.4677 0.5348 0.0671 0.4613 0.5412 0.0800
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Table 9: Values of ML estimates and IC measures related to the TGFrW model for set2: (α = 0.5,
β = 2.0, λ= 0.3)

n ML Est. MSE 90% 95%

LB UB AL LB UB AL

100 0.5499 0.2599 −16.2165 17.3163 33.5327 −19.4270 20.5268 39.9539
2.7556 2.1585 −190.1750 195.6870 385.8620 −227.1190 232.6310 459.7500
0.3052 0.0651 −1.8146 2.4249 4.2395 −2.2205 2.8308 5.0513

200 0.5928 0.2130 0.2001 0.9856 0.7855 0.1249 1.0608 0.9359
2.9351 2.0150 −0.6027 6.4728 7.0755 −1.2801 7.1503 8.4304
0.2941 0.0403 0.2219 0.3664 0.1444 0.2081 0.3802 0.1721

300 0.4031 0.1666 0.1592 0.6469 0.4877 0.1125 0.6936 0.5811
1.4359 0.9504 -0.0878 2.9597 3.0475 -0.3796 3.2515 3.6311
0.3070 0.0386 0.2654 0.3886 0.1233 0.2536 0.4004 0.1469

1000 0.5094 0.0923 0.3336 0.6852 0.3516 0.3000 0.7189 0.4189
2.1873 0.7859 0.8875 3.4870 2.5995 0.6386 3.7359 3.0973
0.2999 0.0212 0.2642 0.3356 0.0714 0.2574 0.3424 0.0851

3000 0.4844 0.0459 0.3878 0.5810 0.1932 0.3693 0.5995 0.2302
1.9188 0.2798 1.2746 2.5631 1.2885 1.1512 2.6865 1.5352
0.3037 0.0108 0.2832 0.3242 0.0411 0.2793 0.3282 0.0489

Table 10: Values of ML estimates and IC measures related to the TGFrW model for set3:
(α = 0.3, β = 1.6, λ= 0.3)

n ML Est. MSE 90% 95%

LB UB AL LB UB AL

100 0.4413 0.2818 −0.7060 1.5886 2.2946 −0.9257 1.8083 2.7340
3.1234 2.7498 −11.8344 18.0811 29.9155 −14.6986 20.9454 35.6440
0.2837 0.0628 0.0952 0.4722 0.3771 0.0591 0.5083 0.4493

200 0.4537 0.2608 0.0842 0.8231 0.7389 0.0135 0.8939 0.8804
3.0049 2.5383 −0.7407 6.7505 7.4911 −1.4579 7.4677 8.9256
0.2744 0.0473 0.1972 0.3515 0.1542 0.1825 0.3662 0.1838

300 0.3736 0.2031 0.0645 0.6827 0.6182 0.0053 0.7419 0.7366
2.4107 1.9493 −0.4526 5.2741 5.7267 −1.0010 5.8224 6.8233
0.2889 0.0395 0.2122 0.3655 0.1533 0.1975 0.3802 0.1827

1000 0.2874 0.0475 0.1648 0.4100 0.2452 0.1413 0.4334 0.2921
1.5329 0.2688 0.7519 2.3138 1.5619 0.6024 2.4634 1.8610
0.3059 0.0171 0.2664 0.3453 0.0789 0.2588 0.3529 0.0940

3000 0.2951 0.0345 0.2084 0.3419 0.1335 0.1956 0.3547 0.1591
1.5636 0.2004 1.0464 1.8809 0.8346 0.9665 1.9608 0.9944
0.3089 0.0125 0.2865 0.3313 0.0448 0.2822 0.3356 0.0534
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Table 11: Values of ML estimates and IC measures related to the TGFrW model for set4:
(α = 0.5, β = 0.8, λ= 0.3)

n ML Est. MSE 90% 95%

LB UB AL LB UB AL

100 0.5612 0.2059 0.1317 0.9907 0.8591 0.0494 1.0730 1.0236
1.3312 1.1459 −1.4695 4.1319 5.6014 −2.0058 4.6682 6.6740
0.2974 0.0280 0.2223 0.3724 0.1501 0.2079 0.3868 0.1789

200 0.4886 0.1425 0.2378 0.7394 0.5016 0.1898 0.7874 0.5977
0.9538 1.0425 −0.4601 2.1077 2.5678 −0.7059 2.3536 3.0595
0.3022 0.0200 0.2539 0.3505 0.0966 0.2447 0.3598 0.1151

300 0.4860 0.1510 0.2875 0.6845 0.3971 0.2495 0.7226 0.4731
0.6807 0.7732 −0.2549 1.6162 1.8712 −0.4341 1.7954 2.2295
0.3017 0.0312 0.2641 0.3393 0.0752 0.2569 0.3465 0.0896

1000 0.4751 0.1266 0.3623 0.5880 0.2257 0.3407 0.6096 0.2689
0.7093 0.6065 0.1571 1.2615 1.1045 0.0513 1.3673 1.3159
0.3047 0.0231 0.2830 0.3264 0.0434 0.2788 0.3305 0.0517

3000 0.4615 0.1005 0.3993 0.5236 0.1243 0.3874 0.5355 0.1481
0.7687 0.5170 0.3819 0.9556 0.5737 0.3269 1.0105 0.6836
0.3066 0.0172 0.2942 0.3191 0.0249 0.2918 0.3215 0.0297

For all the considered sets of parameters, the values in Tabs. 8–11, indicate that the ML
estimates stabilize to the right values as n increases. Also, the MSEs and ALs decrease and tend
to 0 as n becomes large as expected.

Now, we check the numerical performance of the estimate of the Tsallis entropy of the
TGFrW model as described in Subsection 3.7. In this regard, Tabs. 12–15 list the values of this
estimate under the simulation scenario described above. We adopt the criteria of the relative bias
(RB), defined as RB= (Estimate−Exact value)/Exact value.

Table 12: Values of the Tsallis entropy estimates related to the TGFrW model for set 1: (α = 0.5,
β = 2.0, λ= 0.5)

n Exact
value

θ = 0.5 Exact
Value

θ = 0.8 Exact
value

θ = 1.5 Exact
value

θ = 2.0

Est. RB Est. RB Est. RB Est. RB

100 2.9917 2.293 0.233 0.8076 0.534 0.339 −0.3096 −0.43 0.389 −0.7971 −0.908 0.139
200 2.517 0.159 0.699 0.135 −0.355 0.145 −0.895 0.123
300 2.675 0.106 0.653 0.191 −0.398 0.285 −0.834 0.046
1000 2.956 0.012 0.783 0.031 −0.325 0.05 −0.813 0.02
3000 2.976 0.0054 0.806 0.0023 −0.305 0.014 −0.788 0.012
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Table 13: Values of the Tsallis entropy estimates related to the TGFrW model for set 2: (α = 0.5,
β = 2.0, λ= 0.3)

n Exact
value

θ = 0.5 Exact
Value

θ = 0.8 Exact
value

θ = 1.5 Exact
value

θ = 2.0

Est. RB Est. RB Est. RB Est. RB

100 4.4915 3.94 0.123 0.6644 0.443 0.334 −2.3148 −2.8 0.209 −7.3409 −9.798 0.335
200 4.148 0.077 0.528 0.205 −2.31478 0.044 −6.683 0.09
300 4.323 0.037 0.581 0.126 −2.256 0.026 −6.926 0.057
1000 4.455 0.0081 0.605 0.089 −2.354 0.017 −7.607 0.036
3000 4.474 0.004 0.652 0.018 −2.332 0.0074 −7.393 0.0071

Table 14: Values of the Tsallis entropy estimates related to the TGFrW model for set 3: (α = 0.3,
β = 1.6, λ= 0.3)

n Exact
value

θ = 0.5 Exact
value

θ = 0.8 Exact
value

θ = 1.5 Exact
value

θ = 2.0

Est. RB Est. RB Est. RB Est. RB

100 3.2636 2.58 0.21 −0.2573 −0.541 1.102 −6.5709 −6.025 0.083 −34.0403 −27.92 0.18
200 2.799 0.142 −0.483 0.876 −6.222 0.053 −28.912 0.151
300 2.867 0.122 −0.43 0.672 −6.229 0.052 −29.127 0.144
1000 3.227 0.011 −0.218 0.153 −6.734 0.025 −33.058 0.029
3000 3.243 0.0063 −0.259 0.0071 −6.474 0.015 −33.084 0.028

Table 15: Values of the Tsallis entropy estimates related to the TGFrW model for set 4: (α = 0.5,
β = 0.8, λ= 0.3)

n Exact
Value

θ = 0.5 Exact
Value

θ = 0.8 Exact
value

θ = 1.5 Exact
value

θ = 2.0

Est. RB Est. RB Est. RB Est. RB

100 6.1719 5.841 0.054 1.5863 1.422 0.104 −0.9366 −1.157 0.236 −3.2603 −3.847 0.18
200 5.864 0.05 1.43 0.099 −1.108 0.183 −3.749 0.15
300 5.94 0.038 1.472 0.072 −1.013 0.082 −3.171 0.027
1000 6.253 0.013 1.632 0.029 −0.892 0.047 −3.333 0.022
3000 6.125 0.0075 1.573 0.0085 −0.96 0.025 −3.27 0.00298

For all the considered sets of parameters, the values in Tabs. 8–11, indicate that the
estimates of the Tsallis entropy stabilize to the exact values as n increases. Also, the RBs
decrease and tend to 0 as n becomes large, which is a consistent observation with the expected
theoretical convergence.
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4.4 Data Analysis
Here, we show that the TGFrW model is ideal to fit practical data of various kinds, with

better results in comparison to solid extended Weibull models. More specifically, the two following
data sets are considered.

The first data set, called datasetI, contains 100 observations on minutes waiting time before
a client receives the desired service in a bank. It is: datasetI= {0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1,
2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0,
5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8, 8.2, 8.6, 8.6, 8.6,
8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5,
2.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9,
20.6, 21.3, 21.4, 21.9, 23, 27, 31.6, 33.1, 38.5}. The reference for this data is [30].

The second data set, called datasetII, represents 30 successive values of precipitation (in
inches), in one month, in Minneapolis. It is: datasetII = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,
1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75,
2.48, 0.96, 1.89, 0.90, 2.05}. The reference for this data is [31].

The following competitors are taken into account: truncated Fréchet-Weibull (TFrW) model
proposed by [6], odd log-logistic Weibull (OLLW) model introduced by [32], beta Weibull (BW)
model by [33], exponentiated Weibull (EW) model introduced by [34], and gamma-exponentiated
exponential (GE) model studied by [35].

For all the models, the estimation of the parameters are performed via the ML method.
We refer to Subsection 3.7 concerning the ML estimates of the TGFrW model. As standard
criteria of comparison, the following measures are taken into account: −�̂, AIC, BIC, W, A,
KS and p-value (KS), corresponding to the minus estimated log-likelihood function at the data,
Akaike information criterion, Bayesian information criterion, Anderson-Darling statistic, Cramer–
von Mises statistic, Kolmogorov–Smirnov statistic and the p-value of the Kolmogorov–Smirnov
test, respectively. The corresponding mathematical formulas are described below.

AIC=−2�̂+ 2p, BIC=−2�̂+ ln(n)p, W=
(

1
2n

+ 1
)[

1
12n

+
n∑
i=1

(
yi− 2i− 1

2n

)2]
,

A=−
(

9
4n2

+ 3
4n

+ 1
)[

n+ 1
n

n∑
i=1

(2i− 1) {ln(yi)+ ln (1− yn−i+1)}
]
,

KS=max
(
yi− i− 1

n
,
i
n
− yi

)
, p-value=P(sup

x∈R

|Fn(x)− F̂(x)| ≥KS),

where n is the number of observations, p is the number of parameters of the considered model,
x(1), . . . ,x(n) are the ordered observations, yi = F̂(x(i)), where F̂(x) denotes the estimated CDF of
the model involving the ML estimates for the parameters and Fn(x) denotes the random empirical
CDF. The details on these statistical measures can be found in [36,37].

It is admitted that the smaller the values of AIC, BIC, W, A and KS and the greater the
values of p-value (KS), the better the model is to fit to the considered data. The software R is
used for all the calculations.

For the considered models, the ML estimates with their related standard errors (SEs) are
reported in Tabs. 16 and 17 for datasetI and datasetII, respectively.
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Table 16: Values of the ML estimates and SEs for datasetI

Model ML Est. and SE (in parentheses)

TGFrW 9.6321 618.6199 0.4942 –
(α,β,λ) (0.8984) (3.0245) (0.0219) –
TFrW 39.9630 80.1455 0.1505 6.3061
(a,b,k,λ) (18.96786) (21.2212) (0.2917) (0.0978)
OLLW 2.2904 4.4102 1.2739 0.0125
(α,β,γ ,λ) (36.4870) (7.4534) (0.5479) (0.0412)
BW 7.3516 0.1251 1.3381 0.8985
(α,β, θ ,λ) (2.1070) (0.0137) (0.0454) (0.0354)
EW 2.7159 0.2897 85.3984 –
(α,β,λ) (1.1209) (0.2110) (1.1282) –

Table 17: Values of the ML estimates and SEs for datasetII

Model ML Est. and SE (in parentheses)

TGFrW 4.7180 622.2116 0.5200 –
(α,β,λ) (1.0310) (7.8857) (0.1425) –
TFrW 21.7391 3.8465 0.3587 4.3312
(a,b,k,λ) (0.8977) (6.0870) (1.0098) (0.4565)
OLLW 30.0389 39.1226 1.7002 0.0085
(α,β,γ ,λ) (16.4171) (0.9114) (1.9921) (0.5161)
GE 0.4278 1.0293 1.3365 –
(α,β,λ) (0.2033) (0.4740) (0.7082) –
EW 4.3770 0.3623 91.6295 –
(α,β,λ) (0.8867) (0.4754) (0.0755) –

In particular, for datasetI, the parameters α, β and λ of the TGFrW model are estimated
by α̃ = 9.6321, β̃ = 618.6199 and λ̃= 0.4942, respectively, and for datasetII, they are estimated by
α̃ = 4.7180, β̃ = 622.2116 and λ̃= 0.5200, respectively. We remark that the novel parameter β is
estimated far from 1, making a strong difference between the estimated TGFrW model and the
former estimated TFrW model.

Table 18: Values of the considered criteria for datasetI

Distribution −�̂ AIC BIC W A KS p-value (KS)

TGFrW 320.2373 646.4747 654.2902 0.0781 0.5756 0.0644 0.8001
TFrW 327.9006 663.8012 674.2219 0.2428 1.64581 0.0929 0.3531
OLLW 389.4066 786.8133 797.2340 0.5317 3.2213 0.5161 0.0021
BW 319.7962 647.5924 658.0131 0.0644 0.4826 0.0890 0.4058
EW 322.6523 651.3046 659.1201 0.1292 0.9139 0.0726 0.6663
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Table 19: Values of the considered criteria for datasetII

Distribution −�̂ AIC BIC W A KS p-value (KS)

TGFrW 38.9692 83.9384 88.1420 0.0406 0.2589 0.1006 0.9217
TFrW 39.4797 86.95941 92.5642 0.0622 0.3877 0.1211 0.7708
OLLW 60.2569 128.5138 134.1186 0.1585 1.0085 0.5327 0.00084
GE 39.9177 85.83549 90.03909 0.0491 0.3552 0.1121 0.8451
EW 39.30276 84.60552 88.80911 0.0561 0.3499 0.1137 0.8323
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Figure 3: Various fits of the TGFrW model for datasetI: (a) Estimated PDF, (b) estimated CDF,
(c) P-P plot and (d) Q-Q plot
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From Tabs. 18 and 19, it is clear that the TGFrW model is the best of all, with respect to the
considered criteria. In particular, it has p-values (KS) closed to 1. As an important remark, the
TGFrW model surpasses the former TFrW model, justifying the importance of the generalization.

Several kinds of fits of the TGFrW model are shown in Figs. 3 and 4 for datasetI and
datasetII, respectively. Specifically, the estimated PDFs of the TGFrW distribution are plotted over
the corresponding histograms and the estimated CDFs are plotted over the empirical CDFs. The
empirical probabilities versus estimated probabilities (P-P) plots and the empirical quantiles versus
estimated quantiles (Q-Q) plots are also shown. In all the cases, a near perfect fit is observed,
validating the remarkable performance of the TGFrW model.
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Figure 4: Various fits of the TGFrW model for datasetII: (a) estimated PDF, (b) estimated CDF,
(c) P-P plot and (d) Q-Q plot



CMES, 2021, vol.126, no.2 817

5 Conclusion

We have motivated the use of the truncated generalized Fréchet distribution to define a new
generalized family of continuous distributions, called the truncated generalized Fréchet generated
(TGFr-G) family. Diverse mathematical and practical investigations show the full potential of
the new family, supported by detailed graphical and numerical evidences. A focus is put on the
truncated generalized Fréchet Weibull (TGFrW) distribution, with a complete statistical treatment
of the related model. Comparative fitting are performed through the use of two practical data sets,
with favorable results to the new model in comparison to other popular extended Weibull models.
In particular, under a comparable setting, the new model surpasses the former truncated Fréchet
model. As perspectives of future work, other special models of the TGFr-G family may be the
subjects of further investigation, specially those with support on R. Also, the bivariate extensions
of the TGFr-G family can be explored more, with applications in the fields of regression and
clustering, for instance. Also, applications in physics remain an interesting challenge, exploring the
possible randomness of various networks [38] and various differential equations [39].
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