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ABSTRACT

In order to simulate the propagation process of subway vibration of parallel tunnels in semi-in�nite rocks or
soils, time domain boundary element method (TD-BEM) formulation for analyzing the dynamic response of
twin-parallel circular tunnels in an elastic semi-in�nite medium is developed in this paper. The time domain
boundary integral equations of displacement and stress for the elastodynamic problem are presented based on
Betti’s reciprocal work theorem, ignoring contributions from initial conditions and body forces. In the process of
establishing time domain boundary integral equations, some virtual boundaries are constructed between �nite
boundaries and the free boundary to form a boundary to refer to the time domain boundary integral equations for a
single circular tunnel under dynamic loads. The numerical treatment and solving process of time domain boundary
integral equations are given in detail, including temporal discretization, spatial discretization and the assembly
of the in�uencing coe�cients. In the process of the numerical implementation, in�nite boundary elements are
incorporated in time domain boundary element method formulation to satisfy stress free conditions on the
ground surface, in addition, to reduce the discretization of the boundary of the ground surface. The applica-
bility and e�ciency of the presented time domain boundary element formulation are veri�ed by a deliberately
designed example.
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1 Introduction

Due to the demanding development and the limited space in urban areas, complex under-
ground structures including the parallel subway tunnels, spaced at a limited distance, are being
constructed. Although the subway brings convenience, a moving vehicle on uneven rails produces
a dynamic force between wheels and rails and causes vibration, which has potential negative
effects on sub-infrastructure beneath the rails, twin-parallel tunnels and even the structures on
the ground [1,2].
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Without loss of generality, taking the unballasted track in a subway project as an example,
the whole propagation process of subway vibration could be roughly divided into two phases:
First, the coupled vibration between rails and the wheels of the vehicle acts on the track slab,
sequentially passes through the CA mortar layer, the railway ballast, the lining of the tunnel and
the outer protective layer of the lining. And after that, the vibration propagates in the semi-in�nite
surrounding rocks or soils. Since the layout of the parallel subway tunnels is generally in the form
of long cylinders in semi-in�nite rocks or soils, the subway vibration analysis system could be
illustrated by a plane model, as shown in Fig. 1.

Γf

Γ∞

Γ1

CA mortar 
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Figure 1: 2-D vibration analysis model

In order to fully understand the propagation law of subway vibration, great efforts have been
devoted to developing numerical models for the dynamic track-tunnel-soil system, among which
�nite element method (FEM) is widely used. However, FEM requires an arti�cial boundary when
dealing with in�nite or semi-in�nite problems, so it is not the ideal numerical tool. Since boundary
element method (BEM) is good at simulating the radiational wave propagation in semi-in�nite
soils, the FEM–BEM coupled model would be most attractive [3–5]. Usually, FEM should be
employed to dynamically simulate the track-tunnel system, where vibration forces in the boundary
of the tunnel due to the passage of a train could be determined. Then, BEM should be introduced
to model the dynamic response of the surrounding soil.

In comparison with FEM, BEM has irreplaceable advantages in dealing with in�nite or
semi-in�nite problems, automatically satisfying Sommerfeld’s radiation conditions at the in�nity
for in�nite and semi-in�nite domains, restricting the discretization only on the boundary of the
computational domain for elastic analysis [6–10]. Besides, reducing the dimensionality for the
problem and possessing good computational accuracy are its other advantages [11–13].

BEM for elastodynamic problems could be classi�ed according to the nature of the adopted
fundamental solutions [14]. The time domain boundary element method (TD-BEM) employs time
dependent fundamental solutions [15], Laplace transform method adopts the Laplace transform of
the fundamental solutions [16] and the dual reciprocity method (DR-BEM) uses the fundamental
solutions of elastostatics [17]. It is obvious that TD-BEM provides a direct way of obtaining the
time history of the response for transient problems without any domain transforms [18]. The use
of time domain fundamental solutions turns TD-BEM formulation very elegant and attractive
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from the mathematical point of view [14,15,18]. In addition, the ful�llment of the radiation
condition by time domain fundamental solutions turns the formulation suitable for performing
in�nite domain analysis, since there are no re�ected waves from the in�nity [19,20].

TD-BEM formulation for elastodynamics was originally proposed for the �rst time in two
journal papers by Mansur et al. [21,22] and after that in Mansur’s Ph.D thesis [23]. Subsequently,
Carrer et al. [24,25] found the procedure to work out the integral equation for stresses at internal
points, where kernels were calculated by adopting the concept of the �nite part of an integral,
rather than following the kernel regularization procedure presented by Mansur [21–23]. Based
on the above researches, extensive studies on applying and improving TD-BEM formulation for
elastodynamic problems were conducted. Zhang [26] applied TD-BEM for transient elastodynamic
crack analysis, and he and his colleagues [27] developed the numerical scheme in orthotropic
media. Alielahi et al. [28] used TD-BEM to study the seismic ground response in the vicinity
of an embedded circular cavity. Lei et al. [29] presented the analytical treatment to the singular
integral terms in boundary integral equations, which improved the computation accuracy of TD-
BEM for 2-D elastodynamic problems. Several other studies [30–33] were devoted to improving
computational stability.

The above mentioned studies are focused mainly on in�nite domain problems, where only
the discretization on the boundary is required and external boundaries are not required to be
arti�cially truncated. However, many practical geotechnical engineering problems require models
associated with the semi-in�nite domain. The stress free conditions on the ground surface should
be taken into consideration when dealing with semi-in�nite problems by TD-BEM [34]. Three
approaches were proposed for the analysis of the problem with the semi-in�nite medium. The �rst
approach is to �nd semi-in�nite fundamental solutions [35,36], where the stress free conditions
are automatically satis�ed and the discretization of the boundary of the ground surface is not
required. However, semi-in�nite fundamental solutions are obtained with the assistance of the
method of source image, which means that the smooth and regular ground surface is a must. The
second approach is to arti�cially truncate the boundary of the ground surface to the bounded
region of the manageable size [37]. Therefore, it increases the degree of freedom and the amount
of calculation to obtain acceptable results. The other approach is to incorporate the in�nite
boundary element into the boundary element analysis [38,39], making full use of the simplicity of
full plane fundamental solutions and decreasing the discretization of the free surface. Therefore,
the last method is the most effective, compared with the other two methods.

The idea of the in�nite boundary element and the reciprocal decaying shape function were
�rst proposed by Watson [40], and after that, Zhang et al. [41] incorporated the in�nite boundary
element in BEM formulation and applied the formulation to the static problem of a dam foun-
dation. Davies et al. [42] developed the semi analytical approach based on the circular region of
exclusion in the far �eld and described the order adaptive criteria for the numerical integrations.
The algorithm was further improved in the subsequent paper [43] by means of the analytical
integration of the strongly singular traction kernel. All the aforementioned works are valuable
efforts to try to incorporate the in�nite boundary element in BEM formulation for elastostatic
problems. Unfortunately, to the authors’ best knowledge, the TD-BEM formulation, which incor-
porates the in�nite boundary element to deal with dynamic problems, has not been reported in
current references.

By removing the FEM sub-model in the ideal FEM–BEM coupled model in Fig. 1 for the
propagation of the vehicle-rail coupled vibration in the semi-in�nite soils or rocks, the remain-
ing model becomes the BEM sub-model, as shown in Fig. 2. Therefore, the development of



580 CMES, 2021, vol.126, no.2

TD-BEM formulation for dynamic analysis of twin tunnels under dynamic loads in an elastic
semi-in�nite medium is one of the key points in the ideal FEM–BEM coupled model for the
dynamic track-tunnel-soil system.

This paper presents the semi-in�nite TD-BEM formulation for analyzing the dynamic response
of twin-paralleled circular tunnels under dynamic loads. Time domain boundary integral equa-
tions for this problem are presented, and then, the numerical implementation by introducing
the in�nite boundary element is presented. Finally, the presented TD-BEM formulation for
twin-parallel tunnels in an elastic semi-in�nite medium, in which the in�nite boundary ele-
ment and time domain fundamental solutions are incorporated, is veri�ed by a deliberately
designed example.
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Figure 2: TD-BEM model in the vibration analysis system

2 Boundary Integral Equations in an Elastic Semi-In�nite Medium

2.1 Displacement Boundary Integral Equation
The boundaries for the semi-in�nite domain problem include �nite boundaries 01 and 02,

the boundary of ground surface 03 and nominal boundaries at the in�nity 0∞, as shown in
Fig. 3. By referring to [35], the displacement boundary integral equation for the elastic, isotropic
and homogeneous semi-in�nite domain containing twin-parallel circular tunnels based on Betti’s
reciprocal work theorem, ignoring contributions from initial conditions and body forces, can be
expressed as:

cik (P)uk (P, t)=
∫

Γ1

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

+

∫
Γ2

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

+

∫
Γ3

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

+

∫
AB

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

+

∫
CD

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ
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+

∫
DC

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

+

∫
BA

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

+

∫
Γ∞

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ (1)

where cij (P) is a parameter that depends on the position of the source point P; uk (P, t) and
pk (P, t) are displacement and traction components in the k direction, respectively; u∗ik (P, τ ;Q, t)
and p∗ik (P, τ ;Q, t) stand for time domain displacement and traction fundamental solutions respec-
tively, representing the displacement and traction at the �eld point Q in the k direction at t instant
due to a unit point force applied at the source point P in the i direction at any time instant τ .

A

C D
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Γ3

Γ2Γ1

Γ∞

Figure 3: Schematic diagram of the semi-in�nite domain with twin-parallel tunnels

It is noted that the boundaries AB, BA, CD, and DC are virtual boundaries, and their
relations are shown in Eqs. (2) and (3). The in�nite terms in Eq. (1) can be simpli�ed in Eqs. (4)
and (5).∫

AB

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

=−

∫
BA

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ (2)∫

CD

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

=−

∫
DC

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ (3)∫

Γ∞

∫ t

0
u∗ik (P, τ ;Q, t)pk (Q, τ)dτdΓ

= lim
r→∞

∫
Γn

∫ t

0
u∗ik (P, τ ;Q, t)pk (Q, τ)dτdΓ = lim

r→∞

∫
Γn

C1

r3
dΓ ≈ 0 (4)
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∫
Γ∞

∫ t

0
p∗ik (P, τ ;Q, t)uk (Q, τ)dτdΓ

= lim
r→∞

∫
Γn

∫ t

0
p∗ik (P, τ ;Q, t)uk (Q, τ)dτdΓ = lim

r→∞

∫
Γn

C2

r3
dΓ ≈ 0 (5)

Thus, the displacement boundary integral equation can be re-formulated, as:

cik (P)uk (P, t)=
∫

Γ1

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

+

∫
Γ2

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

+

∫
Γ3

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

=

∫
Γ

∫ t

0

[
u∗ik (P, τ ;Q, t)pk (Q, τ)− p∗ik (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ (6)

where Γ = Γ1 ∪ Γ2 ∪ Γ3.

The displacement and traction fundamental solutions in Eq. (6) can be formulated by Eqs. (7)
and (8), according to [24,29]:

u∗ik (P, τ ;Q, t)=
1

2πρcs

(EikLs+FikL−1
s + JikLsNs

)
Hs

−
cs
cd

(
FikL

−1
d + JikLdNd

)
Hd

 (7)

p∗ik (P, τ ;Q, t)=
1

2πρcs



Aik

(
rL3

sHs+Ls
∂Hs

∂ (csτ)

)
+BikLsNsHs

+
Dik

r2

(
r3L3

sHs+LsNs
∂Hs

∂ (csτ)

)
−
cs
cd

[
BikLdNdHd +

Dik

r2

(
r3L3

dHd +LdNd
∂Hd

∂ (cdτ)

)]


(8)

The corresponding integrals of fundamental solutions are expressed by Eqs. (9) and (10):∫
Γ

∫ t

0
u∗ikpkdτdΓ =

1
2πρcs

∫
Γ

∫ t

0


(
EikLs+FikL−1

s + JikLsNs
)
Hs

−
cs
cd

(
FikL

−1
d + JikLdNd

)
Hd

pkdτdΓ (9)

∫
Γ

∫ t

0
p∗ikukdτdΓ =

1
2πρcs

∫
Γ


(Aik+Dik)

∣∣∣∣∫ t0 rL3
sHsukdτ +Bik

∫ t
0 LsNsHsukdτ

−
cs
cd

(
Bik

∫ t

0
LdNdHdukdτ +Dik

∣∣∣∣∣
∫ t

0
rL3

dHdukdτ

)
dΓ (10)
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In Eqs. (9) and (10), ρ is the density, and r is the distance between the �eld point Q and the
source point P. cs is the shear wave velocity or S wave velocity, and cd is the compression wave
velocity or P wave velocity. These parameters are expressed as follows:

r= (riri)
1
2 (11)

cs =
√
µ

ρ
(12)

cd =

√
λ+ 2µ
ρ

(13)

where

µ=
E

2 (1+ v)
(14)

λ=
vE

(1+ v) (1− 2v)
(15)

The tensors Eik, Fik and Jik (in Eq. (9)) and Aik, Bik and Dik (in Eq. (10)), which are related
only to space, are de�ned by:

Eik = δik (16)

Fik =
δik

r2
(17)

Jik =−
r,ir,k
r2

(18)

Aik =µ
(

2ϕr,ink+ δik
∂r
∂n
+ r,kni

)
(19)

Bik =−
2µ
r3

(
δik
∂r
∂n
+ r,ink+ r,kni− 4

∂r
∂n
r,ir,k

)
(20)

Dik =−2µ
(
ϕr,ink+ δik

∂r
∂n
r,ir,k

)
(21)

where

r,i =
∂r

∂xQi
=−

∂r

∂xPi
=
ri
r

(22)

ni =
∂xi
∂n

(23)

∂r
∂n
= r,ini (24)

ϕ =
λ

2µ
=
c2
d − 2c2

s

2c2
s

(25)
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The parameters that are relevant to both space and time in the Eqs. (9) and (10) are
expressed, as:

Lw =
[
c2
w (t− τ)

2
− r2

]− 1
2 (26)

Nw = 2c2
w (t− τ)

2
− r2 (27)

Hw =H [cw (t− τ)− r] (28)

where H [cw (t− τ)− r] is the Heaviside step function, such that:

H (x− a)=
{

1 x≥ a
0 x< a

(29)

It should be noted that the subscript w could be substituted with s or d in the Eqs. (26)–
(28), representing the contribution of the shear wave (S wave) or the compression wave
(P wave), respectively.

In Eq. (10), the symbol
∣∣ represents the �nite part of the integral. Interested readers

could refer to references [24,29,44] for more details about the concept and the applications of the
�nite part of an integral. According to references [24,44], the �rst term in the bracket in Eq. (10)
is used as an example to explain how the �nite part of the integral is calculated, as:∣∣∣∣∣
∫ t

0
rL3

sHsukdτ = lim
τ→t− r

cs

{∫ τ

0
rL3

sukdτ −
1
cs
Lsuk

}
(30)

In the following context, all the �nite parts of the singular integrals are
analogously calculated.

2.2 Stress Integral Equation
The stress integral equation for internal points is obtained by combining Hooke’s law with

the derivatives of Eq. (6), which is expressed, as:

σij (P, t)=
∫

Γ1

∫ t

0

[
d∗ijk (P, τ ;Q, t)pk (Q, τ)− s∗ijk (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

+

∫
Γ2

∫ t

0

[
d∗ijk (P, τ ;Q, t)pk (Q, τ)− s∗ijk (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

+

∫
Γ3

∫ t

0

[
d∗ijk (P, τ ;Q, t)pk (Q, τ)− s∗ijk (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ

=

∫
Γ

∫ t

0

[
d∗ijk (P, τ ;Q, t)pk (Q, τ)− s∗ijk (P, τ ;Q, t)uk (Q, τ)

]
dτdΓ (31)

whered
∗

ijk = λδiju
∗

mk,m+µ
(
u∗ik,j + u

∗

jk,i

)
s∗ijk = λδijp

∗

mk,m+µ
(
p∗ik,j + p

∗

jk,i

) (32)
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In references [24,25], the stresses at surface nodes are computed using simple �nite difference
formulae, which employ the displacements and tractions computed by the TD-BEM formulation.
The stress integral equation at internal points is expressed, as:

2πρcsσij (P, t)=Dp
s −D

p
d −

(
Sus −S

u
d

)
(33)

where Dp
w and Suw represent the contribution of shear and compression waves to the integrals

related to the tractions and displacements, respectively. According to references [24,25,29], the
terms are expressed in Eqs. (34)–(37):

Dp
s =

∫
Γ



Eijk
∫ t

0 LspkHsdτ +E0
ijk

∣∣∣∣∣∫ t0 ∂Ls∂r pkHsdτ

+Fijk
∫ t

0 L
−1
s pkHsdτ +F0

ijk

∣∣∣∣∣∫ t0 ∂
(
L−1
s

)
∂r pkHsdτ

+Jijk
∫ t

0 LsNspkHsdτ + J0
ijk

∣∣∣∣∣∫ t0 ∂ (LsNs)

∂r
pkHsdτ


dΓ (34)

Dp
d =

cs
cd

∫
Γ


Fijk

∫ t
0 L
−1
d pkHddτ +F0

ijk

∣∣∣∣∣∫ t0 ∂(L
−1
d )

∂r
pkHddτ

+Jijk
∫ t

0 LdNdpkHddτ + J0
ijk

∣∣∣∣∣∫ t0 ∂ (LdNd)

∂r
pkHddτ

dΓ (35)

Sus =
∫

Γ


(
Aijk+Dijk

) ∣∣∣∣∫ t0 rL3
sukHsdτ +

(
A0
ijk+D

0
ijk

) ∂
∂r

∣∣∣∣∫ t

0
rL3

sukHsdτ

+Bijk
∫ t

0 LsNsukHsdτ +B0
ijk

∣∣∣∣∣∫ t0 ∂ (LsNs)

∂r
ukHsdτ

dΓ (36)

Sud =
cs
cd

∫
Γ


Bijk

∫ t
0 LdNdudHddτ +B0

ijk

∣∣∣∣∣∫ t0 ∂ (LdNd)

∂r
ukHddτ

Dijk

∣∣∣∣∫ t0 rL3
dukHddτ +D0

ijk
∂

∂r

∣∣∣∣∫ t

0
rL3

dudHddτ

dΓ (37)

The tensors Eijk, Fijk, Jijk, E0
ijk, F0

ijk and J0
ijk (in Eqs. (34) and (35)) and Aijk, Bijk, Dijk, A0

ijk,

B0
ijk and D0

ijk (in Eqs. (36) and (37)), which are related to space, are expressed, as:

Eijk = 0 (38)

E0
ijk =−µ

(
δikr,j+δjkr,i+2ϕδijr,k

)
(39)

Fijk =
2µ
r3
(
δikr,j+δjkr,i+2ϕδijr,k

)
(40)

F0
ijk =−

µ

r2
(
δikr,j+δjkr,i+2ϕδijr,k

)
(41)

Jijk =
µ

r3
(
2δijr,k+δjkr,i+δikr,j−8r,i r,j r,k−2ϕδijr,k

)
(42)
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J0
ijk =

2µ
r2
(
r,i r,j r,k+ϕδijr,k

)
(43)

Aijk =
µ2

r


−4ϕnk

(
δij − r,i r,j

)
+
∂r
∂n

(
δikr,j+δjkr,i

)
−2

(
δiknj + δjkni

)
+ r,i r,k nj + r,j r,k ni

−4ϕδij

(
ϕnk+ nk−

∂r
∂n
r,k

)
 (44)

A0
ijk =µ

2

−4ϕr,i r,j nk−
∂r
∂n

(
δikr,j+δjkr,i

)
− r,i r,k nj

−r,j r,k ni− 4ϕδij

(
ϕnk+

∂r
∂n
r,k

)
 (45)

Bijk =
4µ2

r4

4
∂r
∂n

(
6r,i r,j r,k−δijr,k−δjkr,i−δikr,j

)
+
(
δijnk+ δjkni+ δiknj

)
−4

(
r,i r,j nk+ r,i r,k nj + r,j r,k ni

)
 (46)

B0
ijk =

2µ2

r3


∂r
∂n

(
δjkr,i+δikr,j−8r,i r,j r,k

)
+ 2r,i r,j nk

+r,i r,k nj + r,j r,k ni+ 2ϕδij

(
nk− 2

∂r
∂n
r,k

)
 (47)

Dijk =
2µ2

r


2ϕnk

(
δij − r,i r,j

)
+ r,i r,k nj + r,j r,k ni

+
∂r
∂n

(
−6r,i r,j r,k+2δijr,k+δjkr,i+δikr,j

)
+2ϕδij

(
ϕnk+

∂r
∂n
r,k

)
 (48)

D0
ijk = 4µ2

[
ϕnkr,i r,j+

∂r
∂n
r,i r,j r,k+ϕδij

(
ϕnk+

∂r
∂n
r,k

)]
(49)

By recalling the expressions, Eqs. (11)–(30), these tensors can be calculated, and the boundary
integral equation in terms of the internal stress Eq. (31) is determined.

3 Numerical Implementation

3.1 Temporal Discretization
The displacement is assumed to have the linear variation in time, whereas the traction is

assumed to be constant. For the given time interval [tm−1, tm], the variables of the displacement
and the traction can be written:

u(m)k (Q, τ)=
[
ψm

1 u
m−1
k +ψm

2 u
m
k

]
hm (50)

p(m)k (Q, τ)= pmk hm (51)

where the time interpolation functions are de�ned, as:

hm =H (τ − tm−1)+H (τ − tm) (52)
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ψm

1 =
tm− τ

∆t

ψm
2 =

τ − tm−1

∆t

(53)

3.2 Spatial Discretization
Fig. 4 shows the boundary discretization and the distribution of boundary elements for

twin-parallel tunnels in a semi-in�nite domain, including in�nite boundary elements. The �nite
boundaries, 01 and 02, are linear boundary elements. Quadratic boundary elements are adopted
to describe in�nite boundary elements in spatial discretization.

∞ ∞∞

infinite boundary element

linear boundary element

infinite boundary element
Γ3

Γ2Γ1

Figure 4: Schematic diagram of boundary discretization

From the expressions of fundamental solutions, Eqs. (7) and (8), it can be seen that u∗ik
and p∗ik are the same orders as the functions of 1/r and 1/r2, respectively. When r approaches
∞, meaning that the �eld point Q tends to the in�nity, u∗ik and p∗ik are the in�nite small

functions with the same orders as the functions of 1/r and 1/r2, which could be mathematically
expressed, as:
u∗ik ∝O

(
1
r

)
p∗ik ∝O

(
1
r2

) (54)

The displacement solution and traction solution can be obtained by the superpositions of
displacement and traction fundamental solutions respectively, so decay rates of uk (Q, τ) and
pk (Q, τ) also possess the same orders as the functions of 1/r and 1/r2, respectively, when the �eld
point Q tends to the in�nity, as:
uk ∝O

(
1
r

)
pk ∝O

(
1
r2

) (55)

Therefore, besides the satisfaction of the convergence criterion, the interpolation mode of the
in�nite boundary element needs to re�ect the above mentioned decaying characteristics at the
in�nity. The requirements about the shape functions of in�nite boundary elements are
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(i) Delta function property, Ni
(
xj
)
= δij =

{
1 i= j
0 i 6= j

(ii) Completeness,
∑
Ni = 1

(iii) When the �eld point Q is at the in�nity, Qk (x)→∞, uk (x)→ 0, pk (x)→ 0

There are left and right forms for the in�nite boundary elements, as shown in Fig. 5. The
shape functions of the displacement and traction for in�nite boundary elements are respectively
expressed in Eqs. (56) and (57).
Nu

1 (ξ)=−
1
2ξ (1− ξ)

Nu
2 (ξ)= 1− ξ2

Nu
3 (ξ)=

1
2ξ (1+ ξ)

(56)


Np

1 (ξ)=−
1
4ξ (1− ξ)

2

Np
2 (ξ)= (1+ ξ) (1− ξ)

2

Np
3 (ξ)=

1
4ξ (1+ ξ) (5− 3ξ)

(57)

321

321

(a)

∞

∞

(b)

ξ=-1 

ξ=-1 ξ=0

ξ=0

ξ=1

ξ=1

Figure 5: In�nite boundary elements models (a) left (b) right

It is obvious that the above shape functions possess delta function property and complete-
ness. Moreover, when ξ approaches −1 in the left in�nite boundary element, meaning that the
�eld point Q tends to the in�nity, the displacement solution and the traction solution have the
following relations:uk (x)=O (1+ ξ)→ 0

pk (x)=O
(
(1+ ξ)2

)
→ 0

(58)

For the right in�nite boundary element, these relations are also applicable when ξ

approaches 1. It has been proved that the above shape functions meet the above requirements for
in�nite boundary elements.

It is also noted that the stress on the ground surface is free, i.e., pk (Q, τ) is null. One has,∫
ΓL

∫ t

0
u∗ik (P, τ ;Q, t)pk (Q, τ)dτdΓ =

∫
ΓR

∫ t

0
u∗ik (P, τ ;Q, t)pk (Q, τ)dτdΓ = 0 (59)
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The linear interpolation functions of the displacement and the traction in space can be
expressed as:
N1 (ξ)=

1
2
(1− ξ)

N2 (ξ)=
1
2
(1+ ξ)

(60)

Therefore, the variables of the displacement and the traction after discretization in both time
and space can be rewritten as:

u(m;e)
k (Q, τ)=

Nq∑
a=1

[
ψm

1 (τ )u
(m+1;e,a)
k +ψm

2 (τ )u
(m;e,a)
k

]
Na (ξ)hm (τ ) (61)

p(m;e)
k (Q, τ)=

Nq∑
a=1

p(m;e,a)
k Na (ξ)hm (τ ) (62)

where Nq represents the number of nodes in the boundary element.

So far, according to the decaying characteristics of fundamental solutions from the �nite
boundary to the in�nity, the shape functions for in�nite boundary elements are constructed to
mathematically describe the relationships between the in�nite boundary and the in�nity for the
�eld variables. Moreover, the shape functions satisfy the convergence criterion.

3.3 Discretization of Boundary Integral Equations
The numerical solutions to Eqs. (6) and (31) are obtained after discretization both in space

and time. The boundaries are discretized into N boundary elements, and the time interval of the
analysis [0, t] is divided into M time intervals, each with the same length ∆t. The terms of the
displacement and the traction in boundary integral equations are respectively expressed as follows:
∫
Γ

∫ t
0 u
∗

ikpkdτdΓ =
∑M

m=1
∑N

e=1
∑Nq

a=1 g
(m;e,a)
ik p(m;e,a)

k∫
Γ

∫ t
0 p
∗

ikukdτdΓ =
∑M

m=0
∑N

e=1
∑Nq

a=1 h
(m;e,a)
ik u(m;e,a)

k

(63)


∫
Γ

∫ t
0 d
∗

ijkpkdτdΓ =
∑M

m=1
∑N

e=1
∑Nq

a=1 d
(m;e,a)
ijk p(m;e,a)

k∫
Γ

∫ t
0 s
∗

ijkukdτdΓ =
∑M

m=0
∑N

e=1
∑Nq

a=1 s
(m;e,a)
ijk u(m;e,a)

k

(64)

In Eq. (63), the coef�cients g(m;e,a)
ik and h(m;e,a)

ik respectively describe the in�uences of the
traction and displacement at node a of element e at instant m∆t on the displacement of the source

point. In Eq. (64), the coef�cients d(m;e,a)
ijk and s(m;e,a)

ijk describe the in�uences of the traction and

displacement at node a of element e at instant m∆t on the stress of the source point.

The values of in�uencing coef�cients are calculated by using the effective method in [29],
where the analytical treatments of the singular integral terms were presented, and to which the
interested readers could refer for details.
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3.4 Matrix form of Boundary Integral Equations
The in�uencing coef�cients at node a of element e at instant m ∆ t are assembled based

on one-to-one correspondence in time and space. After that, boundary integral equations are
expressed in matrix forms, and the programs of the TD-BEM formulation could be coded.

The in�uencing coef�cients of the displacement at node a of element e at instant m∆ t are
obtained by adding the in�uencing coef�cients caused by the (m+1)th time step and those caused
by the mth time step, as shown in Eqs. (65) and (66)

h(m;e,a)
ik =

h
(m+1,1;e,a)
ik + h(m,2;e,a)

ik m= 1, 2, 3, . . . ,M − 1

h(m,2;e,a)
ik m=M

(65)

s(m;e,a)
ijk =

s
(m+1,1;e,a)
ijk + s(m,2;e,a)

ijk m= 1, 2, 3, . . . ,M − 1

s(m,2;e,a)
ijk m=M

(66)

where the superscripts 1 and 2 respectively refer to the forward temporal node in the (m+ 1)th
time step and the backward temporal node in the (m)th time step.

To further simplify, the in�uencing coef�cients of linear spatial elements are also assembled.
The in�uencing coef�cients of element e are obtained by adding the in�uencing coef�cients at the
�rst node of element e and those at the second node of element (e− 1). The speci�c assemblage
equations are expressed as follows:

g(m;e)
ik =



g(m;Ne1,2)
ik + g(m;e,1)

ik e= 1

g(m;Ne2,2)
ik + g(m;e,1)

ik e=Ne1+ 1

g(m;L,2)
ik e=Ne2+ 1

g(m;L,3)
ik + g(m;e,1)

ik e=Ne2+ 2

g(m;e,1)
ik + g(m;R,1)

ik e=Ne3− 1

g(m;R,2)
ik e=Ne3

g(m;e−1,2)
ik + g(m;e,1)

ik other cases

(67)

h(m;e)
ik =



h(m;Ne1,2)
ik + h(m;e,1)

ik e= 1

h(m;Ne2,2)
ik + h(m;e,1)

ik e=Ne1+ 1

h(m;L,2)
ik e=Ne2+ 1

h(m;L,3)
ik + h(m;e,1)

ik e=Ne2+ 2

h(m;e,1)
ik + h(m;R,1)

ik e=Ne3− 1

h(m;R,2)
ik e=Ne3

h(m;e−1,2)
ik + h(m;e,1)

ik other cases

(68)
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d(m;e)
ijk =



d(m;Ne1,2)
ijk + d(m;e,1)

ijk e= 1

d(m;Ne2,2)
ijk + d(m;e,1)

ijk e=Ne1+ 1

d(m;L,2)
ijk e=Ne2+ 1

d(m;L,3)
ijk + d(m;e,1)

ijk e=Ne2+ 2

d(m;e,1)
ijk + d(m;R,1)

ijk e=Ne3− 1

d(m;R,2)
ijk e=Ne3

d(m;e−1,2)
ijk + d(m;e,1)

ijk other cases

(69)

s(m;e)
ijk =



s(m;Ne1,2)
ijk + s(m;e,1)

ijk e= 1

s(m;Ne2,2)
ijk + s(m;e,1)

ijk e=Ne1+ 1

s(m;L,2)
ijk e=Ne2+ 1

s(m;L,3)
ijk + s(m;e,1)

ijk e=Ne2+ 2

s(m;e,1)
ijk + s(m;R,1)

ijk e=Ne3− 1

s(m;R,2)
ijk e=Ne3

s(m;e−1,2)
ijk + s(m;e,1)

ijk other cases

(70)

where Nei (i = 1, 2, 3) represents the total number of elements for the corresponding boundaries
01, 02 and 03.

When the source point P traverses all boundary nodes, the matrix forms of boundary integral
equations after the assemblage can be expressed as follows:

CuM +HMMuM =GMMpM + aM (71)

σM +SMMuM =DMMpM + bM (72)

where

aM =
M−1∑
m=0

(
−HMmum+GMmpm

)
(73)

bM =
M−1∑
m=0

(
−SMmum+DMmpm

)
(74)

In Eq. (71), uM and pM denote the displacement and traction vectors at instant M∆t respec-
tively, and matrix C is constituted by the cik (P) coef�cient. H and G are boundary in�uence

matrices corresponding to the coef�cients h(m;e)
ik and g(m;e)

ik respectively. In Eq. (72), σM is the vec-
tor representing the stress components at instant M∆t, and matrices S and D are correspondingly

constructed by coef�cients s(m;e)
ijk and d(m;e)

ijk respectively.
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4 Numerical Veri�cation and Discussion

This section is to verify the applicability and the accuracy of the presented TD-BEM for-
mulation for twin-parallel tunnels in an elastic semi-in�nite medium, where the in�nite boundary
elements are incorporated and the time domain fundamental solutions are adopted.

For the purpose of verifying the algorithm, the example with analytical solutions should be
the best, because of the uniqueness and the objectivity of the analytical solution. Unfortunately
or fortunately, although the analytical solution to the response of the twin-parallel tunnels under
dynamic load in an elastic semi-in�nite medium is not available, the analytical solution to the
response of the single tunnel under dynamic load in an elastic in�nite medium is available.
Therefore, the numerical example for twin-parallel tunnels is deliberately designed to utilize the
analytical solution to the response of the single tunnel under dynamic load in an elastic in�nite
medium to verify the presented TD-BEM formulation for twin-parallel tunnels under dynamic
load in an elastic semi-in�nite medium. As shown in Fig. 6a, two parallel circular subway tunnels
(r0 = 3 m) are deliberately assumed to be buried in enough deep depth (h = 30 m) beneath the
ground surface and are spaced at enough faraway distance (d = 120 m). Monitoring point A is
positioned at a nearer distance (6 m) to the center of the left circular tunnel than to the right. The
twin-parallel tunnels are assumed to be subjected to the same Heaviside uniform loads p = 200
MPa, shown in Fig. 6b, suddenly at the same time. The mechanical parameters of the surrounding
soil are: the elastic modulus E = 8 × 109 Pa, Poisson ratio ν = 0.25 and the density ρ = 2350
kg/m3.

(a)            (b)

0.140.08
00
0.00

100

200

300

t(s)

p(MPa)

p pA

d

h

2r0

Γ3
Γ1 Γ2

Figure 6: Sketch of the example (a) geometry of tunnels and distribution of loads and
(b) load de�nition

In this scenario, theoretically, the response of monitoring point A could be classi�ed into the
early phase and the late phase. In the early phase, the wave initiated from the left tunnel has
arrived at and passed by point A, while the re�ected wave from the ground, due to the wave from
the left tunnel, has not yet arrived, let alone the more faraway wave from the right tunnel. In
the late phase, the wave at monitoring point A is subsequently disturbed by the re�ected wave
from the ground and by the propagating wave from the right tunnel. Therefore, the response
of monitoring point A for the problem of twin-parallel tunnels in half-plane in the early phase
should be the same as the response of the problem of a single circular tunnel in an in�nite
medium. According to the analytical wave velocity (v= 2021 m/s) in the surrounding ideal elastic
soil, the early phase is from 0.000 s to 0.029 s, and the late phase is from the instant of the
occurrence of the disturbance of the re�ected wave from the ground at the instant of 0.029 s
to the instant of the analysis, during which the additional disturbance of the wave from the
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right tunnel joins at the instant of 0.055 s. Therefore, the response of monitoring point A in
the early phase for the problem of twin-parallel circular tunnels in the semi-in�nite medium from
the presented TD-BEM could be compared with the analytical response from the method of
characteristics for the problem of the single circular cavity under dynamic load in an in�nite
medium given by Chou et al. [45] to verify the presented TD-BEM formulation. It is noted that
the analytical solution of the single circular cavity in an in�nite medium in [45] has been used
to verify the TD-BEM formulation in several references [24,29], to which the interested readers
could refer for more information and mutual comparison.
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Figure 7: Comparison between results at point A (2ro, 0). (a) Radial stress σr. (b) Circumferential
stress σt. (c) Velocity vr

Figs. 7a–7c show the comparison between the calculated results from the presented TD-
BEM for the problem of twin-parallel circular tunnels in an elastic semi-in�nite medium and
from the method of characteristics for the problem of single circular cavity in an in�nite
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medium in terms of radial stress (σr), circumferential stress (σt) and velocity (vr) respectively at
monitoring point A.

From Figs. 7a–7c, it can be seen that, in the early phase (0.000–0.029 s), good agreement
between calculated results from the presented TD-BEM and those from the method of charac-
teristics is obtained. This observation quantitively invalidates the applicability and accuracy for
the presented TD-BEM formulation for twin-parallel circular tunnels in an elastic semi-in�nite
medium in the early phase. It can also be seen from the �gures that, in the late phase (0.029–0.14
s), the calculated results from the presented TD-BEM �uctuate around the analytical results from
the method of the characteristics, with dramatic differences in general in the whole late phase and
with sudden changes at the occurrence of the disturbance of the re�ected wave from the ground
surface and at the occurrence of the additional disturbance of the wave from the right tunnel,
indicating the effects of the re�ected wave and the interaction of the waves. Meanwhile, good
agreement between the calculated instants of the occurrences of the disturbances from the pre-
sented TD-BEM and the corresponding analytical instants are obtained. These two observations
qualitatively invalidate the applicability and accuracy for the presented TD-BEM formulation for
twin-parallel circular tunnels in an elastic semi-in�nite medium in the late phase.

5 Conclusions

This study is concerned with developing TD-BEM formulation for dynamic analysis for twin-
parallel circular tunnels in a semi-in�nite medium, with the following conclusions:

• Time domain fundamental solutions are adopted in the boundary integral equations in TD-
BEM formulation for twin-parallel tunnels under dynamic loads in an elastic semi-in�nite
medium. The time domain fundamental solutions make it possible to directly and effectively
obtain the time history of the response in the presented TD-BEM formulation.
• In the process of the numerical implementation, in�nite boundary elements are incorpo-

rated in TD-BEM formulation to satisfy the stress free conditions on the ground surface,
moreover, to reduce the discretization of the boundary of the ground surface.
• The applicability and the accuracy of the TD-BEM formulation are veri�ed by compar-

ing the calculated results from the presented TD-BEM with those from the method of
characteristics in the deliberately designed example.
• The presented TD-BEM formulation could be a step forward in the ideal FEM-BEM

coupled model for twin-parallel tunnels under dynamic loads in an elastic semi-in�nite
medium and could be applicable for blasting projects with twin-parallel blasting holes.
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