

Journal of Quantum Computing
DOI:10.32604/jqc.2020.015402

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Article

A Database-Driven Algorithm for Building Top-k Service-Based Systems

Dandan Peng and Le Sun*

Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing
University of Information Science & Technology, Nanjing, 210044, China

*Corresponding Author: Le Sun. Email: sunle2009@gmail.com
Received: 03 November 2020; Accepted: 05 December 2020

Abstract: The purpose of this work aims is to automatically build top-k (the
number of suggested results) light weight service based systems (LitSBSs) on the
basis of user-given keywords. Compared with our previous work, we use a score
(oscore) to evaluate the keyword matching degree and QoS performance of a
service so that we could find top-k LitSBSs with both high keyword matching
degree and great QoS performance at the same time. In addition, to guarantee the
quality of found top-k LitSBSs and improve the time efficiency, we redesign the
database-driven algorithm (LitDB). We add the step of referential services
selecting into the process of the LitDB, which could prioritize services with high
quality (high keyword matching degree and great QoS performance). We design
comprehensive experiments to demonstrate the great time performance of LitDB.

Keywords: Top-k LitSBSs; user-given keywords; database-driven algorithm

1 Introduction
Service composition is a technology of developing service-based systems (SBSs) by composing

certain existing services [1]. Traditional service composition methods are too complex for non-expert
users. More and more works [2,3] have been devoted to simplifying the service composition process.
Meanwhile the researches [4,5] on the service composition algorithm based on keyword query came into
being. These algorithms could build SBSs which reflects uses’ preferences automatically, thus the non-
expert users could build complex SBSs easily just provide a few keywords.

Some researches [6–8] develop several keyword-query based algorithms to find light weight SBSs
(LitSBSs). Compared with other SBSs that satisfy certain query keywords, LitSBS has the least number
of component services. In addition, compared with non-LitSBS, LitSBS is easy to managed, executed,
monitored, debugged, deployed and scaled. There are some keyword-based algorithms using relational
databases (DB) to store services since the query techniques of DB are mature and robust. In addition,
using DB could guarantee the time efficiency of query functions.

Although many works use DB store services, there are also some problems. For example, in the
works [9,10], both solutions of them store all possible SBSs in the database in advance requiring a lot of
time and storage space. About the above issue, we proposed a database driven algorithm to build LitSBSs
in our previously work [11]. We first evaluate keyword matching degree for each candidate service, and
use utility function to calculate keyword matching score (kscore) for them. After that we design service
composition algorithm to find top-k LitSBSs. Finally, we resort these top-k LitSBSs by calculating their
QoS quality score (qscore). However, there is a problem in our previous work is that we cannot find top-k
LitSBSs that meets both keyword matching degree and QoS quality at the same time, in other words, we
have to split it into two separate processes: (1) Finding top-k LitSBSs with highest kscores. (2) And
resorting these top-k LitSBSs by their qscores.

172 JQC, 2020, vol.2, no.4

In this work, we integrate qscore and kscore to a new evaluating score oscore, therefore the step of
QoS performance ranking could be canceled. In addition, in order to find top-k high-quality service
compositions that meet users’ needs, we propose the concept of preferential services. In the step of
matched keyword table generating, we select the preferential services which with high oscores to ensure
that they can be composed first.

The particular contributions we do in this work are as follows:
 Oscore is used to integrate kscore and qscore, so that guarantee the QoS and keyword

matching degree of the founded LitSBSs.
 We add the preferential services selecting in the process of matched service table generating,

the aim is to give priority to the advantageous services.
 Extensive experiments are conduced to illustrate the great time performance of the fast service

composition algorithm.
The structure of this paper is as follows: Section 2 clearly defines the issue we are willing to solve;

Section 3 details the LitDB algorithm; Section 4 designs the experiments and illustrates the results; and
Section 5 summarizes the full text.

2 Problem Definition
2.1 Service Database

We design a service database to represent service library. We call the database service database L,
which includes 4 tables with different style: The service table (TS), the input table (TI), the output table
(TO) and the parameter table (TP). All the details could be found in our previous work [11].

2.2 The Keyword Matching Score
We set keywords matching score kscore to measure the matching degree between certain query

keywords and service.
kscore(s, Es, qr) = ∑ kscore(s, ei, qr)∀ei∈Es (1)
where kscore(s, ei, qr) is defined by Formula 2.

𝑘𝑘score(s, ei, qr) = 1+ln(1+ln tf)

(1−σ)+σ dli
avdl

∙ lnN+1
df

 (2)

where, tf is the frequency of qr in ei; df is the number of tuples in Ei containing keyword qr and ei is the
value union of the ith attribute of services in TS; dli is the character number in ei; avdl = (dl1 + ⋯+
dlm)/m; N is the number of services in TS; and σ is a constant (usually 0.2).

2.3 The Quality Score of a Service
The following basic formula is a score function evaluating the overall QoS performance of a service.

qscore(s) = U�𝑞𝑞1(s), … , 𝑞𝑞𝑙𝑙(s)� = ∑ U�𝑞𝑞𝑘𝑘(s)�𝑙𝑙
𝑘𝑘=1 ∙ 𝜔𝜔𝑘𝑘 (3)

where, U is a multi-objective value function, and ωk ∈ [0,1], ∀k ∈ [1, . . , l],ω1 +⋯+ ωl = 1.
For a positive QoS attribute of service s which belongs to a matched keyword table (We will discuss

it detailly in Section 4.1) Kj, the value is calculated by Formula 4.

U�𝑞𝑞𝑘𝑘(s)� = 𝑞𝑞𝑘𝑘(𝑠𝑠)−𝑄𝑄min (𝑗𝑗,𝑘𝑘)

𝑄𝑄max(𝑗𝑗,𝑘𝑘)−𝑄𝑄min (𝑗𝑗,𝑘𝑘)
 (4)

where, for a negative QoS attribute of service s which belongs to MT Kj, the value is calculated by
Formula 5.

U�𝑞𝑞𝑘𝑘(s)� = 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚(𝑗𝑗,𝑘𝑘)−𝑞𝑞𝑞𝑞(𝑠𝑠)
𝑄𝑄max(𝑗𝑗,𝑘𝑘)−𝑄𝑄min (𝑗𝑗,𝑘𝑘)

 (5)

JQC, 2020, vol.2, no.4 173

2.4 Integrated Score
oscore measures the overall performance of a service by considering both its keyword matching

degree and QoS performance.
oscore = f(kscore, qscore) (6)
where, f is an aggregation function of kscore and qscore. For example, we can use the weighted average
to aggregate kscore and qscore, or define f as: oscore = kscore + qscore.

2.4 Definition of Top-k LitSBS
Definition 1 Given a set of query keywords Q, and a service table TS, a lightweight SBS (LitSBS,

represented by 𝑆𝑆�) matching Q is an SBS that (1) 𝑆𝑆�⊂ TS; (2) the attribute values of 𝑆𝑆� contains Q; and (3)
for any non-lightweight SBS S with kscore(S,Q) = kscore(𝑆𝑆� ,Q), the number of component services in S
(represented by |S|) is larger than |𝑆̃𝑆|.

Definition 1 defines the light weight SBS.
Definition 2 Assume each service in a service database L = {TS, TI, TO, TP} has l QoS

parameters {𝑝𝑝1, … ,𝑝𝑝𝑙𝑙} . Given a set of keywords Q and a set of QoS constrained conditions C =
{𝑐𝑐1, … , 𝑐𝑐𝑙𝑙}, the top-k LitSBSs are k services (in L) with the highest kscores matching to Q, and satisfy all
QoS constraints C.

Definition 2 defines the top-k LitSBSs.
To get top-k LitSBSs, we design an algorithm automatically querying service database and then

recommending top-k LitSBSs to users, which is based on the input query keywords and QoS constraints.

3 LitDB: An Algorithm for Building Top-k LitSBSs
A database-driven algorithm (called LitDB) is proposed to efficiently build top-k LitSBSs according

to user-given keywords. Fig. 1 shows the process of this algorithm. The LitDB includes three main stages:
(1) The step of keyword matching is to search for services containing certain query keywords. (2)
Matched service table generating builds a service matched table (MT) for each query keyword, which
means all found services are related to a certain query keyword will be put into its MT. In addition, in
each MT, those preferential services will be selected and sorted in descending order according to oscores
firstly. Then those non-preferential services will be sorted behind those preferential services. (3) Service
composition algorithm will find the top-k LitSBSs quickly and efficiently.

Figure 1: The whole steps of LitDB

174 JQC, 2020, vol.2, no.4

3.1 Matched Service Table Generating
According to the oscores, several matched keyword tables (MT) are generated for certain query

keyword. For instance, Tab. 1 shows the MTs for certain query keywords: Car hire, Flight and Insurance
quote. Services in a MT are ranked in descending order according to oscores.

Table1: Matched keyword tables for query keywords

3.1.1 Preferential Services
qscore is design to measure the QoS performance of a service and kscore is to evaluate the matching

degree between a query keyword and a service. The higher the kscore and qscore of a service which
means the better this service matches the query keywords as well as the better its QoS performance. As is
shown in Fig. 2, each service is presented as point in 2-dimensional space. We can see that service a is a
preferential service, because there is no other service that has both higher qscore and kscore than a.
Similarly, Service b, c, d has this condition too, therefore b, c, d are also preferential services. Since
preferential services have better performance than other services, to save time, we should guarantee that
they will be selected firstly to be composed.

Figure 2: Example of preferential services

Before generating a MT for each keyword, we should select preferential services first, then these
preferential services in the MT will be sorted in descending order according to oscores. Finally other
services will be ranked behind the preferential services also in descending order according to oscores.

3.2 Service Composition Algorithm
We develop three service composition algorithms searching for top-k LitSBSs that matching Q

among the MTs we mentioned before. We first introduce the most basic algorithm called Intuitive. Then
we introduce other algorithm called Enhanced with better time performance than Intuitive by adding the
pruning strategy. Finally, the most useful one called Fastk will be introduced, which has better time
performance than the former two.

K1: Car hire K2:Flight K3:Insurance quote
SID oscore SID oscore SID oscore
S1 6 S5 3.7 S3 7.6
S2 4.1 S4 0.2 S7 3.4
S6 1.8

JQC, 2020, vol.2, no.4 175

3.2.1 Intuitive Algorithm
Intuitive is the most basic algorithm, which is on the basis of exhaustive search. Algorithm 1 shows

the process of Intuitive. We put combination of services obtained by searching the MTs into BuildSBS
function in order to check whether the combination could be composed or not. If a combination of
services can be composed, we put the service composition in R. When the search finished, we rank all
LitSBSs in R in descending order by calculating their oscores. Finally, we get the top-k LitSBSs in R
with highest oscores.

Function BuildSBS (Algorithm 2) is used to check whether a set of services can be composed or not.

We use Γ to limit the number of the component services in an SBS in order to avoid wasting too much
time on searching for an SBS with very huge size. In this algorithm, an expansion rule is design to expand
service composition: If a service 𝑠𝑠𝑖𝑖 in TS could be combined with a service in a service composition SC,
then SC will be expanded. We could use SQL query to search a service 𝑠𝑠𝑗𝑗. In this function, the result we
get must with the smallest size of all the results.

3.2.1 Enhanced Algorithm
Enhanced algorithm is proposed to improve the time efficiency of Intuitive algorithm. Compared

with Intuitive algorithm, Enhanced algorithm use an upper bound to improve time efficiency. We call the
upper bound the most top service composition value (MTSCV) defined by the definition 3. Alg. 3 shows
the whole process of the Enhanced. It first finds k LitSBSs, it then calculates 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 for the remaining
tuples in 𝐾𝐾𝑖𝑖 . If the current 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is no larger than the lowest oscore of the found k LitSBSs, the
algorithm will stop and return the k LitSBS; or else, it will continue searching the LitSBSs based on the
remaining tuples.

176 JQC, 2020, vol.2, no.4

Definition 3 Assume each query keyword in Q = {𝑞𝑞1, … , 𝑞𝑞𝑣𝑣} has a MT in K = 𝐾𝐾1, … ,𝐾𝐾𝑖𝑖, … ,𝐾𝐾𝑣𝑣, and

the k LitSBSs (may not be top-k) are already found by joining the tuples in 𝐾𝐾1, … ,𝐾𝐾𝑖𝑖, … ,𝐾𝐾𝑣𝑣. For each 𝐾𝐾𝑖𝑖,
the remaining tuples (not contained in the k LitSBSs) are sorted in a queue 𝑅𝑅𝑖𝑖 in the descending order
according to their oscores. The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 for an MT 𝐾𝐾𝑖𝑖 (∀𝑖𝑖 𝜖𝜖 1, … , 𝑣𝑣) is defined as follows:
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = 𝐾𝐾1. 𝑡𝑡𝑡𝑡𝑡𝑡. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + ⋯+ ℎ(𝐾𝐾𝑖𝑖). 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 +⋯+ 𝐾𝐾𝑣𝑣 . 𝑡𝑡𝑡𝑡𝑡𝑡. 𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (7)
where Ki. top represents the tuple with highest oscore in Ki. h(Ki) represents the top unprocessed tuple in
Ki. The maximum MTSCVM is defined by Formula 8.
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = max𝑖𝑖=1𝑣𝑣 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 (8)

The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 represents the upper bound of the oscores of all possible LitSBSs in the remaining tuples
(i.e., excluding the tuples in the found k LitSBSs). The inputs of Algorithm 3 are query keywords Q, k, a set
of MTs (𝐾𝐾𝑖𝑖, … ,𝐾𝐾𝑣𝑣). R keeps the possible LitSBSs, which are always sorted in descending order according to
oscore. It first finds k LitSBSs (lines 2–9 in Algorithm 3). Then for those services waiting to be composed,
we calculate their boundary 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 . If their 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 exceed the lowest oscore of all the found k
LitSBSs in R, the BuildSBS function is used to check whether they could be composed or not (lines 10–16 in
Algorithm 3). After that, if combination’s oscore is higher than the one of the found k LitSBSs, the LitSBS
with the lowest oscore will be replaced (lines 17–18 in Algorithm 3). At last, we get top-k LitSBS in R.

3.2.1 Fastk Algorithm
Finally, we design Fastk has better time performance than Enhanced. Algorithm 4 shows the whole

process of Fastk algorithm. The inputs of Algorithm 4 are query keywords Q, k, and a set of MTs
(𝐾𝐾1, … ,𝐾𝐾𝑉𝑉). We set a stack N(𝐾𝐾𝑖𝑖) for each 𝐾𝐾𝑖𝑖 to store the processed tuples of 𝐾𝐾𝑖𝑖. R is established to store
the possible top-k LitSBSs, which are always sorted in descending order according to LitSBSs’ oscores. P
is set to keep the final top-k LitSBSs, besides the top unprocessed tuple of 𝐾𝐾𝑖𝑖 is stored in h(𝐾𝐾𝑖𝑖). After that,
we check whether the top tuple of each 𝐾𝐾𝑖𝑖 could be composed or not. If they could be composed, a
LitSBS will be built and put into R (line 4 in Algorithm 4). And then we calculate 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 of each
service in h(𝐾𝐾𝑖𝑖), ∀i ϵ 1, … , v, and move the service with the highest MTSCV to N(𝐾𝐾𝑀𝑀) (lines 9–10 in
Algorithm 4). Then for each service combination, we use BuildSBS function to check whether they can be
composed or not. (lines 11–12 in Algorithm 4). Finally, if those LitSBSs with oscores ≥ the current
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 in R will be moved to P. (line 14 in Algorithm 4). What is more, the previous operations in lines
9–14 in Algorithm 4 will be repeated until P contains k LitSBSs.

JQC, 2020, vol.2, no.4 177

4 Experiment
Performance testing of both Fastk and Enhanced is conducted in this section on the basis of WSC-

2009-web challenge datasets [9]. The device we use to run certain experiments is a server with a core
CPU at 16 GB RAM and 2.60 GHZ, running Windows10 x64 Enterprise. We perform each experiment
five times to obtain the average execution time.

4.1 Dataset
The time efficiency is evaluated pertaining to the value of k (from 1 to 10) and the number of

services (from 1000 to 9000 in five datasets). Each test is conduced five times to get the average
performance of these two algorithms. The 5 datasets we use are from WSC-2009-web challenge datasets
[12]. What is more, each service contains several information including service ID, four or five output
and input parameters, service name and two QoS properties including response time and throughput. We
will use all the information into our experiments. Since our main purpose is to compare the time
efficiency of Fastk with that of Enhanced, we simulate oscores of each query keywords for each dataset
by randomly setting these oscores in {1,2,3, … ,10} instead of practically calculating them. Based on
these oscores, we create matched service tables (MTs) for each query keyword.

4.2 Time Efficiency of Fastk
4.2.1 Effect of Ns (Numbers of Services)

We set k = 1 and the number of query keywords (Nq) = 2 to compare the time performance of the
Fastk with that of the Enhanced when Ns varies from 1000 to 9000. The average time is shown in Fig. 3.
The average execution time of both algorithms rises as the Ns increases. When Ns rises from 1000 to
7000, the average execution time of Fastk gradually becomes faster than that of the Enhanced. In addition,
during this interval, both average execution time increase slowly. While when Ns ranges from 7000 to
9000, both two average execution time rise dramatically. When Ns = 9000, the average execution time of
the Enhanced is almost 3 times as much as that of the Fastk.

178 JQC, 2020, vol.2, no.4

Figure 3: Number of Services

4.2.2 Effect of k
We fix Ns = 1000, Nq = 2 to test the time performance of the Fastk and the Enhanced as k varies

from 1 to 15. The average execution time is shown in Fig. 4. When k increases from 1 to 9, the average
execution time of both two algorithm change dramatically. While when k rangess from 10 to 15, the
average execution time of both two algorithm change slightly. On the whole, the trend of average
execution time is increasing.

From the above result we can see, compared with Enhanced, Fastk has greater time efficiency
performance with the rising of number of services. Fig. 3 illustrates that Fastk has greater time
performance than Enhanced when the number services rises. While when k changes, the difference of
time performance between Fastk and Enhanced is not clear.

Figure 4: Value of k

5 Conclusion
We integrate the kscore which is used to evaluate the keyword matching degree and qscore

evaluating the QoS of a service to a new score oscore. Thus we could find the top-k LitSBSs with both
high keyword matching degree and great QoS performance at the same time. In addition, we redesign the

JQC, 2020, vol.2, no.4 179

database-driven algorithm by adding the step of preferential services selecting. This step guarantees the
the services which with high quality will be considered preferentially in the whole process of the
algorithm. The experimental results show the effectiveness of our algorithm.

Acknowledgement: We are grateful to the peoples for the support and encouragement.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Q. He, R. Zhou, X. Zhang, Y. Wang, D. Ye et al., “Keyword search for building service-based systems,” IEEE

Transactions on Software Engineering, vol. 43, no. 7, pp. 658–674, 2016.
[2] V. Hristidis, Y. Papakonstantinou and L. Gravano, “Efficient IR-style keyword search over relational

databases,” in Proc. of the 29th Int. Conf. on Very Large Data Bases, Berlin, Germany, pp. 850–861, 2003.
[3] L. Sun, J. Ma, H. Wang, Y. Zhang and J. Yong, “Cloud service description model: An extension of USDL for

cloud services,” IEEE Transactions on Services Computing, vol. 11, no. 2, pp. 354–368, 2018.
[4] W. Yao, J. He, H. Wang, Y. Zhang and J. Cao, “Collaborative topic ranking: leveraging item meta-data for sparsity

reduction,” in Twenty-Ninth AAAI Conf. on Artificial Intelligence, Austin, Texas, USA, pp. 374–380, 2015.
[5] D. Yu, L. Zhang, C. Liu, R. Zhou and D. Xu, “Automatic web service composition driven by keyword query,”

World Wide Web, vol. 1, no. 1, pp. 1–28, 2020.
[6] S. Wang, A. Zhou, R. Bao, W. Chou and S. S. Yau, “Towards green service composition approach in the

cloud,” IEEE Transactions on Services Computing, vol. 1, no. 1, pp. 1–10, 2018.
[7] P. Rodriguez-Mier, M. Mucientes and M. Lama, “A dynamic QoS-aware semantic web service composition

algorithm,” in Int. Conf. on Service-Oriented Computing, Shanghai, China, pp. 623–630, 2012.
[8] M. Chen and Y. Yan, “Redundant service removal in qos-aware service composition,” in Int. Conf. on Web

Services 2012, Honolulu, HI, pp. 431–439, 2012.
[9] S. Kona, A. Bansal, M. B. Blake, S. Bleul and T. Weise, “WSC-2009: A quality of service-oriented web

services challenge” in 2009 IEEE Conf. on Commerce and Enterprise Computing, Vienna, Austria, pp. 487–
490, 2009.

[10] D. Lee, J. Kwon, S. Lee, S. Park and B. Hong, “Scalable and efficient web services composition based on a
relational database,” Journal of Systems and Software, vol. 84, no. 12, pp. 2139–2155, 2011.

[11] D. Peng, L. Sun and R. Zhou, “Fast build top-k lightweight service-based systems,” in Int. Conf. on Web
Information Systems Engineering, Amsterdam, Netherlands, pp. 516–529, 2020.

[12] P. Rodriguez-Mier, M. Mucientes and M. Lama, “Hybrid optimization algorithm for large-scale QoS-aware
service composition,” IEEE Transactions on Services Computing, vol. 10, no. 4, pp. 547–559, 2015.

	A Database-Driven Algorithm for Building Top-k Service-Based Systems
	Dandan Peng and Le Sun*

