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Abstract: The utilization of quantum states for the representation of information 
and the advances in machine learning is considered as an efficient way of modeling 
the working of complex systems. The states of mind or judgment outcomes are 
highly complex phenomena that happen inside the human body. Decoding these 
states is significant for improving the quality of technology and providing an 
impetus to scientific research aimed at understanding the functioning of the human 
mind. One of the key advantages of quantum wave-functions over conventional 
classical models is the existence of configurable hidden variables, which provide 
more data density due to its exponential state-space growth. These hidden 
variables correspond to the amplitudes of each probable state of the system and 
allow for the modeling of various intricate aspects of measurable and observable 
physical quantities. This makes the quantum wave-functions powerful and 
felicitous to model cognitive states of the human mind, as it inherits the ability to 
efficiently couple the current context with past experiences temporally and 
spatially to approach an appropriate future cognitive state. This paper implements 
and compares some techniques like Variational Quantum Classifiers (VQC), 
quantum annealing classifiers, and hybrid quantum-classical neural networks, to 
harness the power of quantum computing for processing cognitive states of the 
mind by making use of EEG data. It also introduces a novel pipeline by logically 
combining some of the aforementioned techniques, to predict future cognitive 
responses. The preliminary results of these approaches are presented and are very 
encouraging with upto 61.53% validation accuracy.  
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1 Introduction 
Quantum computing is expected to have a high and beneficial impact on many computational 

disciplines [1]. This field has the potential to model complex scientific phenomena using the resources more 
efficiently, including modeling of events that occur in nature, since most of these are based on quantum 
phenomena at their core. In the recent past, with the development of quantum computers that are accessible 
to the public via cloud interfaces, it is now feasible to develop novel solutions using the quantum approach. 
The introduction of quantum frameworks has had an impact on the performance and the modeling of a 
variety of real-time applications.  

The development of a representative, complete model for human cognition has been a goal of scientists 
for several decades. One recent finding that provides a new direction to this form of research is that the 
human brain functions in a manner similar to that of quantum computers [2]. This indicates that a quantum 
mechanical modeling of the brain would be required to develop a functional representative model of the 
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human brain. Thus, the inclusion of the quantum approach is imperative to contain and represent all the 
relevant information pertaining to the human brain.  

The current research work comprises of an amalgamation of these concepts and aspires to develop a 
pipeline for using quantum computing to model human judgement outcomes. A few sample preliminary 
models that use a hybrid quantum neural network model have also been created. The approach relies on the 
latest advancements in hybrid quantum-classical computing, particularly in quantum neural networks, 
research on the modeling of cognitive states of the human mind, and is inspired by the application of other 
quantum principles in tackling various aspects of understanding the complexity of this structure. 

1.1 Developments for Studies of Cognitive State of Mind 
A cognitive state is a representation of a thought process based on past experiences and current 

situations of the subject. Extensive studies have been performed that define the various states of mind [3] 
and establish the differences between the human brain and the theoretical mind [4]. Analysis of these states 
of mind are done on the basis of electroencephalography (EEG) readings, and can also be done with fMRI 
brain scans [5–6].  

Various theoretical models have been written to study cognition [7] and practical models based on 
machine learning techniques have also been developed to understand and predict cognitive processes. 
Frameworks have been designed which simulate the behavior of the brain [8], and these modeling methods 
are extensively used to analyze and study disease-related information from EEG signals [9–10].   

Thus, while there is extensive research aimed at understanding cognitive states using neural networks 
and EEG signals as input, most of these do not focus on the involvement of the underlying quantum 
mechanical principles while constructing these models. Hence, it is necessary to combine quantum 
mechanical principles with neural networks. 

1.2 Applications of Quantum Neural Networks 
Quantum neural networks as a variant of feed-forward neural networks were first designed about 

twenty years ago [11]. However, in the recent past, the various methods for simulating quantum neural 
networks were explored [12]. As simulation tools and frameworks began to develop, many studies were 
conducted that began to describe the various architectures and approaches [13] that could be used to develop 
these models, and comparative analysis of these with respect to neural networks was started [14].   

There were efforts on the application of machine learning methods over quantum information [15]. 
The introduction of the feature of memory also indicated that quantum networks could perform better if 
they were able to hold information of previous quantum states [16]. Neural networks that use quantum 
states have been created for a multitude of applications, being used for noise filters [17], brain image 
segmentation [18], and in rolling bearing fault predictions [19]. These quantum neural networks have been 
used to classify click counting data [20], predicting optimal parameters [21], and in image recognition 
systems [22]. This variety of applications shows the prowess of the quantum mechanical approach to design 
neural networks.  

Quantum neural networks for prediction of the cognitive state of mind have not yet been developed. 
This research aims to build a foundation and eventually bridge the gap that exists in the understanding of 
human cognition and its quantum modeling. 

1.3 Focus of the Present Research 
Some new approaches which have utilized quantum rules and methods to study the human mind have 

begun emerging in the recent past. One of the most significant advances is using black hole physics to 
mimic human memory [23]. Based on the natural working of the brain, quantum associative learning models 
have been created which can be used to achieve memorization [24]. Classification of EEG signals has been 
done using recurrent neural networks that are inherently quantum in nature [25]. These discoveries were 
used to create an information processing model [26].  
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These researches focus on a pure quantum-based approach. Additionally, they focus on the classification 
or modeling of natural information by quantum techniques. The presented research work not only proposes a 
variety of hybrid quantum-classical approaches, but also utilizes the models to perform the task of prediction 
of some specific cognitive states of mind. Hence, providing an initial path to realize the feat.  

This paper employs a quantum encoding followed by a variety of hybrid neural network models for 
the classification of two distinct states of cognition through the neuromarketing dataset [27]. This was 
achieved using a hybrid quantum convolutional neural network, a variational quantum classifier, and a 
quantum annealing classifier. The results of all these approaches are presented. 

This paper explores the detailed theory and methodology of the above-mentioned approaches in 
Section 2, captures the setup of the experiment in section 3, and the results and their discussion in Section 
4. Section 5 presents a brief conclusion of the findings from this research work. The primary novelty of this 
research work is the proposal of a new hybrid quantum-classical pipeline for prediction of judgement 
outcomes, as well as the development of possible quantum methods to tackle this problem. 

2 Quantum Machine Learning Techniques 
This section introduces the various theoretical concepts that have been applied during the research. It 

provides details on the encoding scheme applied as well as the conceptual basis and design of various 
quantum neural network architectures. 

2.1 Encoding Classical Values into Qubits 
Qubits or quantum-bits are the fundamental building blocks of a quantum system. Unlike a classical 

bit that can represent data most efficiently by using only a binary basis, a qubit can represent a numeric 
value by various techniques like basis encoding, amplitude encoding, and dynamic encoding [28]. 

Basis encoding is a one-to-one correlation of quantum states with classical bit values (Example: 
Classical value 3 is encoded as |0011⟩), whereas in amplitude and dynamic encoding, exponentially large 
number of values can be encoded in a set of qubits. Basis encoding is used only in cases where a one-to-
one correlation is necessary. 

Dynamic encoding utilizes the gate-model of quantum computing to apply transformations using 
quantum gates represented as high dimensional Hilbert space matrices. A detailed study of dynamic 
encoding can be found in the papers by Mottonen et al. [29–31], which employ uniformly controlled 
rotations to encode classical data. A recursive approach for dynamic encoding involving the use of CNOT 
gates by Martin et al. [32] also discusses a similar approach. Though this method is very powerful in 
representing data, it is not best suited for Noisy Intermediate-Scale Quantum (NISQ) devices due to its 
exponential increase in circuit depth with linear upscaling in the number of qubits. 

The encoding scheme used here is inspired by Xia et al. [33], employing a form of amplitude encoding 
with Variational Quantum Circuits (VQC), which is in-turn based on the work by Maria et al. [34]. VQC 
consists of 𝑅𝑅𝑥𝑥 and 𝑅𝑅𝑧𝑧 rotation gates, symbolizing rotation about 𝑡𝑡ℎ𝑒𝑒 𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎 and 𝑧𝑧 − 𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎, respectively, 
of the Bloch sphere representation of a qubit. This type of encoding scheme has a linearly increasing circuit 
depth with increase in the number of qubits and is suitable for the problem statement at hand. 

The raw EEG data undergoes three steps for encoding, within the data state-space of the quantum 
system: (i) Normalization of data to set the range of data points 𝑥𝑥 ϵ [0,1]; (ii) Converting the data into 
probability values for each state in the quantum system by employing (1); (iii) Converting the probability 
values for each quantum state into probability value for each qubit by (2), and using single-qubit rotation 
gates to encode it into the system by using (3) to get appropriate rotation angles; for an N-qubit system, 

(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝2𝑁𝑁) = 1

Σ𝑖𝑖=1
2𝑁𝑁 𝑥𝑥𝑖𝑖

(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥2𝑁𝑁) (1) 

𝑃𝑃𝑘𝑘 =  ∑ �𝑝𝑝𝑖𝑖 × (𝑎𝑎 ⋅ 2𝑘𝑘−1)�2𝑁𝑁
𝑖𝑖=1                                                                                                           (2)  
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θ𝑘𝑘 = 2 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��𝑃𝑃𝑘𝑘� (3) 

where �𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥2𝑁𝑁� represent the input EEG signal data points; (𝑝𝑝1, 𝑝𝑝2, …, 𝑝𝑝2𝑁𝑁) are the probabilities of 
each state in the set S = (|00 … 0⟩, |00 … 1⟩, …, |11 … 1⟩); 𝑃𝑃𝑘𝑘 is the probability of each qubit in the system 
and  θ𝑘𝑘 is the input angle to the single-qubit rotation gate for each qubit, where, 𝑘𝑘 =  1, 2, … ,𝑁𝑁. Fig. 1, 
shows a representation of the data encoding circuit. 

 
Figure 1: Amplitude encoding circuit using 𝑅𝑅𝑥𝑥 and 𝑅𝑅𝑧𝑧 gates. Here 𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘 are angles for amplitude and 
phase rotation respectively for each qubit, where k = 1, 2, …, N in an N-qubit system. Also, 𝑎𝑎𝑘𝑘 corresponds 
to angles θ𝑘𝑘 in (3), and the set of angles (𝑏𝑏𝑘𝑘) can be neglected as there is rotational symmetry about the 
𝑧𝑧 − 𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎 

2.2 The Quantum Layer Architecture and Hybrid Networks 
The quantum layer of the neural network consists of a combination of two parts:  

• Cluster-state circuit: A graphical approach to simulate quantum circuits more efficiently on 
classical hardware [35], as seen in Fig. 2. The cluster-state circuit allows the usage of a hybrid neural 
network model (mentioned in the next sub-section) which involves the use of both quantum and 
classical parts to seek the advantages of both types of architectures. Running the quantum layer in 
a simulated quantum environment on a classical machine provides the flexibility for seamlessly 
connecting both parts. 

 
Figure 2: An example of a cluster state circuit to implement arbitrary operations 𝑈𝑈1�,𝑈𝑈2�, and 𝑈𝑈�3 on a wave-
function |ψ⟩. Here, �̂�𝑝 is the probability with which the respective operation is applied 

• Parameterized Quantum Circuit (PQC): A collection of rotation and CNOT gates. The parameters 
to the rotation gates can be varied to train the neural network model as can be observed in [28] and 
[33]. The parameters of the PQC act as the quantum counterpart of “weights” and “biases” of a 
classical neural network. Here, the 𝑅𝑅𝑥𝑥 gates act as the “weights”, by changing the qubit amplitude 
and the 𝑅𝑅𝑧𝑧 gates act as the “bias” values, by altering the qubit phase, as seen in Fig. 3. 



            
JQC, 2020, vol.2, no.4                                                                                                                                                161 

 
Figure 3: Structure of Parameterized Quantum Circuit (PQC) using rotation gates. The parameters to the 
rotation gates 𝑤𝑤𝑖𝑖 are the weights and biases of each layer, where 𝑎𝑎 = 1, 2, … , 2𝑎𝑎 for an N-qubit system 

The hybrid quantum-classical neural network refers to a logical combination of quantum and classical 
layers to build the neural network model. This method provides extreme flexibility as the quantum layer 
provides efficient data encoding and exponential speedup for calculations whereas, the classical layers 
provide the necessary non-linearity when applying optimizers and activation function to the model. 

 

Figure 4: Block diagram of a hybrid quantum-classical neural network 

Fig. 4 portrays a block diagram of such a hybrid neural network. The initial step involves state 
preparation to encode the data values within the qubits. Once the qubit states are prepared, they act as input 
to the Quantum Layers consisting of a series of PQCs with tune-able parameters. The output from the 
quantum layer goes to the classical neural network layer to implement optimizer and activation function 
and introduce nonlinearity within the model. The final output from the classical layer represents the best 
prediction/solution to the input. 

2.3 Quantum Convolutional Neural Networks 
Quantum Convolutional Neural Networks (QCNN) is another application for quantum machine 

learning. A theoretical implementation of a QCNN has been discussed in the paper by Cong et al. [36] 
which uses the concept of cluster-state circuits [37] to achieve a highly entangled state of the quantum 
system. Cong also portrays a method to build a quantum counterpart for convolution and pooling layers in 
a convolutional neural network by using one and two-qubit unitary matrices mentioned in the paper by 
Tucci et al. [38]. 

Brain waves are considered as a time series data. Due to their continuous nature, the EEG readings 
and the temporal locality of the current reading are correlated. This phenomenon makes a Hybrid Quantum-
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Convolutional Neural Network (HQCNN) model suitable method to process such data as the readings in 
the temporal locality can be pooled together. An example of a HQCNN can be seen in Fig. 5. 

 

Figure 5: An example of a Quantum Convolutional Neural Network. The cluster state circuit provides 
maximal entanglement within the qubits. The layers 𝐶𝐶𝑥𝑥 are the quantum convolution layers (QConv), where 
𝑥𝑥ϵ[1,4]. The layer 𝑃𝑃 is the quantum pooling layer (QPool) and FC is the fully connected layer 
2.4 Quantum Annealing 

Quantum annealing [39] is a meta-procedure for attaining the lowest possible cost of a system by 
employing phenomena like quantum tunneling [40] and quantum entanglement [41] to get to the most 
optimized solution of a problem. It is faster than classical algorithms. It is similar to the classical 
phenomenon of simulated annealing [42], in which a particle always tends to go into its lowest energy state 
by accumulating energy from its surroundings to go over an energy barrier. 

In quantum annealing, a particle can take advantage of the quantum mechanical principles and can employ 
quantum tunneling to pass through a high but narrow energy barrier in order to reach the global minimum. This 
technique does not allow for precise control of the qubits as the user only has access to the initial conditions 
system. Once the process is started, the parameters cannot be changed mid-way like a gate-model quantum 
computer. The natural evolution due to interference between the quantum states brings out the most optimized 
solution. Hence, it is very useful for optimization and probabilistic sampling problems. 

Quantum annealing based quantum computers make use of more resources in terms of qubits and 
couplers. However, their ease of scalability makes them more useful than the gate model NISQ computers. 

3 Methodology 
This section provides the experimentation details which includes using three completely different 

techniques to train on the EEG signal data obtained from an open-source dataset called the “Neuromarketing 
Dataset” explained in the next subsection. 

3.1 The Neuromarketing Dataset 
The dataset used for this experiment is the Neuromarketing dataset generated by Yadava et al. [27]. 

The response of a consumer towards a product was recorded in terms of like/dislike, and a predictive model 
was created based on EEG signals. This dataset has 14-channel signal data from 25 subjects by showing 
them pictures of various products and then recording their response to the product. The binary nature of 
classification in the dataset is beneficial as it needs a smaller number of readout qubits as compared to a 
multilevel classification.  



            
JQC, 2020, vol.2, no.4                                                                                                                                                163 

The 14-channel data is preprocessed to separate the different brain-wave components, i.e., alpha, beta, 
gamma, delta, and theta waves. Discrete Wave Transformation (DWT) is applied to obtain the 
aforementioned components from each channel. Yadava et al. also mention in their paper that the theta 
waves play a decisive role in the prediction of the like/dislike response from the subject. To keep the 
complexity and realizability of the quantum circuit within the limits of available quantum computing 
technology, only the theta waves have been used to train the models subsequently discussed in the paper. 

The EEG data is taken channel-wise, i.e., each EEG channel’s data is trained separately. This provides 
two advantages:  

• Channel-wise training of EEG data helps to analyze the contribution of each channel in generating 
the like/dislike response within the brain. This can further be used in the future to make more 
efficient EEG headsets with a smaller, but precise number of electrodes. 

• The number of data points per reading decreases, which makes the model use a smaller number of 
qubits, facilitating the program to run on the current NISQ hardware. 

3.2 Hybrid Quantum Convolutional Neural Network 
To realize the HQCNN as discussed above, the TensorFlow Quantum (TFQ) library [43] has been used 

as it provides seamless connection and data interchange between the classical and quantum layers of the neural 
network. TFQ utilizes tensors to simulate qubits and quantum gates. It transforms the quantum circuit into a 
resultant tensor-based neural network structure. A block diagram for the model is given in Fig. 6. 

In Fig. 7, the “AddCircuit” layer consists of the encoding circuit based on the aforementioned encoding 
scheme and a cluster state circuit to implement the Quantum Convolution (QConv) and Quantum Pooling 
(QPool) transformations before the input goes to the PQC layers. The “Concatenate” layer concatenates 
the output from each of the three PQC blocks and forwards it to the fully connected layers “Dense” layers. 
At the last layer, the output is a binary classification of a like/dislike opinion for a set of items. 

 
Figure 6: Block diagram of the Hybrid Quantum Convolutional Neural Network. The state preparation is 
done using amplitude encoding as discussed in the section 2A. The cluster state circuit is prepared by 
entangling the adjacent qubits to maximize connectivity. QConv and QPool are implemented using the 
technique mentioned by Cong et al. [36]. The neural network architecture is extended by employing a fully 
connected classical neural network to induce nonlinearity to the model 
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Figure 7: The actual HQCNN architecture used to train the model Variational Quantum Classifier 

3.3 Variational Quantum Classifier 
The Variational Quantum Classifier (VQC) used in this paper is implemented using Pennylane [37]. 

The neural network follows the architecture described in Fig. 8 and utilizes the aforementioned encoding 
scheme. PQC is used to implement the quantum segment. The classical part consists of an optimizer based 
on the ADAM optimization algorithm [44]. The quantum circuit uses a 6-qubit system to encode up to 64 
values per channel of EEG data. 

 

Figure 8: Block diagram of the VQC. The state preparation stage encodes the classical data into the qubits. 
The quantum layer consists of 10 PQC layers. The classical layer consists of an ADAM optimizer that gets 
the cost. Input from the cost calculator. The parameters to the PQC are varied by the optimizer for training 
the hybrid neural network. This process goes on for many iterations until an acceptable accuracy score is 
given by the accuracy metric 
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3.4 Quantum Annealing Classifier 
The Quantum Annealing Classifier is designed using the QBoost technique by Neven et al. [45–46]. 

This technique uses more resources in terms of the number of qubits but is faster than the aforementioned 
two techniques during training phase. 

Rather than employing a quantum computer simulator like the former two techniques, the Quantum 
Annealing classifier makes use of a Quantum Processing Unit (QPU) by DWave Systems Inc. The QPU 
which has been utilized here is the DW_2000Q_5 which has access to 2030 qubits, capable of solving a 
multitude of optimization and probabilistic sampling problems through quantum annealing. 

The QBoost classifier works by combining a weak classical classifier and the process of sampling the 
solution space using quantum annealing to find the lowest cost solution to the problem. Fig. 9 describes the 
process of training a model on the QPU. 

The inherent use of quantum annealing ensures that the QPU always returns the most optimized 
solution for the problem. Once the classifier is trained, the most optimized weights are returned to the model 
and stored. These weights can then be used for predicting output for new input data. 

 
Figure 9: Quantum Annealing classifier architecture. The raw data is taken as the input and is fed into a 
weak classifier and a preliminary classical model is trained. This model is used to build a Quadratic 
Unconstrained Binary Optimization (QUBO) model, which is then run on the QPU for sampling the 
problem space using quantum annealing. Most optimized weights are then returned to the model and stored. 
These weights can then be used to predict the test data labels 

4 Results and Discussions 
Three distinct hybrid quantum-classical models were created to experiment with the ability to predict 

the state of mind of each subject from their EEG signals. It was observed that some channels had better 
prediction accuracy than the others. This was due to the fact that not all areas of the brain are utilized while 
generating an opinionated response. Each aforementioned approach was trained for each EEG data channel. 
The results of these models were captured and are displayed in the sections ahead. 
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The validation accuracy is used as the primary metric for evaluation since any developed model should 
be able to generalize well. Validation accuracy represents this ability. 

4.1 Hybrid Quantum Convolutional Neural Network 
To explore the findings from Pennylane, as well as to try a different method for solving this complex 

problem, a hybrid quantum convolutional network was designed on the TFQ [44] platform. The results 
found are tabulated in Tab. 1. 

Table 1: Results from HQCNN 

Channel 
Hybrid Quantum Convolutional Neural Network (TFQ) 

Training Testing Validation 
1 54.67% 52.65% 53.48% 
2 49.59% 47.34% 46.12% 
3 51.64% 51.34% 52.88% 
4 48.56% 49.33% 47.11% 
5 53.67% 53.23% 54.78% 
6 45.62% 45.21% 44.66% 
7 56.34% 55.93% 55.82% 
8 51.15% 51.23% 52.88% 
9 52.25% 51.51% 52.88% 
10 49.16% 48.13% 47.11% 
11 47.15% 44.32% 45.18% 
12 47.64% 46.32% 46.42% 
13 44.18% 43.84% 43.36% 
14 54.36% 53.87% 53.43% 

It was observed that the channels 1, 3, 5, 7, 8, 9, and 14 show marginally better validation accuracies. 
However, the values were around below 55%, i.e., approximately between 52-54%. Thus, the model does 
not respond well to the data. 

4.2 Variational Quantum Classifier 
Tab. 2 showcases the results obtained from the VQC using the ADAM optimization algorithm [43] 

and being implemented on the Pennylane [37] platform. It was observed that channels 1, 3, 5, 7, 9, and 14 
performed marginally better than the others. However, most of the accuracy values were saturated 
approximately between ~53-55%. Hence, although it shows that modeling may be possible, this approach 
does not appear much promising. 

Table 2: Results from VQC 

Channel 
Variational Quantum Classifier (Pennylane) 

Training Testing Validation 
1 51.53% 51.30% 52.88% 
2 54.26% 53.69% 47.11% 
3 51.51% 51.28% 52.88% 
4 49.31% 49.44% 47.11% 
5 56.61% 54.50% 55.43% 
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6 47.12% 48.56% 46.21% 
7 54.67% 53.23% 53.34% 
8 51.20% 52.34% 51.10% 
9 52.47% 52.31% 52.88% 
10 52.40% 51.43% 51.14% 
11 49.66% 48.71% 47.11% 
12 51.24% 50.34% 49.35% 
13 44.18% 43.84% 43.36% 
14 54.36% 53.87% 53.43% 

4.3 Quantum Annealing Classifier 
While performing training of the neural network, the dataset used is quite restricted. Additionally, 

quantum constructs are complex and must be designed with the ability to hold all the relevant parameters. 
Keeping the ultimate goal of classification in mind, experiments were conducted on quantum annealing 
classifier using the QBoost algorithm [45–46], on the DW_2000Q_5 QPU by D-Wave Systems Inc. This 
particular approach yielded encouraging results, with a high increase in training accuracy. The values are 
showcased in Tab. 3. 

Table 3: Results from Quantum Annealing Classifier 

Channel 
Quantum Annealing Classifier (DW_2000Q_5 QPU) 
Training Testing Validation 

1 84.69% 57.89% 58.65% 
2 83.06% 55.50% 52.88% 
3 86.61% 48.80% 47.11% 
4 82.78% 59.33% 53.84% 
5 82.92% 55.02% 61.53% 
6 83.46% 53.11% 45.19% 
7 83.74% 51.19% 59.61% 
8 84.28% 57.41% 50.00% 
9 84.01% 56.45% 53.84% 
10 82.92% 57.89% 52.88% 
11 85.79% 55.02% 46.15% 
12 87.15% 55.50% 49.03% 
13 87.02% 50.23% 42.30% 
14 83.19% 55.50% 57.69% 

The results of training with each specific channel were compared. The variation in validation 
accuracies across the three techniques is visualized in Figure 10. It is seen that the channels 1, 5, 7, 14 
perform the best with validation accuracies above 55%. Their values tend towards ~60%, which is a good 
and encouraging initial result from this work. 
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Figure 10: Graph for comparison of variation in validation accuracies from the aforementioned three 
techniques 

5 Conclusion 
The primary contribution of this work is the creation of three potentially novel pipelines for the 

prediction of judgement outcomes on the basis of cognitive states of mind. The research showcased in this 
paper demonstrates the ability to use hybrid quantum-classical approaches to model cognitive states of the 
human mind. The encouraging initial results obtained from the Quantum Annealing Classifier show that 
this approach is viable, and can perform better when large amounts of high-quality data are used for its 
training. In all approaches, it was observed that some channels outperformed others. Hence, it can be 
concluded that the process to generate an opinionated response to visual stimulus is controlled by specific 
regions of the brain. 

This work effectively puts together initial modeling of the cognitive state of mind by using the 
powerful mechanisms of quantum information handling and quantum neural networks. 
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