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Abstract: System reliability sensitivity analysis becomes difficult due to involv-
ing the issues of the correlation between failure modes whether using ana-
lytic method or numerical simulation methods. A fast conditional reduction
method based on conditional probability theory is proposed to solve the
sensitivity analysis based on the approximate analytic method. The relevant
concepts are introduced to characterize the correlation between failuremodes
by the reliability index and correlation coefficient, and conditional normal
fractile the for the multi-dimensional conditional failure analysis is proposed
based on the two-dimensional normal distribution function. Thus the calcu-
lation of system failure probability can be represented as a summation of
conditional probability terms, which is convenient to be computed by iterative
solving sequentially. Further the system sensitivity solution is transformed
into the derivation process of the failure probability correlation coefficient of
each failuremode. Numerical examples results show that it is feasible to apply
the idea of failure mode relevancy to failure probability sensitivity analysis,
and it can avoid multi-dimension integral calculation and reduce complexity
and difficulty. Compared with the product of conditional marginal method, a
wider value range of correlation coefficient for reliability analysis is confirmed
and an acceptable accuracy can be obtained with less computational cost.

Keywords: Probability of failure; sensitivity; approximate analytical
method; correlation coefficient; conditional marginal method

1 Introduction

Reliability sensitivity analysis plays an important role in study the influence level of parameter
distribution variability of random variables to system reliability. Sensitivity analysis can provide
how uncertainty in the output of a model can be apportioned to different source of uncertainty
in the model input factor [1,2]. It is necessary to obtain the information about the importance
ranking of each random variable since useful guidance can be obtained for structural reliability
design and maintenance to various engineering applications, such as ocean and civil engineering
structures [3–6], mechanical systems [7–9], software systems [10], etc.
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To measure the sensitivity of system failure probability, we can compute the partial derivative
of the failure probability with respect to the distribution parameter such as mean and standard
deviation of random variable. Currently, numerical simulation methods based on Monte Carlo
simulation (MCS) and approximate analytical methods are two major methods of reliability
sensitivity analysis. Compared to approximate analytical methods, MCS can obtain more accurate
results, but one main disadvantage is that the amount of calculation is too large when involved in
structural analysis. Alternative approaches have been developed in which surrogate models as an
alternative to approximate the limit state functions with explicit expressions to reduce computa-
tional effort. A hybrid method based on surrogate model and simulation sampling methods [11,12]
proposed to deal with the “curse of computational cost” for the problem with small failure
probability for reliability sensitivity analysis. Papaioannou et al. [13] and Pradlwarter et al. [14]
researched the sequential importance sampling method and line sampling simulation method for
reliability sensitivity analysis. Lacaze et al. [15] presented an approach based on the approximation
of the Dirac’s Delta to estimate the gradient of the probability of failure with respect to the
design variables using Crude Monte Carlo and Subset Simulation. The main drawback of the
proposed approach is that the computational effort required grows very fast for increasing number
of random variables.

Approximate analytical methods are widely employed [16] due to an acceptable accuracy with
less computational cost. Sues et al. [17] presented a hybrid approach to quantify the contribution
of each random variable to the system failure probability by using FORM to find the most
probable failure point and performing overclosed form approximations for the limit state functions
at the most probable failure point. To improve the calculation accuracy of the reliability for a
nonlinear limit state function, Dong et al. [18] built a number of hyperplanes near the design
point by first-order Tayler series expansion, thus the reliability sensitivities can be estimated
more accurately by the derived equations based on the equivalent hyperplane. Zhu et al. [19]
proposed a probability model d to evaluate the MPP using cumulative distribution function for
improve accuracy and stable results for complex problems. Kang et al. [20] develops a method
for evaluating multivariate normal integrals in which the method compounds two components
coupled by union or intersection sequentially until the system becomes a single compound event.

System reliability analysis based on the first order approximate analytical methods can be
reduced to the solution of multidimensional normal integral. First order multinormal method
proposed by Tang et al. [21] is to convert the joint failure probability problem of multiple
limit states into the product of the failure probability of multiple single limit states through
the conditional probability method. To avoid the problems of linearization and optimization of
performance function by using tedious iterative calculation in First order multinormal method,
product of Conditional Marginal and improved PCM [22,23] with higher calculation efficiency are
proposed to impove the computational accuracy and efficiency of system reliability. In addition,
the moment methods [24–26] are presented for reliability sensitivity to avoid solving the derivative
function and design point of performance function. However, for highly nonlinear problems,
the efficiency of such methods still needs to be improved. Global sensitivity analysis [27–29] is
proposed in engineering design and reliability evaluation to reflect the influence of input variable
uncertainty on output variable uncertainty from a global perspective, and an overview of available
methods by structuring them into local and global methods is presented in Borgonovo et al. [30].

Noted that most of the above methods based on the fact that the random variable is an
independent standard normal variable. For correlated non-normal variables, some representa-
tive transformation methods, such as Orthogonal transformation, Rosenblatt transformation, and
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Nataf transformation are often used to convert them into independent standard normal variables.
The Nataf transformation is, in fact, a form of copula, a wider framework for expressing the
stochastic dependence of random variables [31], and the proposed sensitivities have the potential
to be generalized to a wider class of copulas by future research. Nataf transformation is recom-
mended by Wu et al. [32] to be used for reliability analysis involving correlated input variables
due to its accuracy and applicability, and the analytical derivatives of the Nataf transformation
with respect to distribution parameters are presented by Hesam et al. [33].

In this paper, a fast product of conditional reduction method for reliability sensitivity analysis
is presented based on the principle of conditional marginal. In order to overcome the compu-
tational complexity and deficiency of PCM caused by repeated iterations of each conditional
fractile derivation and correlation coefficient, an improved correlation coefficient based on con-
ditional marginal probability is introduced. As a result the burden solving process of system
sensitivity can be carried out by the coefficient derivation of failure probability corresponding to
all failure modes. And the system sensitivity analysis is convenient to be realized without involving
second-order or higher-order joint probability calculation. The correlation coefficient formula is
suggested according to the approximate two-dimensional conditional marginal probability formula
and detailed expressions of the sensitivities with respect to the random variables are presented.
The accuracy of the method is investigated and some conclusions are drawn.

2 The System Failure Probability Analysis

Series system and parallel system are the two most basic forms modeled in the structural
system. Let Mj = gj (x1, . . . ,xn), j = 1, 2, . . . ,m, be a set of m given failure modes, the expres-
sions of reliability thus the system failure probability for series system and parallel system are
as follows:

Pfs =P

⎛
⎝ m⋃
j=1

{
Mj (x)≤ 0

}⎞⎠ , Pf p =P

⎛
⎝ m⋂
j=1

{
Mj (x)≤ 0

}⎞⎠ (1)

In the standard normal space U , the failure probability Pfs can be written as Eq. (2) by
using a m-dimensional standard multinormal integral in which the limit state tangent plane of
Mj(u)≈−αT

j u+βj is used to replace the limit state surface of each failure mode at the maximum

possible failure point according to FORM.

Pfs =P

⎛
⎝ m⋃
j=1

{
−αT

j u≤−βj

}⎞⎠= 1−�m (β,ρ) , Pfp =P

⎛
⎝ m⋂
j=1

{
−αT

j u≤−βj

}⎞⎠=�m (−β,ρ) (2)

In which β = (β1,β2, . . . ,βm)T is a vector of reliability index, and αj is a vector of unit direc-
tion cosine of the linearization hyperplane. ρ is correlation coefficient matrix and the correlation
coefficient between any two failure modes Mi and Mj is given as ρij = αT

i ·αj.
It can be seen that the core of system reliability calculation lies in the solution of mul-

tidimensional normal integral. Based on the conditional probability theory, Pendey suggested
a product of conditional marginal (PCM) and its improved method (I-PCM) to evaluate

�m (−β,ρ), in which the expression of �m (−β,ρ) is �m (β,ρ)=P
[
(Xm ≤ βm) | m−1∩

k=1
(Xk ≤ βk)

]
×
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P
[
(Xm−1 ≤ βm−1) |

m−2∩
k=1

(Xk ≤ βk)

]
× · · · × �(β1) = �

(
βm|(m−1)

) × �
(
β(m−1)|(m−2)

) · · · × �(β1) ≈
m
Π
i=1

�
(
β(m+1−i)|(m−i)

)
, in which � denotes the standard Gaussian cumulative probabilistic distribu-

tion function, and β(m+1−i)|(m−i) represents a conditional normal fractile.

The method represents the multi-normal integral as a product of conditional probability
terms. According to the principle of PCM, an iteration procedure is available as the way of
Tab. 1. The detailed calculation formulas of PCM can refer to the work by Pandey et al. [22,23].

Table 1: Calculation procedure of PCM

The 1th iteration The 2th iteration . . . The (m− 1)th iteration

β1
β2 β2|1
β3 β3|1 β3|2
. . . . . . . . . . . .

βm βm|1 βm|2 βm|(m−1)
[ρij]m×m [ρij](m−1)×(m−1) [ρij](m−2)×(m−2) [ρij]1×1

It can be drawn from iteration procedure that all elements in lower triangle matrix are need
to participation in calculation of the new conditional fractile and correlation coefficient. However
it is time-consuming and complex task for further sensitivity analysis due to repeated iterations
of the derivation of each conditional fractile and correlation coefficient required, especially when
the number of failure mode m is large.

3 The Proposed Method

3.1 The Basic Principle
First, all failure modes in Eq. (1) are rearranged in a descending order according to the

failure probability, assuming that

Pf 1 ≥Pf 2 ≥, . . . ,≥Pfm (3)

where Pfj = P
(
Mj
)
is the failure probability of the jth failure mode, and Mj = gj (x1, . . . ,xn),

j= 1, 2, . . . ,m, be a set of m given failure modes.

For simplicity, the method starts with subsystem composed of two failure modes. Accord-
ing to addition rule of probability, the series system failure probability can be represented as
flowing form

Pf 12 =P (M1 ∪M2)=P (M1)+P (M2)−P (M1 ∩M2)=Pf1 +Pf2 −P12 (4)

According to addition rule of probability, the failure probability of subsystem containing
three failure modes will be represented as the sum of seven items as Pf 123 =Pf1 +Pf2 +Pf3 −P12−
P13−P23+P123. It is obviously that the reliability calculation and its sensitivity analysis based on
this formula become cumbersome and complicated when the number of failure modes increase
due to the correlation between them. The same problem exists with PCM method by analysis
of the iterative process shown in Tab. 1. As stated above, the main difficulty associated with
Eq. (1) is the correlation treatment between different failure modes. To avoid multidimensional
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integrals involved in expressions, a key efficiency consideration is to develop the method such as
reduce dimension.

In this paper, a fast conditional marginal method is introduced by definition of relevance
coefficient. In Eq. (4), P12 is the joint failure probability that two events occur simultane-
ously. According to conditional probability formula, P12 can be computed [30,34] by P12 =
P (E1 |E2)P (E2), given in which P (E1 |E2) is denoted by correlation coefficient r12, thus Eq. (4)
can be written as

Pf 12 =Pf 1+Pf 2 − r12Pf 2 =Pf 1+ (1− r12)Pf 2 (5)

With the use of definition of relevance coefficient as like in Eq. (5), the failure probability
with three failure modes would be approximated by Pf 123 = P (M1 ∪M2 ∪M3)= P (M12 ∪M3) =
Pf 12 + Pf 3 − r123Pf 3 = Pf 12 + (1− r123)Pf 3. It is shown that it is convenient to calculate failure
probability and its sensitivity due to simple expression compared with above methods. According
to the idea, the difficulty of presented method lies in how to define the correlation coefficient to
ensure the accuracy of the calculation.

Research shows that in case of a bivariate normal distribution, the failure probability condi-
tion on X2 ≤ −β2 | X1 ≤ −β1 can be well approximated by the standard normal distribution of
the same expectation and variance. Combined this approximation with the definition of relevancy,
the correlation coefficient r12 in this paper is defined as

r12 ≈Φ

(−β1−μ12

σ12

)
=Φ

⎛
⎜⎜⎝

−β1+ρ12
ϕ (−β2)

Φ (−β2)√
1−ρ12

2A2 (−β2+A2)

⎞
⎟⎟⎠ (6)

In which A2 = ϕ (−β2)

Φ (−β2)
, β1 and β2 denotes the reliability index of compounding failure event

of the first failure modes respectively, and it can be obtained from the solution failure probability
Pf 1 and Pf 2.

Using this way, the system failure probability composed of m failure modes can be carried
as follows:

Pfs =Pf 12,...,m−1+
(
1− r12,...,m−1,m

)
Pfm =Pf 1+ (1− r12)Pf 2+

(
1− r12,3

)
Pf 3+· · ·+ (1− r12,...,m

)
Pfm

(7)

In which r12,...,m denotes the relevancy between the new compounding event M12,...,m−1 cou-
pled by the first m−1 failure mode and the remaining Mm. All terms in Eq. (7) are known except
r12, r123, . . . , r12,...,m, which can be calculated as follows:

r12,...,m−1,m= rij ≈Φ

(−βi−μij

σij

)
=Φ

⎛
⎜⎜⎜⎝

−βi+ρij
ϕ
(−βj

)
Φ
(−βj

)
√
1−ρij

2Aj
(−βj+Aj

)
⎞
⎟⎟⎟⎠ (8)
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In which Aj =
ϕ
(−βj

)
Φ
(−βj

) , βi denotes the reliability index of compounding failure event of

the first i (i= 1, 2, . . . ,m− 1) failure modes, and it can be obtained from the solution failure
probability Pf 1,2,...,n−1. βj denotes the reliability index of the jth (j= i+ 1) failure mode remaining

in the system. The correlation coefficient ρij is given by ρij =max
{
ρ1m,ρ2m, . . . ,ρm−1,m

}
.

It should be noted that, the two-dimensional standard normal distribution will not change
due to the arrangement of the two quartiles theoretically. However, for the multidimensional con-
ditional correlation considered in this paper, the order of the conditional quantile has important
influence on the result. In the formula, the calculation result is more accurate with the smaller
the quantile value as the condition.

From Eq. (8), it is known that the calculation of system failure probability has been repre-
sented as an add of n conditional probability terms, and each term is approximated by correlation
coefficient, and it can be carried out iteratively according to rearranged failure modes until
all terms have been combined sequentially. Comparing with PCM, only diagonal elements are
required for reliability analysis, which reduces the difficulty and is helpful for sensitivity analysis.

3.2 Sensitivity Assessment
Failure probability sensitivity analysis can provide information about the importance ranking

of each random variable. To measure the sensitivity we can compute the partial derivative of
the failure probability with respect to the parameter distribution interest [35,36]. Using Eq. (7),
the sensitivity of the failure probability with respect to the distribution parameter θ (μ,σ) can be

computed as Eq. (9), where r12,...,n and
∂r12,...,n

∂θ
are computed by efficient procedures in Eq. (8).

∂Pfs
∂θ

= ∂Pf 1
∂θ

+ (1− r12)
∂Pf 2
∂θ

+ (−Pf 2) ∂r12
∂θ

+ (1− r123)
∂Pf 3
∂θ

+ (−Pf 3) ∂r123
∂θ

+ (1− r12,...,n
) ∂Pfn

∂θ

+ (−Pfn) ∂r12,...,n
∂θ

(9)

As expressed in Eq. (9), sensitivity results are easy to obtain owing to the simplified form of
reliability analysis. For simplicity, we consider a system composed of two failure modes for which
system failure probability can be given as Pf 12 =Pf 1+Pf 2− r12Pf 2 =Pf 1+ (1− r12)Pf 2.

Combined Eq. (8) with Eq. (9), the sensitivity of failure probability with respect to θ (μ,σ)

can be obtained as

∂P12

∂θ
= ∂P1

∂θ
+ (1− r12)

∂P2

∂θ
+ (−P2)

∂r12
∂θ

(10)

where
∂P1

∂θ
,

∂P2

∂θ
can be calculated by moment method or Monte Carlo method. According to

the definition of the correlation coefficient r12 = Φ (β12) and β12 = −β1+ρ12A√
1−ρ2

12B
, A = φ (−β2)

Φ (−β2)
,

B=A (−β2+A),
∂r12
∂θ

can be obtained by further derivation.

∂r12
∂θ

= φ (β12)
∂β12

∂θ
(11)
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where

∂β12

∂θ
= 1√

1−ρ2
12B

(
−∂β1

∂θ
+ρ12

∂A
∂θ

)
+ −β1+ρ12A

2
(
1−ρ2

12B
) 3
2

ρ2
12

∂B
∂θ

∂A
∂θ

= φ′ (−β2)

Φ (−β2)

(
−∂β2

∂θ

)
− φ (−β2)

Φ2 (−β2)
φ (−β2)

(
−∂β2

∂θ

)
= −Φ (−β2) β2φ (−β2)+φ2 (−β2)

Φ2 (−β2)

∂β2

∂θ

∂B
∂θ

= ∂A
∂θ

(−β2)−A
∂β2

∂θ
+ 2A

∂A
∂θ

= (2A−β2)
∂A
∂θ

−A
∂β2

∂θ

Similarly, for a system with terms of r123,
∂r123
∂θ

, . . . , r12,...,n, and
∂r12,...,n

∂θ
included in Eq. (9)

can be solved successively by Eqs. (10) and (11). Therefore system sensitivity analysis is convenient
to be realized without involving second-order or higher-order joint probability calculation. In
essence, the result of reliability sensitivity analysis using Eq. (11) is accurate, and the calculation
error depends only on the correlation coefficient and the solution error of the reliability of each
failure mode. Therefore, as long as the single failure mode to ensure the reliability of sensitivity
and the correlation accuracy of the approximate formula, it will ensure accuracy of system
sensitivity analysis.

This paper combines the structural reliability algorithm and the proposed conditional reduc-
tion method based on correlation coefficient to calculate the structural system sensitivity as shown
in Fig. 1 Among them, the structural reliability iterative algorithm is used to solve the reliability
of the functional limit state function, and the reliability index βi or failure probability Pf and
sensitivity coefficient αi are obtained.

STAR

Solve gi (u)

Solve 

Calculate system failure 

sensitivity by Eq. (9)

END

Calculate correlation 
coefficient by Eq.(8) 

Figure 1: Flowchart of system failure sensitivity based on correlation coefficient method

4 Numerical Examples

Three numerical examples are demonstrated the effectiveness of the proposed method. It
should be noted that though the aim for failure probability sensitivity analysis is different
from reliability itself, the calculation accuracy of sensitivity analysis depends on that of reli-
ability analysis. Herein the first example is conducted to illustrate reliability calculation accu-
racy by comparing PCM and I-PCM, and the examples of Example 2 and Example 3 are
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used to illustrate conducted to illustrate the effectiveness of the fast product of conditional
reduction method.

4.1 Example 1: Analysis of Failure Probability of Series System
Consider a series system with 20 elements and each element having an identical element reli-

ability index β and identical correlation coefficient ρ. The failure probability for the system with
β = 3.5 is computed using exact integration, PCM, IPCM and the proposed method respectively.
Fig. 2 shows the failure probability varies as ρ varies from 0.1 to 0.9. The variation of numerical
error from different method with ρ is shown in Fig. 3 below.
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Figure 2: Probability of failure of series system
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Figure 3: Error versus correlation coefficient

It can be seen from Figs. 2 and 3 that the difference of errors from different method are all
sensitive to the correlation coefficient ρ. The error is small when ρ < 0.4 and the absolute error
are less than 5%. However the error behaves obvious difference when ρ > 0.4, where the error
associated with PCM increases rapidly and the error of 60% is seen as ρ approaches 0.7. While
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I-PCM method and the proposed method can both reduce the error effectively and the error
associated with the proposed method is smaller than that associated with I-PCM. The numerical
accuracy of the proposed method is considered acceptable with maximum error of about 20% in
range of 0 < ρ < 0.9. In addition, the proposed method involves much less iteration calculation
compared with I-PCM method, and is more suitable for reliability analysis of large scale systems.

4.2 Example 2: Analysis of Reliability Sensitivities
Assume a series system contains three failure modes, the basic random variables obey normal

distribution with x1 ∼ N (3, 1), x2 ∼ N (4, 1), x3 ∼ N (6, 1). The limit state equation is given
as follow.⎧⎪⎪⎨
⎪⎪⎩
g1 (x)= 2x1− 3x2 +x3+ 8= 0

g2 (x)= x1+ 2x2 + 4x3− 23= 0

g3 (x)=−2x1−x2 +x3 + 10= 0

(12)

To compute the sensitivities according to Eq. (11) of Example 2, reliability analysis of each
performance function gi is applied. FORM is available to compute the failure probabilities of gi
and unit normal vectors αi at the MPP, and the correlation coefficient is calculated by ρij = αT

i αj.
The results of reliability and sensitivity are given in Tabs. 2 and 3 respectively.

Table 2: Reliability results of Example 2

Performance function Failure probability Pf Unit normal vector αi

g1 0.0163 (−0.5345, 0.8018, −0.2673)
g2 0.0044 (−0.2182, −0.4364, −0.8729)
g3 0.0072 (0.8165, 0.4082, −0.4082)

Table 3: Comparison of sensitivity results of Example 2

∂P/∂μ1 ∂P/∂μ2 ∂P/∂μ3 ∂P/∂σ1 ∂P/∂σ2 ∂P/∂σ3

Monte Carlo method −0.00822 0.03476 −0.03007 0.05848 0.06988 0.03991
The proposed method −0.00831 0.03458 −0.02969 0.05784 0.06936 0.03928
Methods by Song et al. [37] −0.007806 0.032610 −0.026837 0.058259 0.062748 0.03161

4.3 Example 3: Analysis of Reliability Sensitivities of Simple Beam
The example is taken from Sues et al. [17], in which a simple beam under a uni-

form load. Three failure modes are considered composed of bending, shear and combined
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bending and shear. The three limit state functions for the three failure modes are assumed as
follow respectively.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g1 =M0 − 1
8
w0L

2

g2 =V0− 1
2
w0L

g3 = 1−
(
w0L2

8M0
+ w0M0

2V2
0

) (13)

where M0 and V0 is the maximum moment and maximum shear force the beam can bear, w0 is
uniform load applied on the beam, the length of the beam is L= 20. Random variables M0, V0
and w0 are all distributed normally, and the mean Value is {470, 159, 6} respectively, and variation
coefficient is {0.10, 0.15, 0.25} respectively.

To compute the sensitivities according to Eq. (11) of Example 3, reliability analysis of
performance function gi is applied. FORM is available to compute the failure probabilities of gi
and unit normal vectors αi at the MPP, and the correlation coefficient is calculated by ρij = αT

i αj.
The results of reliability and sensitivity are given in Tabs. 4 and 5 respectively.

Table 4: Reliability results of Example 3

Performance function Failure probability Pf Unit normal vector αi

g1 0.02739 (−0.5310, 0, 0.8474)
g2 0.00022 (0, −0.8465, 0.5324)
g3 0.05786 (−0.4407, −0.1095, 0.8910)

Table 5: Comparison of sensitivity results of Example 3

∂Pf /∂μM0

(×10−3)
∂Pf /∂μV0

(×10−4)
∂Pf /∂μw0

(×10−2)
∂Pf /∂σM0

(×10−4)
∂Pf /∂σV0

(×10−4)
∂Pf /∂σw0

(×10−2)

Monte Carlo method −1.1342 −6.7147 7.2365 7.982 4.7732 9.9634
The proposed method −1.1531 −5.4635 7.0956 8.0624 1.9236 9.9107
Methods by Sues
et al. [17]

−1.0872 −5.4088 6.88 7.553 1.342 9.593

In Example 2 and Example 3, the reliability sensitivities of Pf with respect to distribu-

tion parameter using Monte Carlo method can be estimated based on sampling with
∂Pf
∂μi

=

1
M

M∑
k=1

∂Pfk
∂μi

,
∂Pf
∂σi

= 1
M

M∑
k=1

∂Pfk
∂σi

. Considering normal independent variables, Reliability sensi-

tivities of Pfk with respect to μi and σi is given by
∂Pfk
∂μi

= 1
N

Pfk
σi

N∑
j=1

xji−μi

σi
,

∂Pfk
∂σi

=



CMES, 2020, vol.125, no.3 1169

1
N

Pfk
σi

N∑
j=1

[(
xji−μi

σi

)2

− 1

]
. The Monte Carlo method is used to generate sample points in the

failure domain that obey the density function, and then the expectation of samples is used to
replace the population mean to estimate the reliability sensitivity.

4.4 Discussion
The failure probabilities of Example 3 for the individual limit states obtained using FORM

are 0.027, 0.0023 and 0.058, respectively. The system failure probability using the proposed
method is 0.0587 and the result from MCS is 0.061. This result is reasonable because the system
failure is dominated by a single failure mode and all three failure modes are highly correlated.
Tabs. 3 and 5 compares sensitivity results of the proposed method with those from MCS, in which
the estimate results of MCS as the reference value are performed with 200,0000 simulations. The
results of the importance ranking of each random variable from the proposed approach are well
agreement with those from MCS. That is the load, w0, and moment capacity, M0, are the two
most important variables. Treating shear capacity, V0, as a deterministic variable would have very
little effect on the probabilistic results.

These comparisons show that proposed approach given by Eqs. (10) and (11) is theoretically
correct based on fully considering the contribution of each failure mode to failure probability.
The calculation accuracy is slightly higher than the result by Sues et al. [17] and Song et al. [37]
in which the method combining linear expansion of each failure mode with Monte Carlo method
for sensitivity estimation. Note that the basic random variables are normal distribution in above
examples. For correlated non-normal variables, Nataf transformation are often used to convert
them into independent standard normal variables, and the analytical derivatives of the Nataf
transformation with respect to distribution parameters are presented by Hesam et al. [33]. The
sensitivities verifies reasonably accurate although some results of the sensitivities in Tab. 5 are
underestimated because of approximation of correlation coefficient. The major advantage of the
proposed method is that the system sensitivity is computed in closed form expressions with
adding less calculation effort and without resorting to finite difference approximations. It does
not even depend on the analytical expression of the limit state equation, and has a wide range
of application.

5 Conclusion

This paper develops a fast product of conditional reduction method based on conditional
probability for reliability sensitivity analysis. The method combines explicit iteration algorithm
and new correlation coefficient, in which the new correlation coefficient is suggested based on
two-dimensional standard normal distribution considering the effects of the conditional quan-
tile. The calculation result shows that it is more accurate with the smaller the quantile value
as the condition. The method is demonstrated to be efficient through comparison with PCM,
and a wider value range of correlation coefficient for reliability analysis is confirmed. Also the
method is convenient to implement because it does not involve second-order or higher-order joint
probability calculation.
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