

Journal of Quantum Computing
DOI:10.32604/jqc.2020.014586

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Article

Translation of Quantum Circuits into Quantum Turing Machines for Deutsch
and Deutsch-Jozsa Problems

Giuseppe Corrente*

Università di Torino, Computer Science Department, Via Pessinetto, Torino, Italy
*Corresponding Author: Giuseppe Corrente. Email: giuseppe.corrente@unito.it

Received: 12 July 2020; Accepted: 21 September 2020

Abstract: We want in this article to show the usefulness of Quantum Turing
Machine (QTM) in a high-level didactic context as well as in theoretical studies.
We use QTM to show its equivalence with quantum circuit model for Deutsch and
Deutsch-Jozsa algorithms. Further we introduce a strategy of translation from
Quantum Circuit to Quantum Turing models by these examples. Moreover we
illustrate some features of Quantum Computing such as superposition from a QTM
point of view and starting with few simple examples very known in Quantum
Circuit form.

Keywords: Deutsch-Jozsa algorithm; Quantum Computing; quantum turing
machine

1 Introduction
One of the first step in the study of Quantum Computing is the Deutsch algorithm for its simplicity,

and generally the next step is the study is the Deutsch-Jozsa algorithm for its simplicity and powerful at the
same time. Traditionally both, as all most common quantum algorithm, are presented in Quantum Circuit
form. This is a starting point also of our article, but we also explore a QTM that solves the Deutsch problem
showing so an example of a translation from Quantum Circuit and Quantum Turing Machine models.
Finally, we do the same for Deutsch-Jozsa problem.

QTM generally is considered an invaluable computational model in the study of the complexity, but
not in the study of algorithms. We give an hint in this paper that QTM may be a good model also in this
latter area of study, in particular to better understand and illustrate some features of quantum algorithms
and some concepts related to the equivalence of different computational models.

2 Related Works
QTM was introduced for the first time by Deutsch in 1985 [1], but only in 1997 QTM and their features

are well formalized [2].
Many papers [3,4] and books [5,6] concern about the writing and explanation of note algorithms in

Quantum Circuit notation or in some dedicated programming language, but almost no one regard their
implementation in a Quantum Turing Machine.

Further Nishimura et al. [7] and Westergaard [8] offer a demonstration of equivalence of QTM and
Quantum Circuit families by a general methodology of translation between them, but without showing some
translation like that which is the matter of this article.

In [9] a good landscape of different quantum computing models as well as quantum languages is
illustrated.

138 JQC, 2020, vol.2, no.3

3 The Deutsch Problem
One of the simplest quantum algorithms is Deutsch’s algorithm, his study is an initial obliged step for

the Quantum Computing students. This algorithm is about the functions from the set {0, 1} to the set {0,
1}. There are 4 such functions that we can describe as follows:

 x ϵ{0,1}→0
 x ϵ{0,1}→1
 x ϵ{0,1}→ x
 x ϵ{0,1}→ NOT(x)
Note that the third function may would be written also I(x), where I is the identity function.
A function f : {0, 1} → {0, 1} is balanced iff f(0) is different from f(1), i.e., it is one to one, and

reversible. Differently, a function is constant, that is f(0) = f(1). The four functions above include two
balanced and two constant functions. Deutsch’s algorithm solves the following problem: Given a function
f : {0, 1} → {0, 1} as a black box, where one can evaluate an input, but having no knowledge about how
the function is defined, determine if the function is constant or not. With a classical computer, one would
have to first evaluate f on an input, then evaluate f on the second input and then compare the outputs: With
a classical computer, f must be evaluated twice. A quantum computer can be in two states at one time. We
shall use this superposition of states to evaluate both inputs at one time. We can show one particular input
to feed the black-box-function in a way that obtained output give us the complete answer.

4 Starting with a Quantum Gate for a One Step Evaluation

Let f the function to evaluate, then the following black-box Uf will be the corresponding quantum gate:

Figure 1: Quantum gate for f evaluation

The top input, |𝑥𝑥〉, will be the qubit value that we want to evaluate and the bottom input, |𝑦𝑦〉, is a
control qubit for the output.

The top output will be the same as the input qubit that is the identity function for that qubit, so to
preserve the reversibility, that is a must for quantum gates. The bottom output will be the qubit |𝑦𝑦 ⊕𝑓𝑓(𝑥𝑥)〉
where ⊕ is XOR, the exclusive-or operation (binary addition modulo 2). Briefly we can represent the
quantum gate for f as:
𝑈𝑈𝑓𝑓: |𝑥𝑥,𝑦𝑦〉 → |𝑥𝑥,𝑦𝑦 ⊕𝑓𝑓(𝑥𝑥)〉

And, obviously, if we apply twice it, we obtain the identity gate, as the reader can check quickly
applying Uf twice to initial inputs and taking in mind the associativity and idempotence properties of XOR
operator. In the following figure we can see as Uf Uf = I.

Figure 2: Uf is unitary

Let us take a first view at a quantum algorithm to solve this problem [10]. Rather than evaluating f
twice, as in classical solution, we shall try to take an advantage of superposition of states. Instead of having

JQC, 2020, vol.2, no.3 139

the top input to be either in state |0〉 or in state |1〉, we shall put the top input in state |0〉+|1〉
√2

 which is the
superposition equally balanced as amplitudes of both. The Hadamard gate can place a qubit in such a state,
in fact 𝐻𝐻|0〉 = |0〉+|1〉

√2
. Thus we have the following quantum circuit:

Figura 3: Evaluating two values in one step

In matrix representation this circuit corresponds to 𝑈𝑈𝑓𝑓(H ⊗ I)(|0,0〉). Here H is the Hadamard gate
and I is the Identity gate, that in the figure is omitted. We examine the states of the system at every step
time. In |𝛷𝛷1〉 we have the state |0,0〉+|1,0〉

√2
. Then, after the application of Uf , we have the final state in |𝛷𝛷1〉

as |0,𝑓𝑓(0)〉+|1,𝑓𝑓(1)〉
√2

. Measuring the bottom qubit we will have with the same probability as result f(0) and f(1),
loosing so the advantage of quantum superposition.

5 Deutsch Algorithm
Now use the previous lesson to actually give Deutsch’s algorithm. Deutsch’s algorithm works by

setting both the top and the bottom qubits into a superposition again using the Hadamard gates. We will
also apply an Hadamard gate on the results of the top qubit.

Figure 4: Quantumn Circuit for Deutsch algorithm

In terms of matrices this can be written as (H ⊗ I)𝑈𝑈𝑓𝑓(H ⊗ H)(|0,1〉). Here too H are the Hadamard
gates and I is the Identity gate, that in the figure is omitted.

Given that 𝐻𝐻|0〉 = |0〉+|1〉
√2

 and 𝐻𝐻|1〉 = |0〉−|1〉
√2

, in |𝛷𝛷1〉 we have the state |0,0〉−|0,1〉+|1,0〉−|1,1〉
√2√2

.

So we have in |𝛷𝛷2〉, applying the Uf gate, the following state:
((−1)𝑓𝑓(0)|0〉+(−1)𝑓𝑓(1)|1〉)(|0〉−|1〉)

√2√2

That the reader can easly verify is equivalent to:

±

⎩
⎨

⎧
(|0〉+|1〉)(|0〉−|1〉)

√2√2
 𝑖𝑖𝑓𝑓 𝑓𝑓 = 0 𝑜𝑜𝑜𝑜 𝑓𝑓 = 1 (𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

(|0〉−|1〉)(|0〉−|1〉)
√2√2

 𝑖𝑖𝑓𝑓 𝑓𝑓 = 𝐼𝐼 𝑜𝑜𝑜𝑜 𝑓𝑓 = 𝑁𝑁𝑁𝑁𝑁𝑁 (𝑏𝑏𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏)

Given that 𝐻𝐻 |0〉+|1〉
√2

= |0〉 and 𝐻𝐻 |0〉−|1〉
√2

= |1〉 , we have in |𝛷𝛷3〉, applying the H gate on the top qubit,
the following state, omitting the phase:

140 JQC, 2020, vol.2, no.3

⎩
⎨

⎧ |0〉 (|0〉−|1〉)
√2

 𝑖𝑖𝑓𝑓 𝑓𝑓 = 0 𝑜𝑜𝑜𝑜 𝑓𝑓 = 1 (𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

|1〉 (|0〉−|1〉)
√2

 𝑖𝑖𝑓𝑓 𝑓𝑓 = 𝐼𝐼 𝑜𝑜𝑜𝑜 𝑓𝑓 = 𝑁𝑁𝑁𝑁𝑁𝑁 (𝑏𝑏𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏)

Clearly now a measure on the first qubit solves the problem.
The reader should notice the fact that the output of the top qubit of Uf should not change from being

the same as the input. This is not the case because of the inclusion of the Hadamard matrices. This is the
essence of the fact that the top and the bottom qubits are both part of the same input. We gain access to the
information, but not create it from the null. There are four possible functions, and we know that with a
classical computer we needed two bits of information to determine which of the four functions we were
given. The core idea of the Deutsch algorithm is to transform data in such a way to answer to the question ”Is
the function balanced or constant?” and not to the question ”What is the value of the function on 0?” or the
question ”What is the value of the function on 1?” as the direct way does. But, given in this way, the measure
done on the top qubit answers to the first of the three above questions, and so it determinates which group
among two groups the function belongs.

Let us generalize the Deutsch to the Deutsch-Jozsa algorithm extending the range of functions taken
in consideration. Instead of regarding about functions f: {0, 1} → {0, 1}, we want manage functions with
a larger domain. Consider functions f: {0, 1} n → {0, 1} (the domain might be thought of as any natural
number from 0 to 2 n − 1). We shall call a function f: {0, 1} n → {0, 1} balanced if exactly half of the
inputs go to 0 (and the other half go to 1). Call a function constant if all the inputs go to 0 or all the inputs
go to 1. The problem solved by Deutsch–Jozsa algorithm is the following: suppose you are given a function
from {0, 1} n to {0, 1} which you can evaluate without knowing the way it is defined, given before that
you are assured that each function is either balanced or constant. Our aim is to determine if the function is
balanced or constant. Notice that when n = 1, this is exactly the problem that the Deutsch algorithm solved.
Classically, this algorithm can be solved by evaluating the function on different inputs. The best case
scenario is when the first two different inputs have different outputs, which assures us that the function is
balanced. In contrast, to be sure that the function is constant, one must evaluate the function on more than
half the possible inputs. Different would be the case of a probabilistic algorithm [11]. If the top qubit line
in Deutsch-Jozsa algorithm is generalized with to n qubit lines, representing the domain of the new group
of functions, and this change is propagated coherently to all quantum circuit, we have the Deutsch-Jozsa
algorithm starting from Deutsch algorithm, in quantum circuit notation.

6 A Quantum Turing Machine for Deutsch Algorithm
We give the following definition of a Quantum Turing Machine.
A Quantum Turing Machine (QTM for short) M is (Q, Σ, Γ, δ, q0, ⊡ , F) where
 Q is the (finite) set of internal states {qi|i ∈ N}
 Σ is the input alphabet, Γ is the finite set of symbols called tape alphabet (i.e. Γ U ⊡)
 δ: Γ × Q × Γ × Q × {L, N, R} → C[0,1] is the transition function that gives the amplitude of each

step, its square represents the probability of that step if a measurement occurs. The range of the
transition function are the complex with module equal or less than 1. L, N, R are the moves of the
head on the tape admitted, where N indicates that also no head move is admitted.

 ⊡ is the blank symbol.
 q0 (is a member of Q) is the initial state
 F (is a subset of Q) is the set of final states (one final state is sufficient)
Follow some other features with the aim to define and explain the meaning of configuration and

computation:
 A tape is a pair of strings wL and wR such that wL ϵ ⊡∞ Γ∗ and wR ϵ Γ∗ ⊡∞.

JQC, 2020, vol.2, no.3 141

 h ϵ Γ is the head of the tape whenever is the rightmost symbol of wL.
 A configuration is a triple in Q × (⊡∞ Γ∗) × (Γ∗ ⊡∞).
 The initial configuration is <q0, ⊡∞ w, ⊡∞ > where w ϵ Γ* is the input.
 A final configuration is <qF, ⊡∞ w, ⊡∞ > where qF ϵ F and w ϵ Γ* is the output.

We assume that if a final configuration is the superposition of more than one then all them are in a final
state.

 A TM-computation is a (finite) sequence of configurations c0, . . . , cn such that, for all i ϵ [0, n−1],
if ci = <qi,wL

i :h,wR
i > then ci+1 is obtained by applying the transition rule in the straightforward way,

i.e. by respecting the information of δ(qi, h) = [qi+1, hi+1,m], so if this rule is respected we can
affirm that the computation is deterministic, and the range of transition function becomes {0,1}
from C[0,1].Note that in this case the transition function can be properly represented as δ : Γ × Q ×
Γ × Q × {L,N,R} → {0,1}, or as δ : Γ × Q → Γ × Q × {L,N,R} equivalently cleaning totally all
tuples going to 0 in the first representation.

 A QTM-computation[12] is a (finite) set of configurations CM above which δ determines a
mapping a: CM × CM-> C[0,1] such that for each c1,c2 ∈ CM × CM, a(c1,c2) ϵ C[0,1] represents the
amplitude of the transition of M from c1 to c2. This matrix has to be unitary.

So, for each configuration c0 and all its successor configurations c1, . . ., ck the following sentence must
be true: If αi is the amplitude assigned to the transition from c0 to the configuration ci, then
∑ |αi|2k
i=1 =1

where |αi|2 represents the probability of transition from c0 to ci, but c1, . . ., ck occur in parallelism until a
measurement is not effectuated.

Note that after the first step the starting configuration c0 can be also a superposition of configurations,
in this case the next configuration is always determined by the transition function, but weighting each
component of c0 with the relative amplitude.

We will represent the transition function with a matrix adding some conditions, with the aim to
represent the Deutsch algorithm with a QTM. Referring to Deutsch algorithm we assume having a single
tape with two symbols representing initial top and bottom qubits.

Let
 Q={Φ0,Φ1,Φ2,Φ3}
 Σ={00,01,10,11, ⊡}
 q0=Φ0
 F={Φ3}

then if we define δ with the following rules, we have a QTM that performs the Deutsch algorithm. Note
that these are written taking in mind the relative circuit design and the operating principles of Hadamard
(H) gate.
δ (⊡,Φ0, 01,Φ0, N)=1 2E mc= (1)
δ (01,Φ0, 00,Φ1,, N) = 1/2 (2)
δ (01,Φ0, 01,Φ1, N) = - 1/2 (3)
δ (01,Φ0, 10,Φ1, N) = 1/2 (4)
δ (01,Φ0, 11,Φ1, N) = - 1/2 (5)
δ (00,Φ1, 0f(0),Φ2, N) = 1 (6)
δ (01,Φ1, 0 NOT(f(0)),Φ2, N) = 1 (7)
δ (10,Φ1, 1f(1),Φ2, N) = 1 (8)
δ (11,Φ1, 1 NOT(f(1)),Φ2, N) = 1 (9)

142 JQC, 2020, vol.2, no.3

δ (0x,Φ2, 0x,Φ3, N) = 1/√2 (10)
δ (0x,Φ2, 1x,Φ3, N) = 1/√2 (11)
δ (1x,Φ2, 0x,Φ3, N) = 1/√2 (12)
δ (1x,Φ2, 1x,Φ3, N) = - 1/√2 (13)

The reader should observe that no head move is present in the rules and the initial qubits are generated
from blank symbol in the initial rule. The real input is not given on the tape but by the function f embedded
in the rules 6,7,8 and 9.

Note that we can substitute superposition among rules, represented apparently by indeterminism, by
superposition on the tape. For example rules from 2 to 5 may be substituted with the following couple of rules:

δ (01,Φ0, 1
√2

(|0〉 + |1〉)0,Φ1,, N) = 1/√2 (2a,4a)

δ (01,Φ0, 1
√2

(|0〉 + |1〉)1,Φ1,, N) = - 1/√2 (3a,5a)

or equivalently with the following couple of rule

δ (01,Φ0, 0 1
√2

(|0〉 − |1〉),Φ1,, N) = 1/√2 (2b,3b)

 δ (01,Φ0, 1 1
√2

(|0〉 − |1〉),Φ1,, N) = 1/√2 (4b,5b)

Further, always taking in mind the same principle, they may be substituted by a single equation,
expressing all the superposition on the tape instead that by the multiplicity of rules:

δ (01,Φ0, 1
2

(|0〉 + |1〉)(|0〉 − |1〉),Φ1,, N) = 1 (2c,3c,4c,5c)

 Similarly, rules from 10 to 13 may be rewritten in the following form:

δ (0x,Φ2, 1
√2

(|0〉 + |1〉)x,Φ3, N) = 1 (10d,11d)

δ (1x,Φ2, 1
√2

(|0〉 − |1〉)x,Φ3, N) = 1 (12d,13d)

Anyway, independently of the form chosen for the rules, this QTM perfectly simulates the Deutsch
algorithm. It starts with a blank tape and in the initial state, writing the fixed symbol 01 on it representing
the top and bottom qubit of the corresponding quantum circuit.

The group of rules from 2 to 5 represent applying Hadamard gates to both qubits, and so we advance
one step in quantum algorithm state. The rues from 6 to 9, applied to superposition of states obtained by
previous step, results in simultaneous calculus of f(0) and f(1) performed by Uf gate.

Finally the rules from 10 to 13 correspond to apply the Hadamard gate to the top qubit and Identity
gate to the bottom qubit in the last step. Now we have reached the final state, and reading on the tape the
first symbol we obtain the answer of the Deutsch problem.

7 Generalizing the Quantum Turing Machine from Deutsch to Deutsch-Jozsa Algorithm
Let
 Q={Φ0,Φ1,Φ2,Φ3}
 Σ={x1x2…xn| xi∈ {0,1} } ∪ {⊡}
 q0=Φ0
 F={Φ3}
then if we define δ with the following rules, we have a QTM that performs the Deutsch-Jozsa algorithm.

δ (⊡,Φ0, 0n−11,Φ0, N)=1 (14)
δ (0n−11,Φ0, (|0〉 + |1〉)n−10,Φ1,, N) = 1/√2n (15)

JQC, 2020, vol.2, no.3 143

δ (0n−11,Φ0, (|0〉 + |1〉)n−11,Φ1, N) = - 1/√2n (16)
δ (x1x2 … xn−10,Φ1, x1x2 … xn−1f(x1x2 … xn−1),Φ2, N) = 1 (17)
δ (x1x2 … xn−11,Φ1, x1x2 … xn−1 NOT(f(x1x2 … xn−1)),Φ2, N) = 1 (18)
δ (x1x2 … xn−10,Φ2, H(x1x2 … xn−1)0,Φ3, N) = 1 (19)
δ (x1x2 … xn−11,Φ2, H(x1x2 … xn−1)1,Φ3, N) = 1 (20)

This QTM perfectly simulates the Deutsch-Jozsa algorithm, the dimostration for induction on n
follows:

For n=2, it is equivalent to Deutsch QTM, in fact:
Rule 14 → Rule 1
Rules 15,16 →
δ (01,Φ0, (|0〉 + |1〉)0,Φ1,, N) = 1/√4, δ (01,Φ0, (|0〉 + |1〉)1,Φ1,, N) = - 1/√4
→ rules 2,3,4,5
Rule 17 → rules 6,8
Rule 18 → rules 7,9
Rule 19,20 → rules 10,11,12,13
Now we write the rules for a QTM for Deutsch algorithm with exactly the same formalism of that for

Deutsc-Jozsa putting n = 2
δ (⊡,Φ0, 01,Φ0, N) = 1 (14’)
δ (01,Φ0, (|0〉 + |1〉)0,Φ1,, N) = ½ (15’)
δ (01,Φ0, (|0〉 + |1〉)1,Φ1, N) = - ½ (16’)
δ (x0,Φ1, xf(x),Φ2, N) = 1 (17’)
δ (x1,Φ1, xNOT(f(x)),Φ2, N) = 1 (18’)
δ (x0,Φ2, H(x)0,Φ3, N) = 1 (19’)
δ (x1,Φ2, H(x)1,Φ3, N) = 1 (20’)

If it solves Deutsch-Jozsa algorithm for Uf with f on n-1 binary input variables, then its extension by
1 performs the Deutsch-Jozsa algorithm for Uf with f on n binary input variables.

So we have:
 Q={Φ0,Φ1,Φ2,Φ3}
 Σ={x1x2…xn+1| xi∈ {0,1} } ∪ {⊡}
 q0=Φ0
 F={Φ3}
And the rules:

δ (⊡,Φ0, 0n1,Φ0, N)=1 (21)
δ (0n1,Φ0, (|0〉 + |1〉)n0,Φ1,, N) = 1/√2n+1 (22)

δ (0n1,Φ0, (|0〉 + |1〉)n1,Φ1, N) = - 1/√2n+1 (23)
δ (x1x2 … xn0,Φ1, x1x2 … xnf(x1x2 … xn),Φ2, N) = 1 (24)
δ (x1x2 … xn1,Φ1, x1x2 … xn NOT(f(x1x2 … xn)),Φ2, N) = 1 (25)
δ (x1x2 … xn0,Φ2, H(x1x2 … xn)0,Φ3, N) = 1 (26)
δ (x1x2 … xn1,Φ2, H(x1x2 … xn)1,Φ3, N) = 1 (27)

In particular note that 22 and 23 are implied by 15 and 16 rules in consequence of the facts.

144 JQC, 2020, vol.2, no.3

 H(y1 y2 … ym) = H(y1y2… ym-1)H(ym)
 H(0)= (|0〉 + |1〉)/√2
 H(1)= (|0〉 − |1〉)/√2
Note also that rule 19 implies 26 and 20 implies 27 in consequence that:
 H(y1 y2 … ym) = H(y1y2… ym-1)H(ym)
These deductions together with the induction methodology or the correspondence step by step of QTM

Deutsch-Jozsa rules with the relative Quantum Circuit design of this algorithm bring to the proof. So our
QTM represents a class of Quantum Turing Machines that solves Deutsch and Deutsch-Jozsa problems for
all input of size n.

Now we want underline the role of quantum oracle for f in Deutsch and Deutsch-Jozsa algorithm. Both
for Deutsch and the Deutsch-Jozsa algorithm we use an Uf gate with x,y input where x = x1x2…xn-1 (n = 2
for Deutsch algorithm) that is an n-1 input qubit and y a control qubit for Uf. When xi and y assume only
classical values, 0 and 1, Uf works as a standard classical gate. When x1..xn-1,y are considered qubits they
may have superposition of values and this permits Uf to calculate more than a value for f in one step. So in
this case it represents a quantum oracle.

Uf is translated in the QTM for Deutsch-Jozsa in the rules 17 and 18, note that when n=2 these value
for Deutsch algorithm. For the QTM definition, in particular the property regarding the transition function
when it starts from a superposition of configurations, running these rules on inputs 𝑥𝑥𝑦𝑦 = 1/√2n(|0〉 +
|1〉)𝑛𝑛−1(|0〉 − |1〉) we have again a quantum oracle, that is they are equivalent to Uf. Obviously would be
the same using for Deutsch algorithm the four rules in the form 6,7,8,9 instead of the two in the form 17’
and 18’.

8 Conclusions
In this article we show that QTM can in some cases be very useful to deepen, understand and illustrate

one or some Quantum algorithm starting from circuit representation, converting it and studying in the new
representation their relevant features.

We also sketch a proof by induction to further validate Deutsch-Jozsa quantum algorithm by using
QTM, and illustrate the features of superposition and quantum oracle, by mean of an example based on the
Deutsch and Deutsch-Jozsa algorithm expressed in the QTM model.

Acknowledgement: We are grateful to Luca Paolini of Università di Torino for his support and
encouragement.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] D. Deutsch, “Quantum theory, the Church–Turing principle and the universal quantum computer,” in Proc. of

the Royal Society of London. A. Mathematical and Physical Sciences, vol. 400, no. 1818, pp. 97–117, 1985.
[2] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM Journal on Computing, vol. 26, no. 5, pp.

1411–1473, 1997.
[3] L. Paolini, M. Piccolo and M. Zorzi, “QPCF: Higher-order languages and quantum circuits,” Journal of

Automated Reasoning, vol. 63, no. 4, pp. 941–966, 2019.
[4] S. Garhwal, M. Ghorani and A. Ahmad, “Quantum programming language: A systematic review of research

topic and top cited languages,” Archives of Computational Methods in Engineering, 2019.

JQC, 2020, vol.2, no.3 145

[5] N. Yanofsky and M. Mannucci, Quantum Computing for Computer Scientists. Cambridge University Press,
Cambridge, UK, 2008.

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press,
The Edinburgh Building, Cambridge, UK, 2011.

[7] H. Nishimura and M. Ozawa, “Perfect computational equivalence between quantum turing machines and finitely
generated uniform quantum circuit families,” Quantum Information Processing, vol. 8, no. 1, pp. 13–24, 2009.

[8] C. Westergaard, “Computational equivalence between quantum Turing machines and quantum circuit families,”
University of Copenhagen, Denmark, 2005.

[9] J. A. Miszczak, “Models of quantum computation and quantum programming languages,” arXiv preprint, 2010.
[10] S. N. Yanofsky, “An introduction to quantum computing,” Proof, Computation and Agency, pp. 145–180, 2011.
[11] G. Corrente, “Reflections on probabilistic compared to quantum computational devices,” International Journal

of Parallel, Emergent and Distributed Systems, vol. 35, 2020.
[12] J. Gruska, Quantum Computing. McGraw-Hill, 1999.

	References

