
 
 
Journal on Artificial Intelligence 
DOI:10.32604/jai.2020.014829 

 

This work is licensed under a Creative Commons Attribution 4.0 International License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work 
is properly cited. 

 

Article 
 
 

A Learning Framework for Intelligent Selection of Software Verification 
Algorithms 

 
Weipeng Cao1, Zhongwu Xie1, Xiaofei Zhou2, Zhiwu Xu1, Cong Zhou1, Georgios Theodoropoulos3 

and Qiang Wang3,* 

1Shenzhen University, Shenzhen, China 
2Hangzhou Dianzi University, Hangzhou, China 

3Southern University of Science and Technology, Shenzhen, China 
*Corresponding Author: Qiang Wang. Email: wangq8@sustech.edu.cn 

Received: 20 October 2020; Accepted: 29 November 2020 

Abstract: Software verification is a key technique to ensure the correctness of 
software. Although numerous verification algorithms and tools have been 
developed in the past decades, it is still a great challenge for engineers to 
accurately and quickly choose the appropriate verification techniques for the 
software at hand. In this work, we propose a general learning framework for the 
intelligent selection of software verification algorithms, and instantiate the 
framework with two state-of-the-art learning algorithms: Broad learning (BL) and 
deep learning (DL). The experimental evaluation shows that the training efficiency 
of the BL-based model is much higher than the DL-based models and the support 
vector machine (SVM)-based models, while the prediction accuracy of the DL-
based model is much higher than other models. 
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1 Introduction 
Software verification is a widely used technique to ensure the correctness of software. In the past decades, 

many software verification algorithms and tools have been developed, e.g., UAutomizer [1], CBMC [2], UFO 
[3], CPAChecker [4], in order to scale up the performance of software verification. We refer to [5,6] for a 
detailed overview of the progress. When applying verification algorithms or tools to the real-world software, 
it is preferable for the engineers to know which algorithm or tool is the most suitable one for the software at 
hand. However, most existing software verification algorithms are designed or optimized for a specific type 
of software codes. Knowing the weakness or strengths of each algorithm or tool requires a deep understanding 
of the underlying verification theory, which is usually a difficult task for engineers. 

Recently, some researchers have attempted to use machine learning techniques to achieve the 
automatic selection and fusion of software verification algorithms, e.g., [7–10]. However, their work suffers 
from two limitations: (1) They have not formed a unified solution for the intelligent selection of software 
verification algorithms. Most of them are only suitable for specific competitions or applications and cannot 
be directly applied to the source code verification of complex systems. Besides, their work mainly focuses 
on predicting the ranking of available tools in terms of the verification performance, instead of selecting 
the most suitable tool. (2) The machine learning techniques involved in these works are relatively simple, 
and most of them have only tried SVM [11], which has several notorious weaknesses: (a) Compared with 
deep neural networks, the complexity of the SVM model is relatively low; (b) SVM cannot be directly 
applied to deal with multi-classification problems; (c) It is difficult to train the SVM model when the 
number of training samples is very large. 
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In this work, we propose a general learning framework for the intelligent selection of software 
verification algorithms. The framework clearly describes the mapping from software source codes to the 
corresponding verification algorithms. Specifically, one should first collect the massive source codes and 
existing software verification algorithms, and then describe these data by designing a set of appropriate 
meta-features and constructing a corresponding meta-dataset. After that, one can apply various machine 
learning techniques to mine the relationship between the source codes and the performance of the 
verification algorithms, which can be used to infer the final selection model. Given a source code segment 
or task to be verified, the model can predict the most appropriate verification algorithm according to the 
meta-features of the source code or task, thereby greatly improving the efficiency of software verification 
in practical engineering. 

To verify the effectiveness of the proposed framework, we have collected a related data set from [8] 
and used static analysis techniques to design and extract meta-features from the source codes. The features 
include the variable role usage, control flow metrics and loop patterns, etc. We chose two most 
representative neural networks (i.e., BL [12] and DL [13]) to train the automatic selection model. BL 
represents a type of neural network that uses the non-iterative training mechanism, while DL represents a 
type of traditional neural network that is trained based on the gradient descent and its variants. Both of them 
can overcome the above-mentioned shortcomings of SVM. Therefore, the intelligent selection models 
trained with them are expected to have higher feasibility in practice. The contributions of this work can be 
summarized as follows: 
(1) A general learning framework for the intelligent selection of software verification algorithms is 

proposed and two representative neural network based learning algorithms (i.e., BL and DL) are 
implemented in the framework, which gives a new perspective for improving the efficiency of software 
verification in practice; 

(2) The performance of BL and DL on algorithm selection for software verification has been 
comprehensively evaluated for the first time. We have found that under the proposed learning 
framework, the DL-based and BL-based models can respectively achieve much higher prediction 
accuracy and faster training speed than the most commonly used SVM-based model, which provides 
valuable guidelines for engineers in selecting neural networks to model the problem. 
We organize the reminder of this paper as follows. In Section 2, we briefly review the related work on 

the automatic selection of software verification algorithms. We present the details of the proposed learning 
framework in Section 3. In Section 4, we introduce the experimental setting and the corresponding results. 
We conclude this paper in Section 5. 

2 Related Work 
The application of algorithm selection [14] into software model checking is relatively new, and has 

not yet been systematically investigated. The first effort to our knowledge was [10], where the authors 
proposed a technique called MUX that is able to construct a strategy selector for a set of features of the 
input program and a given number of strategies. The underlying learning technique is based on SVM. In [7, 
8], the authors presented a sophisticated set of empirical software metrics consisting of variable role usage, 
control flow metrics and loop patterns. The prime goal was to explain the performance of different model 
checkers in SV-COMP using the above metrics. They further presented a SVM-based portfolio solver for 
software model checking based on these metrics. Their experiments show that the portfolio solver would 
be the overall winner of SV-COMP in three consecutive years (i.e., 2014-2016). In [15], the authors look 
at the ranking prediction problem of software model checkers. A ranking of the candidate model checkers 
could help users choose the appropriate one for the program at hand. 

More recently, the authors in [16] present a specific strategy selector, in order to leverage on the 
numerous model checking techniques integrated in the tool CPAChecker1. The selector also takes as input 

 
1 https://cpachecker.sosy-lab.org/ 
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a set of strategies and the selection model that represents some information about the program and its 
property specification, and returns as output the strategy that is predicted to be useful. However, their 
strategy selector only works for CAPChecker, since the strategies are mere different parameter 
specifications of CPAChecker. The selection model is explicitly defined by the developers. No machine 
learning techniques are applied. In [9], the authors presented a tool PeSCo that can predict a (likely best) 
sequential combination of model checkers (i.e., different configurations of CPAChecker) on a given model 
checking task. The approach is based on SVM, and can predict rankings of model checkers on tasks. 

3 A Learning Framework for Intelligent Selection of Software Verification Algorithm 
In Fig. 1, we show the proposed learning framework for the intelligent selection of software 

verification algorithms. The core module of the framework includes three parts: the training module (shown 
by the red arrows in the figure), the prediction module (shown by the blue arrows), and the verification 
module (shown by the green arrows). The success of the last two modules depends on the completion 
quality of the first module. In this paper we focus on how to complete the first module with high quality. 

Specifically, three problems need to be solved before using the machine learning technique to train a 
model for the intelligent selection of software verification algorithms: (1) How to formalize the software 
verification algorithm selection problem as a machine learning problem? (2) How to get suitable training 
data? (3) How to choose an appropriate machine learning algorithm?  

Note that one can decompose a software into multiple code fragments and use the trained algorithm 
selection model to predict the appropriate verification algorithms and tools for them, and then complete the 
verification of the original software system. 

 
Figure 1: A learning framework for the intelligent selection of software verification algorithms 

3.1 Representing Software Verification Tasks 
Here we show how to encode the algorithm selection problem for software verification tasks into the 

machine learning problem and construct the corresponding data sets for model training. 
Definition 1. A software verification task 𝑠𝑠𝑠𝑠 is denoted by a triple  𝑠𝑠𝑠𝑠 = {𝑓𝑓,𝑝𝑝, 𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡}, where 𝑓𝑓 is the 

source file, 𝑝𝑝 is the property to be verified, and 𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 is the property type. We denote by 𝑆𝑆𝑆𝑆 a set of tasks. 
For each task 𝑠𝑠𝑠𝑠 = {𝑓𝑓,𝑝𝑝, 𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡}  ∈  𝑆𝑆𝑆𝑆 , we define the feature vector as × (𝑠𝑠𝑠𝑠) =

(𝒎𝒎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ,𝒎𝒎𝑐𝑐𝑐𝑐𝑐𝑐,𝒎𝒎𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙, 𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡), where  𝒎𝒎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  is the vector of variable role based metrics,  𝒎𝒎𝑐𝑐𝑐𝑐𝑐𝑐  is that of 
control flow based metrics, 𝒎𝒎𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙 is that of loop pattern based metrics, and  𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 ∈ {0, 1, 2, 3} encodes 
whether the property is related to reachability, memory safety, overflow or termination. These features can 
be extracted by using static analysis techniques as reported in [8]. The expected verification output (i.e., 
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whether property 𝑝𝑝 holds on the source file 𝑓𝑓) is regardless of the tool being used and defined as the 
function 𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑠𝑠: 𝑆𝑆𝑆𝑆 →  {𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡}. This function gives the ground truth of each task. Given a tool 𝑡𝑡 
and a task 𝑠𝑠𝑠𝑠 =  {𝑓𝑓,𝑝𝑝, 𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡}, its verification result is denoted by 𝑓𝑓𝐸𝐸𝑠𝑠𝑡𝑡,𝑠𝑠𝑣𝑣  ∈  {𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡,𝑡𝑡𝐸𝐸𝑢𝑢𝐸𝐸𝑢𝑢𝑢𝑢𝐸𝐸}, 
where 𝑡𝑡𝐸𝐸𝑢𝑢𝐸𝐸𝑢𝑢𝑢𝑢𝐸𝐸 indicates the tool is unable to verify if the property holds or not. 

Definition 2. Given a verification task 𝑠𝑠𝑠𝑠 and a tool 𝑡𝑡, the labeling function 𝐿𝐿𝑡𝑡(𝑠𝑠𝑠𝑠) is defined in the 
following manner: (1) 𝐿𝐿𝑡𝑡(𝑠𝑠𝑠𝑠) = 1  if tool 𝑡𝑡 gives the correct answer on 𝑠𝑠𝑠𝑠, (2) 𝐿𝐿𝑡𝑡(𝑠𝑠𝑠𝑠) = 2 if tool 𝑡𝑡 outputs 
𝑡𝑡𝐸𝐸𝑢𝑢𝐸𝐸𝑢𝑢𝑢𝑢𝐸𝐸 , and (3) 𝐿𝐿𝑡𝑡(𝑠𝑠𝑠𝑠) = 3 if tool 𝑡𝑡 gives the incorrect answer (i.e., 𝑓𝑓𝐸𝐸𝑠𝑠𝑡𝑡,𝑠𝑠𝑣𝑣  ≠  𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑠𝑠(𝑠𝑠𝑠𝑠)). 

3.2 Data Preparation 
In this study, the experimental data were collected from [8]. We used the same method as [7, 8] to design 

the meta-features of the source codes, including the variable role usage, control flow metrics and loop patterns, 
etc. They can be obtained through static analysis techniques. After the above data preprocessing operation, we 
get a data-set containing 31371 samples of source codes and 35 verification tools. Each sample has 46 attributes, 
which contain the meta-features of source codes and the information of verification algorithms. There are three 
classes (i.e., true, false, and unknown) in the data-set, which indicate the feasibility of a specific verification 
algorithm on a specific code fragment. We divided the data set into a training set and a testing set by 8:2 and 
kept the relative proportion of each class in them to be consistent. 

3.3 Machine Learning Based Algorithms Selection 
From Section 2, one can observe that the most commonly used machine learning technique in 

modeling the verification algorithms selection problem is SVM. Although the existing SVM-based models 
demonstrate the feasibility of the data-driven approach in solving the algorithm selection problem, it cannot 
be ignored that the modeling with SVM suffers from the following disadvantages: 
(1) SVM can be regarded as a feed-forward neural network with a single hidden layer, and its activation 

function is the kernel function, which is responsible for mapping data features from the original space 
into a high-dimensional space. It is difficult for such a training mechanism to allow full fusion and 
transformation between data features, resulting in related models facing great challenges in dealing 
with problems with complex features. 

(2) The efficiency of SVM is limited when handling large data sets. This is because SVM uses the quadratic 
programming technique to calculate its model parameters, which is sensitive to the number of samples. 

(3) SVM cannot be directly used to solve multi-classification problems. Although one can transform a 
multi-classification problem into multiple binary classification problems and use SVM to train the 
model, this strategy is inefficient. 
Based on the above considerations, we choose neural networks as the machine learning algorithm 

module, which can avoid the above-mentioned problems. One of the advantages of neural networks is that 
they have powerful feature transformation and extraction ability. In the past decade, related algorithms have 
made breakthroughs in many fields [17]. Existing representative neural networks include multilayer 
perceptron (MLP) [13], convolutional neural networks (CNN) [18], neural networks with random weights 
(NNRW) [17], broad learning system (BLS) [12], etc. From the perspective of training mechanism, these 
algorithms can be divided into two categories: traditional neural networks with the iterative training 
mechanism (e.g., MLP and CNN) and randomized neural networks with the non-iterative training 
mechanism (e.g., NNRW and BLS). 

Considering that the data set used in this study does not have an obvious local feature structure, we 
chose MLP with a fully connected structure as the training algorithm instead of CNN. Moreover, to 
completely evaluate the effectiveness of neural networks under the proposed framework, we also chose the 
BLS to compare with MLP. To clearly distinguish the difference between these two neural networks, we 
use DL to represent MLP and BL to represent BLS. 
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3.4 Broad Learning 
Broad learning (BL) is a feed-forward neural network with a non-iterative training mechanism. A 

typical network structure of BL is shown in Fig. 2, where 𝑿𝑿 refers to the input data, 𝝎𝝎𝟏𝟏 refers to the input 
weights that connects the input layer and the feature layer, 𝒁𝒁 is the output of the feature layer, 𝝎𝝎𝟐𝟐 refers to 
the weights between the feature layer and the enhancement layer, 𝑯𝑯 is the output of the enhancement layer, 
𝒃𝒃𝟏𝟏 and 𝒃𝒃𝟐𝟐 refers to the hidden biases of feature nodes and enhancement nodes respectively, 𝜷𝜷 denotes the 
output weights connecting the feature layer and the enhancement layer to the output layer, and 𝒀𝒀 is the 
output of the model. 

 
Figure 2: The network structure of BL 

Given a training data set {𝑿𝑿,𝑻𝑻} ∈  𝑅𝑅(𝑑𝑑+𝑐𝑐)∗𝑁𝑁, where 𝑑𝑑 refers to the dimension of input data, 𝑐𝑐 denotes 
the number of classes, and 𝑁𝑁 is the number of samples. Suppose that there are 𝐸𝐸 feature nodes and 𝑚𝑚 
enhancement nodes in a BL, and its transformation function of the feature layer and the activation function 
of enhancement layer are denoted as 𝜙𝜙(∙) and 𝑔𝑔(∙) , respectively. The output of the 𝑖𝑖𝑡𝑡ℎ feature node can be 
represented as 𝒁𝒁𝒊𝒊  =  𝜙𝜙(𝜔𝜔𝑖𝑖  ∙  𝑿𝑿 + 𝑏𝑏𝑖𝑖), and then the output of the feature layer can be expressed as 𝒁𝒁 =
[𝒁𝒁𝟏𝟏,𝒁𝒁𝟐𝟐,⋯ ,𝒁𝒁𝒏𝒏]. The output of the enhancement layer can be expressed as 𝑯𝑯 =  𝑔𝑔(𝜔𝜔2  ∙  𝒁𝒁 + 𝑏𝑏2) and the 
BL model can be represented as 
𝒀𝒀 = [𝒁𝒁|𝑯𝑯] ∙ 𝜷𝜷   (1) 

Let 𝑨𝑨 = [𝒁𝒁|𝑯𝑯], one can re-write (1) as 𝒀𝒀 = 𝑨𝑨 ∙  𝜷𝜷 . The optimization objective of the BL model is as 
follows: 

𝑀𝑀𝑖𝑖𝐸𝐸𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑡𝑡: 1
2

||𝛽𝛽||2  +  𝜆𝜆
2

||𝒀𝒀 − 𝑻𝑻||2  (2) 

where 𝜆𝜆 refers to the regularization factor. 
Different from traditional neural networks, BL does not solve (2) through iterative optimization 

methods such as the gradient descent but uses a non-iterative training mechanism. Specifically, 𝝎𝝎𝟏𝟏, 𝒃𝒃𝟏𝟏, 𝝎𝝎𝟐𝟐, 
and 𝒃𝒃𝟐𝟐 are assigned randomly and kept fixed throughout the training process. The output weights 𝜷𝜷 are 
obtained analytically as follows: 

If 𝑁𝑁 > (𝐸𝐸 + 𝑚𝑚), then 

𝜷𝜷 = (𝑰𝑰
𝝀𝝀

+ 𝑨𝑨𝑻𝑻𝑨𝑨)−𝟏𝟏𝑯𝑯𝑻𝑻𝑻𝑻   (3) 

else 

𝜷𝜷 = 𝑯𝑯𝑻𝑻(𝑰𝑰
𝝀𝝀

+ 𝑨𝑨𝑨𝑨𝑻𝑻)−𝟏𝟏𝑻𝑻   (4) 

where 𝑰𝑰 refers to the identity matrix. 



  
182                                                                                                                                                     JAI, 2020, vol.2, no.4 

 

3.5 Deep Learning 
Deep learning (DL) has made breakthroughs in many fields in recent years [18]. Although there are 

many existing DL algorithms, most of them share the same training mechanism, that is, iteratively 
calculating the model parameters based on the gradient descent method or its variants. 

A typical DL model with a fully connected network structure is shown in Fig. 3, where {𝑯𝑯𝟏𝟏,𝑯𝑯𝟐𝟐 … . ,𝑯𝑯𝒎𝒎} 
refers to the outputs of the {1𝑠𝑠𝑡𝑡, 2𝑛𝑛𝑑𝑑, … , 𝑚𝑚𝑡𝑡ℎ} hidden layers, respectively. (𝝎𝝎𝐢𝐢,𝒃𝒃𝐢𝐢) refers to the weights and 
hidden biases of the 𝑖𝑖𝑡𝑡ℎ hidden layer. Other symbols have the same meaning as BL. 

 
Figure 3: The network structure of the deep learning model 

Given a training data set {𝑿𝑿,𝑻𝑻} ∈  𝑅𝑅(𝑑𝑑+𝑐𝑐)∗𝑁𝑁, the optimization objective of the DL model is usually 
expressed as follows: 

𝑀𝑀𝑖𝑖𝐸𝐸𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑡𝑡: 𝓛𝓛 = 1
𝑁𝑁
∑ 𝑓𝑓(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖)𝑁𝑁
𝑖𝑖=1    (5) 

where 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑖𝑖 refer to the predictive label and the actual label of the 𝑖𝑖𝑡𝑡ℎ  sample. For regression problems, 𝓛𝓛 
is usually set to the mean square error; for classification problems, 𝓛𝓛 is usually set to the cross-entropy loss. 

Most of the existing DL models use the gradient descent method or its variants to achieve (5). A simple 
schematic diagram of the gradient descent method is shown in Fig. 4. 

 
Figure 4: A simple schematic diagram of the gradient descent method 

During the process of model training, one can update the model parameters according to the negative 
gradients to achieve the goal of reducing the global loss of the model (as shown in Fig. 4). Specifically, 
first randomly initializing the parameters of the DL model and then input 𝑿𝑿 into it. The model will output 
the predictive labels 𝒀𝒀 corresponding to all input samples. According to (5), one can get the current loss 𝓛𝓛. 
Then calculating the partial derivative of the weights and bias of 𝓛𝓛 for each layer based the chain-derivative 
rule, that is, 𝜕𝜕ℒ

𝜕𝜕𝜔𝜔𝑖𝑖
  and  𝜕𝜕ℒ

𝜕𝜕𝑏𝑏𝑖𝑖
 , where 𝝎𝝎𝒊𝒊 and 𝒃𝒃𝒊𝒊 refer to the weights and bias of the 𝑖𝑖𝑡𝑡ℎ hidden layer. After that, 
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updating the current 𝝎𝝎𝒊𝒊 and 𝒃𝒃𝒊𝒊: 

𝝎𝝎𝒊𝒊 = 𝝎𝝎𝒊𝒊 − 𝜶𝜶 𝝏𝝏𝓛𝓛
𝝏𝝏𝝎𝝎𝒊𝒊

 , 𝒃𝒃𝒊𝒊 = 𝒃𝒃𝒊𝒊 − 𝜶𝜶 𝝏𝝏𝓛𝓛
𝝏𝝏𝒃𝒃𝒊𝒊

  (6) 

where 𝛼𝛼 is the learning rate, which is used to control the pace of updates. 
The above process is performed iteratively until 𝓛𝓛 reaches a threshold or the number of iterations 

reaches the preset maximum value. 

4 Experimental Evaluation 
4.1 Parameter Setting 

We chose SVM [11] as the baseline algorithm, which is the most commonly used machine learning 
technique in the existing related work. For SVM, the regularization parameter 𝐶𝐶 was set to 1.0, the kernel 
type was set to 𝑅𝑅𝑅𝑅𝑅𝑅, and the training strategy was set to one-vs-rest. For BL [12], the numbers of feature 
nodes and enhancement nodes were set to 100 and 500, respectively. Moreover, its randomized parameters 
were assigned from [–1, 1] under a uniform distribution, the regularization factor was set to 1, and the 
transformation function was set to the linear transformation. To fairly compare with BL, we set the number 
of hidden layers in DL to 2 and the number of nodes in the first hidden layer and the second hidden layer 
to 100 and 500, respectively. Moreover, the learning rate and the optimization algorithm of the DL model 
was set to 0.0003 and Adam, respectively. To compare the performance of BL and DL more 
comprehensively, three non-linear functions were chosen as their activation functions, that is, ReLU, 
Sigmoid, and Tanh functions. Their mathematical forms are as follows: 

𝑅𝑅𝑡𝑡𝐿𝐿𝑅𝑅: 𝑡𝑡 = 𝑚𝑚𝑓𝑓𝐸𝐸(0, 𝐸𝐸), 𝑆𝑆𝑖𝑖𝑔𝑔𝑚𝑚𝑢𝑢𝑖𝑖𝑑𝑑: 𝑡𝑡 = 1
1+𝑣𝑣−𝑥𝑥

, 𝑇𝑇𝑓𝑓𝐸𝐸ℎ: 𝑡𝑡 = 𝑣𝑣𝑥𝑥−𝑣𝑣−𝑥𝑥

𝑣𝑣𝑥𝑥+𝑣𝑣−𝑥𝑥
   (7) 

In our experiments, the performance evaluation indexes include the testing accuracy, training accuracy, 
training time, and the testing standard deviation. Among them, the testing standard deviation (SD) can be 
obtained by using the following equation: 

𝑇𝑇𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖𝐸𝐸𝑔𝑔 𝑆𝑆𝑆𝑆: �
∑ (𝑣𝑣𝑗𝑗−𝑣𝑣)2𝑆𝑆
𝑗𝑗=1

𝑆𝑆−1
  (8) 

where 𝑆𝑆 is the number of independent experiments for each case, 𝑡𝑡𝑗𝑗 is the prediction error of the model in 
the 𝑗𝑗𝑡𝑡ℎ experiment, and 𝑡𝑡 is the average prediction error of 𝑆𝑆 experiments. In this study, 𝑆𝑆 was set to 10, 
which means that we did each experiment independently ten times. 

4.2 Experimental Results and Analysis 
4.2.1 BL vs. DL 

First, we compare the performance of BL and DL under the same number of nodes (46-100-500-3). 
The experimental results are shown in Tab. 1 and the best results are in bold. Note that the BL-ReLU means 
that the activation function of the BL model is ReLU. The naming rules of other models are the same. 

It can be observed from Tab. 1 that the training speed of BL is much faster than that of SVM and DL. 
For example, the training speed of BL-ReLU is 50 times faster (0.6553 s vs. 33.0878 s) and 1143 times 
(0.6553 s vs. 749.2075 s) than that of SVM and DL-ReLU, respectively. 

The predictive ability of the BL model is comparable to that of the SVM model but significantly 
weaker than that of the DL model. The DL model using Tanh as the activation function achieves the highest 
testing accuracy in our experiments. Compared with the SVM-based model, the DL-based model improves 
the testing accuracy by 21.13%: (0.9211 – 0.7604) / 0.7604 * 100% = 21.13%. 
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Table 1: The performance comparison of BL, DL, and SVM 

Algorithm Testing accuracy Training accuracy Training time (s) Testing SD 
SVM 0.7604 0.7734 33.0878 - 
BL-ReLU 0.7459 0.7577 0.6553 0.0045 
BL-Sigmoid 0.7480 0.7594 0.8640 0.0027 
BL-Tanh 0.7512 0.7680 1.5302 0.0012 
DL-ReLU 0.9211 0.9559 749.2075 0.0043 
DL-Sigmoid 0.9107 0.9204 956.9280 0.0024 
DL-Tanh 0.9203 0.9519 997.9541 0.0032 

4.2.2 Sensitivity Analysis of BL and DL Models to the Number of Hidden Nodes 
According to the BL theory [12,19], enhancement nodes play a more important role than feature nodes. 

Therefore, we analyze the sensitivity of the BL model to the number of enhancement nodes. The 
enhancement layer corresponds to the second hidden layer in DL. To ensure the fairness of the experiment, 
we chose to analyze the sensitivity of the DL model to the number of its second hidden layer nodes. 
Specifically, we selected 10 values from [50, 500] with 50 steps as the number of enhancement nodes in 
BL and the number of the second hidden layer nodes in DL, and then evaluated the testing accuracy of the 
corresponding models. Since the experimental results show that the experimental phenomena 
corresponding to different activation functions are similar in this experiment, here we take the BL-Tanh 
and DL-Tanh models as examples to show our experimental results (as shown in Fig. 5). 

 
Figure 5: The sensitivity of BL and DL models to the number of hidden nodes 

It can be observed from Fig. 5 that in BL, with the increase of the number of enhancement nodes, the 
test accuracy of the model fluctuates first, but when the number of enhancement nodes exceeds 150, the 
prediction performance of the model tends to be stable. This phenomenon implies that the prediction 
performance of the BL model is slightly sensitive to the number of enhancement nodes when the number 
is relatively small. For DL, as the number of the second hidden layer nodes increases, the test accuracy of 
the model does not change significantly, which implies that the prediction performance of the DL model is 
not sensitive to the number. 

A speculative explanation for the above phenomenon is that for BL, since its training process is non-
iterative, one can infer that the feature extraction quality of its model largely depends on the random 
mapping quality of the enhancement layer. In this case, when the number of enhancement nodes is relatively 
small, the feature extraction quality will be sensitive to the number; as the number of enhancement nodes 
increases, the randomness here is gradually diluted, so the model performance tends to be stable. For DL, 
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its parameters are calculated iteratively based on the gradient descent method. Under our parameter 
configuration, this method can always get a relatively stable solution, so the model performance is 
insensitive to the number of the second hidden layer nodes. 

4.2.3 Sensitivity Analysis of the DL Model to the Learning Rate and Optimizer 
To analyze the sensitivity of the DL model to the learning rate and optimizer, we evaluated the test 

accuracy of the model under four learning rates and three optimizers. Note that our experimental results 
show that the experimental phenomena of models with different activation functions are similar, so here 
we take the results corresponding to the DL-Tanh model as an example to perform the hyper-parameters 
sensitivity analysis. The details of the experimental results are shown in Fig. 6. 

 
Figure 6: The sensitivity of the DL model to the learning rate and optimizer 

It can be observed from Fig. 6 that if SGD [20] were selected as the optimizer of the DL model, the 
model performance would be sensitive to the value of the learning rate. For example, when the learning 
rate is 0.003, the test accuracy of the model is much higher than that of the model with other parameters. 
For the DL models using RMSprop [21] and Adam [22] as the optimizer, the different values of the learning 
rate will not have a significant impact on the model performance, and the test accuracy of the models is 
higher than that of the model with the SGD optimizer. From this phenomenon, one can infer that the choice 
of optimizer plays a more important role than the learning rate. 

Remark 1. From the above experiments, it can be inferred that the advantage of the DL model is high 
prediction accuracy, while its disadvantages include slow training speed, many hyper-parameters, and the 
model performance is sensitive to the choice of the optimizer. As for BL, its advantages are simple 
implementation and high training efficiency, while its disadvantage is the relatively weak ability in data feature 
transformation and extraction, resulting in the prediction ability of the model is not as good as the DL model 
on some complex problems. Compared with the SVM-based model, both BL and DL models show significant 
advantages in certain performance indicators, such as the training efficiency and the testing accuracy, which 
provides a new direction for the research of the automatic selection of verification algorithms. 

Remark 2. The non-iterative training mechanism gives BL extremely fast training speed, which is 
beneficial for applications that have stringent requirements on modeling speed. However, its feature 
extraction ability is relatively weak. For DL, the iterative training mechanism and various optimization 
algorithms enable it to better transform and extract data features, but its training process is often time-
consuming and requires high hardware computing power. How to combine the training speed advantage of 
BL and the feature processing power of DL to efficiently solve the complex problems in practical 
engineering is a problem worth studying in the future. 
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5 Conclusions 
To improve the efficiency of software verification in practical engineering, we proposed a general 

learning framework for the intelligent selection of software verification algorithms in this paper. Based on 
the proposed learning framework, we comprehensively evaluated the performance of two representative 
neural networks (i.e., BL and DL) in the selection of software verification algorithms. The experimental 
results show that the BL-based model can achieve considerable prediction accuracy as the most commonly 
used SVM-based model, but its training speed can be 50 times faster than the latter. As for the DL-based 
model, its prediction accuracy can be 21.13% higher than that of the SVM-based model, but its training 
efficiency is behind other models due to the iterative training mechanism. These research results provide 
valuable guidelines for researchers and engineers in the research of automatic software verification. 

In the future, we will develop a hybrid method that combines the advantages of BL and DL, give full 
play to the powerful feature extraction capability of DL and the efficient training efficiency of BL, and 
further improve the generalization ability and learning efficiency of the current algorithm selection model. 
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