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Abstract: In medical imaging, computer vision researchers are faced with a vari-
ety of features for verifying the authenticity of classifiers for an accurate diagno-
sis. In response to the coronavirus 2019 (COVID-19) pandemic, new testing
procedures, medical treatments, and vaccines are being developed rapidly. One
potential diagnostic tool is a reverse-transcription polymerase chain reaction
(RT-PCR). RT-PCR, typically a time-consuming process, was less sensitive to
COVID-19 recognition in the disease’s early stages. Here we introduce an opti-
mized deep learning (DL) scheme to distinguish COVID-19-infected patients
from normal patients according to computed tomography (CT) scans. In the pro-
posed method, contrast enhancement is used to improve the quality of the original
images. A pretrained DenseNet-201 DL model is then trained using transfer learn-
ing. Two fully connected layers and an average pool are used for feature extrac-
tion. The extracted deep features are then optimized with a Firefly algorithm to
select the most optimal learning features. Fusing the selected features is important
to improving the accuracy of the approach; however, it directly affects the com-
putational cost of the technique. In the proposed method, a new parallel high index
technique is used to fuse two optimal vectors; the outcome is then passed on to an
extreme learning machine for final classification. Experiments were conducted on a
collected database of patients using a 70:30 training: Testing ratio. Our results indi-
cated an average classification accuracy of 94.76% with the proposed approach. A
comparison of the outcomes to several other DL models demonstrated the effective-
ness of our DL method for classifying COVID-19 based on CT scans.
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1 Introduction

In December 2019, a new disease appeared in China’s Hubei province and then spread worldwide as a
pandemic in 2020 [1,2]. Named coronavirus 2019 (COVID-19) by the World Health Organization (WHO) in
February 2020 [3], the virus has as its root diseases severe acute respiratory syndrome (SARS-CoV) and the
Middle East respiratory syndrome (MERS-CoV) [4]. Specifically, COVID-19 is caused by the SARS-CoV-
2 virus [4] and potentially serious outcomes that include severe respiratory problems, organ failure, and death
[5,6]. As of June 24, 2020, according to the WHO, 85,070 confirmed cases of COVID-19 in China and
4,646 deaths. After contracting COVID-19, 16%–21% of China’s population became seriously ill, with a
2%–3% [7]. The WHO reported 9,274,343 cases globally as of June 24, 2020, with 476,772 deaths,
4,994,670 recoveries, and a mortality rate of 5%. The United States registered 2,406,105 cases,
123,155 deaths, 29,271,214 tests, and 1,005,688 recoveries. Brazil reported 1,117,430 total cases,
51,502 deaths, and 594,104 recoveries from COVID-19; the total number of tests performed to date was
2,510,717. Of the 17,522,752 tests performed in Russia, 599,705 were positive for COVID-19, and there
were 8,359 deaths. In India, the total number of COVID-19 cases was 455,859, with 258,523 recoveries
and 14,483 deaths. The total number of COVID-19 cases and deaths in other countries during this period
were as follows: the United Kingdom, 306,210 cases and 42,927 deaths; Spain, 293,832 cases and
28,325 deaths; Peru, 257,447 cases and 8,223 deaths; Chile, 250,767 cases and 4,505 deaths; Italy,
238,833 cases and 34,675 deaths; and Iran, 209,970 cases and 9,863 deaths. Pakistan reported
185,034 cases, 3,695 deaths, 1,126,761 tests, and 73,471 recoveries to date.

Reverse-transcription polymerase chain reaction (RT-PCR) is a time-consuming process that was less
sensitive to COVID-19 identification in the disease’s early stages. However, deep learning (DL)
techniques are showing progress for detecting the virus in its initial stages [8] in chest X-rays (CXRs) [9]
and computed tomography (CT) images of infected patients. DL has successfully identified various
diseases from medical images [10,11]. However, the application of DL to COVID-19 recognition requires
customization of DL-based features. In one study, different convolutional neural network (CNN) models,
such as AlexNet, VGG-16, GoogleNet, SqueezNet, Xception, ResNet-18, ResNet-50, and ResNet-101,
were used to identify COVID-19 in chest CT images [12]. Of all of the DL models, ResNet-101 and
Xception showed exceptional performance, with an area under the curve (AUC) of 0.994. Apostolopoulos
et al. [13] performed transfer learning (TL) with pretrained CNN models and achieved a predictive
accuracy of 98.75% with VGG-19. Three DL-based models, Inception-V3, ResNet-50, and Inception-
ResNetV2 have also been used successfully to recognize COVID-19, with ResNet-50 showing a
maximum accuracy of 98% [14].

Feature optimization is an important step in medical imaging, as some extracted features contain
irrelevant information. However, this process is time-consuming for high dimensional feature sets used
for disease detection. Different feature optimization algorithms [15] have been proposed, such as particle
swarm optimization (PSO) [16], entropy selection, the use of genetic algorithms (GAs) [17], and others
[18]. Recently the use of blockchain in DL networks has received much attention for securing important
feature information from images. In the medical domain, the purpose of blockchain is to improve system
efficiency [19,20].

The main problem faced by computer vision researchers in the medical field is choosing features for
the development of a computerized approach, as the features were chosen to determine the overall accuracy
of the method. In this study, DL optimization was used for feature extraction and classification of medical
CT images of patients potentially infected with COVID-19. The significant contributions of this research
are as follows:

� Use of linear contrast enhancement to enhance the optical quality of images for the extraction of the
most relevant features
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� Use of a TL-based retrained DenseNet-201 CNN model for DL feature extraction

� Optimization of DL features using a meta-heuristic Firefly algorithm (FA) to select the most relevant
features for obtaining better information from images of healthy and COVID-19-affected individuals

� Use of a parallel high index (PHID) approach to fuse optimal selected features for final classification
using an extreme learning machine (ELM)

The rest of this article is organized as follows. Existing techniques are discussed in Section 2. The
proposed framework for the COVID-19 CT images is presented in Section 3, with detailed mathematical
modeling and visual effects. Section 4 discusses the results of the proposed method, and conclusions are
presented in Section 5.

2 Related Work

Several methods have been used to detect and classify COVID-19 using X-ray and CT images. The use
of deep CNNs for detecting and recognizing COVID-19 has proven to be efficient and robust. Pereira et al.
[21] introduced a hierarchical multiclass technique for identifying COVID-19. They resampled imbalanced
data using a sampling algorithm to remove the class imbalance. Then they extracted texture and deep features
and performed classification after the features were fused. They validated the technique using the RYDLS-
20 data set, in which F1 scores of 0.65 and 0.89 were achieved in multiclass and hierarchical classifications of
COVID-19 [21]. Apostolopoulos et al. [13] used TL to train a CNN model for COVID-19 detection. A total
of 224 images of COVID-19 infection, 714 images of pneumonia, and 504 healthy X-ray images were used
to evaluate the model’s performance. The model showed 96.78% accuracy, 98.66% sensitivity, and 96.46%
specificity on X-ray images to efficiently detect the disease. Hasan et al. [22] introduced an approach for
discriminating healthy, COVID-19, and pneumonia patients based on their CT scans. Preprocessing was
performed to remove noise from the CT images slices. Histogram thresholding was used to subtract the
background from foreground imagery. Deep and entropy-controlled handcrafted features were extracted
and fused for better results. Also, long short-term memory classifiers were used for classification,
achieving 99.68% accuracy in a data set of CT images from 321 patients. A novel hybrid technique has
been proposed to detect COVID-19 based on a ranking-based diversity reduction (RDR) strategy and an
improved marine predators algorithm (IMPA) [23]. With this method, small regions are extracted from
X-ray images for virus detection. IMPA is used to segment X-ray images, and RDR is used to improve
IMPA’s detection performance. The proposed IMPA tends to outperform other state-of-the-art methods.
Further advancements include an auxiliary classifier generative adversarial network (ACGAN) [24] for
COVID-19 called CovidGAN to increase synthetic X-ray data for deep CNN models; experimental
results showed that the conventional CNN model achieved 85% accuracy, whereas 95% accuracy was
obtained with synthetic images created using CovidGAN.

Ozturk et al. [25] presented a new DL technique for automated detection of COVID-19. Their approach
has been used successfully in binary and multiclass classifications using a deep model consisting of
17 convolutional layers with different filters for each layer. A DarkNet classifier used for real-time virus
detection with heat maps achieved 98.08% and 87.02% accuracy in binary and multiclass classifications.
A deep CNN model, COVID-Net [26], was used to detect COVID-19 from X-ray images in the
pandemic’s early days. The publicly available benchmark data set COVIDx was introduced that contained
13,975 CXR images of 13,870 patients. This deep CNN model was made publicly available to facilitate
the efficient detection of COVID-19 from CXR images. COVID-CAPS [27], a new deep CNN-based
approach, has been introduced to detect COVID-19 in smaller X-ray image databases. This model has
fewer parameters but has demonstrated robust performance, with an AUC of 0.97%, 90% sensitivity,
95.7% accuracy, and 95.8% specificity. Pretraining of the presented deep models on the same type of
database has increased by 98.3% accuracy. For example, Loey et al. [28] used GAN with deep TL to
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detect the novel virus, overcoming the challenge of a lack of data. Pretrained deep CNN models have also
been used with TL in AlexNet, GoogleNet, and ResNet-18. The selected deep models reduce system
complexity by having a simple architecture and a smaller number of layers. The overall testing accuracy
of GoogleNet and AlexNet was 80.6% and 85.2%, respectively. GoogleNet achieved 100% testing
accuracy and 99.9% validation accuracy on two-class classification. Ucar et al. [29] presented an artificial
intelligence light model for novel virus detection; data augmentation was used to reduce data deficiencies.
squeezeNet, a light deep network, is another fine-tuned Bayesian optimization technique for COVID-
19 detection that has demonstrated robust performance.

In summary, the studies as mentioned above used pretrained networks, in which the sampling sizes of the
patient databases varied considerably, for classification purposes. In several of these studies, optimization
methods were used to obtain better accuracy but did not achieve significance. Besides, many of these
works cite computational cost as a drawback to their use, particularly for diagnosing disease. In the
current study, our main focus was to improve the accuracy of the DL framework for identifying COVID-
19 from CT scans and to minimize the system prediction time.

3 Proposed Methodology

The proposed methodology is presented in this section with technical details and visual effects. Fig. 1
illustrates the flow of the preferred DL framework for assessing positive COVID-19 scans and healthy scans,
which involves five key steps to achieving a final output. The first step is database preparation. In the second
step, the contrast of the original image is improved through linear contrast stretching. The third step involves
the computation of features using a DL method. The fourth step involves feature optimization for the final
step, in which the relevant features are fused in a parallel approach. The fused vector is classified using an
ELM to obtain two outputs: labeled images and numerical results.

3.1 Dataset Collection

This section discusses the details of the self-created data set for evaluating the proposed scheme, as
presented in Fig. 2. Data from 62 patients were collected from Radiopaedia (https://radiopaedia.org/

Figure 1: Proposed deep TL based end-to-end system for classification of positive COVID CT scans
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articles/covid-19-4). This website contains data from 93 patients, of which the first 62 patients were selected
for this work. Data from patients’ records included CT images, positive RT-PCR tests, travel history, and sex.
The primary target of this research was to obtain information about positive COVID-19 scans. Also,
4,000 healthy CT images were obtained for classification. Several samples positive COVID-19 CT scans
are shown in Fig. 2.

3.2 Contrast Enhancement

Contrast enhancement is an essential step in medical imaging that effectively increases the amount of
visual information obtained from an image. The main objective of contrast enhancement in this work was
to identify infected patients’ scans while distinguishing the most relevant features visually for a COVID-
19 diagnosis. In this approach, a mean equation was used to improve the intensity range based on output.
The mean value is computed mathematically as in Eq. (1):

l ¼
XM
i¼1

XN
j¼1

k i; jð Þð Þ (1)

Here l denotes the mean value; i and j represent the ith and jth pixel values; M and N denote row and
column pixels, respectively; and k i; jð Þ is the original image. The size of the input image is 512� 512. The
computed mean value is then used in a threshold function, and the pixel intensity range is increased. The
threshold function is defined mathematically as in Eq. (2):

T ¼ Update Pixel if k i; jð Þ < l
Not Update Elsewhere

�
(2)

This equation shows that image pixels less than the mean value are updated with l, whereas pixels
greater than l are not updated. Linear contrast is then used to amplify the infection region further. This is
represented mathematically by Eq. (3):

~k ¼ c1kþ b (3)

where ~k denotes the updated pixel value, c1 is the gradient, and b represents the vertical offset. Based on this
equation, previous image pixels are updated by ~k, as shown in Fig. 3.

3.3 Deep Learning Features

A deep TL approach was used in this work for deep feature extraction. The pretrained deep CNN model,
named Densenet201, was used for this purpose [30]. Densenet201 includes a total of 709 layers and

Figure 2: Few samples COVID-19 positive CT scans
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806 connections. The input layer size of this network is 224� 224� 3 (Fig. 4). The first convolutional layer
is 7� 7, with stride 2; the output is 112� 112. Each convolutional layer k 2 kL creates cl convolution
kernels of dimension a1 � a1 that is convolved with the layer input wconv; k 2 R~k, where
~k ¼ b 1ð Þ

k�1 � b 2ð Þ
k�1 � cl�1. Here b 1ð Þ

k�1 and b 2ð Þ
k�1 represent the height and width of the output of the

convolution layer, respectively. The final output of the convolution layer is given by Eq. (4):

Figure 3: Linear contrast enhancement results

Figure 4: Detail of Densenet201 deep CNN model
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�conv; k ¼ r w jð Þb j�1ð Þ lð Þ � b jð Þ
� �

(4)

where b jð Þ denotes the bias matrix and a represents the convolution operation. After each convolution
operation, an activation layer referred to as the ReLu layer is added. This layer’s main purpose is to avoid
negative features, as this layer only generates positive values. It is defined mathematically as in Eq. (5):

ReLu rð Þ ¼ rð Þþ ¼ max r; 0f g r 2 R (5)

Later a pooling layer is added to resolve the problem of overflow; note that researchers tend to use the
max-pooling layer and select only active neurons for the next iteration. Another layer referred to as the fully
connected (FC) layer is the most important layer in the CNN architecture with regard to deep feature
extraction. All nodes in this layer are connected directly in both the forward and reverse directions. Many
parameters may be involved in the FC layer, which can lead to a computationally complex network for
the training step. To address this, a dropout layer is added among the FC layers. The features matrix of
the dropout layer is one dimensional and is passed in a softmax function for final classification, as
described in Eq. (6):

p kð Þj ¼
ekjPK

k¼1 e
kkj

(6)

where j represents output units and p kð Þj denotes the categorical output probability of each unit.

For feature extraction, we pretrained the selected DL model trained on collected COVID-19 and healthy
scans using TL [31]. To retrain a new model, we used a mini batch size of 64, a learning rate of 0.002, and a
momentum of 0.1. In addition, a 70:30 training: Testing approach was used with a cross-validation value of
10. After retraining, the average pool and FC layers for feature extraction were selected. The dimensions of
the extracted features of both layers were �2048 and N � 100, respectively. These extracted features were
later optimized with the meta-heuristic FA, as described in the following section.

3.4 Firefly Algorithm (FA)

The FA, which was first introduced by Yang [32], was inspired by the flashing behavior of fireflies, in
which the flashing effectively acts as a system for communicating attraction among fireflies. The FA mimics
this system with its own version of the flashing to optimize DL methods. The FA has shown its effectiveness
with GAs and PSOs. Three rules are followed in the development of the FA:

(i) A firefly is tempted by all other fireflies, irrespective of their sex.
(ii) The attraction is proportional to the brightness of the firefly. A firefly with relatively low brightness

will be tempted by another that is brighter. Greater brightness corresponds to less distance between
fireflies.

(iii) The fitness function is responsible for the brightness of fireflies.

The brightness of a firefly with source brightness X is defined by Eq. (7):

X rð Þ ¼ X0e
�cr (7)

where r is the distance between two fireflies, X0 is the original brightness, and the light absorption coefficient
c controls the intensity of light. As the attraction corresponds to brightness, the attractiveness T of a firefly is
given mathematically by Eq. (8):

T rð Þ ¼ T0e
�cr (8)
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where T0 is the attractiveness at r ¼ 0. When firefly i is attracted to firefly j, movement is given, as
in Eq. (9):

Fxþ1
i ¼ T0e

�cr2ij Fx
j � Fx

i

� �
þ x Rand � 0:5ð Þ (9)

where x is the iteration number, x is the randomization parameter, and the term Rand generates
random numbers between 0 and 1. rij denotes the distance between the ith and jth fireflies and is defined
as in Eq. (10):

rij ¼k Fi � Fj k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1
Fik � Fjk

� �2r
(10)

The FA is applied to both DL feature vectors separately to obtain two optimal vectors with dimensions of
N � 1305 and N � 631 as the output. Note that the length of these vectors depends on the number of images
and always varies depending on the number of iterations. Once identified, the two optimal vectors are fused
by the PHID approach. In this approach, first entropy value-based padding is used to equalize the vector
lengths. Then the entropy value is calculated from less dimensional feature vector. Entropy is formulated
mathematically by Eqs. (11) and (12):

H jð Þ ¼ �
X
j

p jð Þ: log p jð Þ (11)

¼
X
j

p jð Þ: log 1

p jð Þ
� 	

(12)

whereH jð Þ denotes total information and
1

p jð Þ denotes information about the occurrence of each feature. The

indices of both vectors are then compared to select the highest feature value for the final fused vector. The
indices are compared to each other in Eq. (13):

FV jð Þ ¼ Fused kð Þ for � Vec1 jð Þ; Vec2 jð Þð Þf (13)

where FV jð Þ denotes the final fused feature vector and � denotes the higher value function that selects the
highest features from the Vec1 index and the Vec2 index. After the fusion of both vectors, the ELM classifier
is used for final classification.

3.5 Extreme Learning Machine Algorithm

Consider that the output function of a given jth node is gj oð Þ ¼ H cj; dj; p
� �

, where cj and dj express the
parameters of the hidden layer. The output function of SLFNwithM hidden layers is defined in Eq. (14):

fM oð Þ ¼
XM
j¼1

ajgj oð Þ (14)

where aj expresses the jth node hidden output and g Oð Þ ¼ ½H gj oð Þ; . . . ; gM oð Þ� 

is the equation for

measuring the output of the hidden layer. N training samples based on the hidden layer output matrix G
are calculated using Eq. (15):
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G ¼
g o1ð Þ
..
.

g oNð Þ

2
64

3
75 ¼

Hðc1; d1; p1 . . . H cM ; dM ; p1ð Þ
..
. ..

. ..
.

H c1; d1; pNð Þ . . . H cM ; dM ; pNð Þ

2
64

3
75 (15)

S represents the training data, given the matrix of S as in Eq. (16):

S ¼
s1
..
.

sN

2
64

3
75 (16)

The ELM [33] is a generalized NN and cannot accommodate parameter fine-tuning. The object function
is given in Eq. (17):

Minimize : k a kr1q þC k Ga� S kr2r (17)

where q; r ¼ 0;
1

2
; 1; 2; . . . . . . . . . :þ1 and r1; r2 > 0

Here r1;r2; q and r are used in different combinations for classification, regression, sparse coding,
feature learning, and clustering. The output of the ELM is in the form of labeled images and numerical
results, as shown in Fig. 5; numerical results are presented in Section 4. In this study, we compared the
ELM performance to well-known classification techniques to demonstrate its effectiveness in the
proposed scheme.

Figure 5: Proposed method labeled results
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4 Results and Analysis

In this section, the results of the proposed method are presented in the form of numerical values and
plots. Details of the data set are given in Section 3.1. A total of 9,000 CT images were used, including
5,000 positive COVID-19 images and 4,000 healthy images. Of all CT images, 60% were used for the
proposed model training and 40% were used to test the technique. Tab. 1 lists the experimental
parameters. Fig. 1 shows the sequence of steps in the proposed method; the results of each step were
computed to emphasize their importance. The computed results include the following: (i) An average
pool layer extracted feature evaluation; (ii) FC layer feature evaluation; (iii) FA-based optimized average
pool layer feature evaluation; (iv) FA-based optimized FC layer feature evaluation; and (v) fusion of both
optimized feature vectors. A 10-fold cross-validation was conducted for training as well as testing of the
proposed system. The ELM was used as a key classifier for feature classification; its performance was
compared to that of other techniques such as naïve Bayes, linear support vector machine (LSVM),
weighted k-nearest neighbor (KNN), and ensemble tree (bagging). In the simulation process, MATLAB
2019b was used on Desktop Compute (16 GB RAM; 256 SSD). In addition, an 8 GB graphics card was
used to minimize the computation time.

4.1 Numerical Results

Tab. 2 shows the proposed classification performance using the deep features of the average pool layer.
We passed the originally extracted features of this layer in the ELM classifier without applying feature
optimization. A maximum accuracy of 84.71% on ELM classification was achieved, with an FNR and
testing time of 15.29% and 71.501 s, respectively. The performance of this layer feature was also
validated by the other classifiers mentioned. The naïve Bayes classifier demonstrated accuracy of 81.46%,
with a testing time of 83.261 s. Ensemble tree also provided good results, with accuracy of 82.21% and a
testing time of 101.442 s. LSVM, a popular classification method, achieved accuracy of 83.74%.

Table 1: Experimental detail of database

Database detail for validation

Total patients 62

Total scans (COVID + tv) 5000

Total healthy scans 4000

Training ratio 60%

Testing ratio 40%

Image size 512 × 512

Table 2: Classification performance on selected classifiers using average pool layer deep features

Classifier
Calculated measures

Accuracy (%) FNR (%) Testing time (s)

Naïve Bayes 81.46 18.54 83.261

LSVM 83.74 16.26 91.552

Weighted KNN 80.07 19.93 97.164

Ensemble tree 82.21 17.79 101.442

ELM 84.71 15.29 71.501
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Tab. 3 lists the classification performance with respect to the FC layer features. The ELM classifier
showed 84.48% accuracy, with a testing time of 53.278 s. The change in accuracy was not significant;
however, the testing time improved by an average of 20 s. This change in testing time depends on the
dimensionality of features. Similarly, naïve Bayes, LSVM, weighted KNN, and ensemble tree achieved
accuracy of 81.92%, 83.96%, 82.17%, and 81.01%, respectively, with testing times of 61.003, 67.271,
71.926, and 77.926 s.

Tab. 4 shows the classification performance after the use of FA optimization, in which deep features were
optimized to select the most relevant features for final classification. The highest accuracy obtained was 91.96%
with a testing time of 41.991 s. Compared to the results shown in Tab. 3, the optimal FC layer feature
performance improved by up to 7% for the ELM classifier. In addition, the time required for ELM classifier
operation for the original FC layer features was 53.278 s, a reduction of approximately 12 s on average.
Similarly, for naïve Bayes, the update accuracy was 85.92% after feature optimization with a testing time of
48.116 s compared to 61.003 s for the original FC layer features. LSVM, weighted KNN, and ensemble
tree also showed improved accuracy, by 4% on average, compared to the results shown in Tab. 3.

Tab. 5 describes the classification performance with optimized average pool layer features. The highest
accuracy achieved was 89.24%, and the noted testing time was 46.331 s. Comparing the accuracy and testing
time to Tab. 2, we see that the accuracy improved by an average of 5%, and time was minimized to an average
of 25 s. Similarly, the other classification methods of naïve Bayes, LSVM, weighted KNN, and ensemble tree
achieved accuracy of 86.20%, 85.07%, 84.30%, and 87.51%, respectively.

Table 3: Classification performance on selected classifiers using FC layer deep features

Classifier
Calculated measures

Accuracy (%) FNR (%) Testing time (s)

Naïve Bayes 81.92 18.08 61.003

LSVM 83.96 16.04 67.271

Weighted KNN 82.17 17.83 71.883

Ensemble tree 81.01 18.99 77.926

ELM 84.48 15.52 53.278

Table 4: Classification performance on selected classifiers using optimized FC layer deep features

Classifier
Calculated measures

Accuracy (%) FNR (%) Testing time (s)

Naïve Bayes 85.92 14.08 48.116

LSVM 87.36 12.64 51.271

Weighted KNN 89.16 10.84 56.001

Ensemble tree 85.42 14.58 61.407

ELM 91.96 8.04 41.991
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Tab. 6 shows the performance using the fused optimized FC layer and average pool layer feature vectors
in one vector to obtain maximum information from the image. After fusion, the highest accuracy reading of
94.765% was obtained using the ELM classifier, with a testing time of 58.193 s. The accuracy of naïve
Bayes, LSVM, weighted KNN, and ensemble tree was 89.62%, 91.25%, 90.39%, and 92.84%,
respectively, with testing times of 59.188, 62.882, 64.002, and 69.527 s, respectively. Compared to the
data in Tabs. 2–5, the accuracy improved after the fusion process by 4% on average. However, the testing
time increased because of the fusion of the two optimal vectors.

We also verified the accuracy of the ELM using a confusion matrix. The sensitivity of the ELM after the
fusion process was 94.75%, and the specificity was 96.30% (Tab. 7).

Table 5: Classification performance on selected classifiers using optimized average pool layer deep features

Classifier
Calculated measures

Accuracy (%) FNR (%) Testing time (s)

Naïve Bayes 86.20 13.8 53.288

LSVM 85.07 14.93 61.451

Weighted KNN 84.30 15.7 66.117

Ensemble tree 87.51 12.49 72.340

ELM 89.24 10.76 46.331

Table 6: Classification performance on selected classifiers using optimized features fusion

Classifier
Calculated measures

Accuracy (%) FNR (%) Testing time (s)

Naïve Bayes 89.62 10.38 59.188

MSVM 91.25 8.75 62.882

Weighted KNN 90.39 9.61 64.002

Ensemble tree 92.84 7.16 69.527

ELM 94.76 5.24 58.193

Table 7: Confusion matrix of proposed method after optimal features fusion for ELM classifier

Classification class
Classification class

COVID positive Healthy

COVID positive 93.2% >6%

Healthy <4% 96.30%
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4.2 Analyses

In this section, we interpret the accuracy of the method when an ELM classifier is used. Section
4.1 presents detailed classification results for combinations of the original features, optimal features, and
fusion of optimal vectors. To determine the importance of contrast enhancement, we performed an
experiment without this step. The features were processed following the optimal feature optimization.
After fusion, these features were passed through the ELM classifier. The results, shown in Fig. 6, depict
an average 6% change in accuracy compared to the results shown in Tab. 6. Based on this plot, it can be
concluded with confidence that contrast enhancement plays a key role in improving classification
accuracy. In addition, we analyzed the performance of the DenseNet-201 pretrained CNN model used for
feature extraction by comparing it to other pretrained models. Fig. 7 compares DL models, including
GoogleNet, AlexNet, VGG16, VGG19, ResNet50, ResNet101, Inception V3, and the proposed scheme;
the effectiveness of the pretrained Densenet-201 deep model is evident in this comparison as well.

Figure 7: Comparison of proposed deep features with other CNN models for classification infected and
healthy COVID-19 scans

Figure 6: Impact of classification accuracy by including contrast enhancement step (W-CES) and without
contrast enhancement step (Wo-CES)
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5 Conclusion

In this work, we improved a computerized DL method for identifying COVID-19-infected and a healthy
patient from CT scans by using a new contrast enhancement approach to extract essential and robust
information about the infected region in the scans. In our proposed approach, a pretrained model is
retrained using TL to compute features from an average pool and FC layers. The most relevant features
are identified with FA optimization and then fused into one vector using the proposed PHID technique,
with final classification using an ELM classifier. Our results showed marked improvement in the visual
contrast of CT images resulting in the generation of robust DL features. However, a few irrelevant
features were also extracted from the outlier regions that were not important in the final classification.
Thus, optimization is a key step in selecting the appropriate solution. In addition, concatenation of
features increased the accuracy rate but also the computation time. A comparison of the proposed method
to several well-known DL models indicated that our approach is reliable. The main limitation of this
work is in the selection of optimal features with the FA, which does not always select the most important
features. Thus, there is a possibility that in some cases, the FA rejects important features of an object. In
future work, the performance of the feature selection step will be analyzed more closely and compared
using a larger patient data set for evaluation.
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