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Abstract:Macrophages play an essential role in the myocardial ischemia-reperfusion injury (MIRI), and the macrophage

shifting from M1 to M2 phenotypes might be a potential strategy for the treatment of MIRI. It has been reported that

miR-182 plays an important role in MSC-Exo-associated macrophage polarization. As circBCRC-3 is a newly

discovered circle RNA that worked as a sponge of miR-182, this research aimed to find if circBCRC-3 plays a role in

MSC-Exo-associated macrophage polarization. Firstly, circBCRC-3 was identified by divergent primers in

mesenchymal stem cells (MSCs). Secondly, the exosome of MSCs was isolated and identified by transmission electron

microscopy (TEM), nanoparticle-tracking analysis, and western blotting analysis. The expression level of circBCRC-3

in MSCexos was detected by RT-PCR. Finally, the polarization of the RAW264.7 cell phenotype was analyzed by flow

cytometry. Moreover, we first identified circBCRC-3 in MSCs. The results further confirmed that MSCexo could

effectively shift the macrophage polarization state from M1 towards the M2 phenotype, which indicated its role

in MIRI cure.

Introduction

Authors Acute myocardial infarction (MI) has been one of
the leading causes of death in the world. The reperfusion
therapy, which is a common process to MI patients, could
cause myocardial ischemia-reperfusion injury (MIRI) that
triggers an inflammatory cascade reaction in the
myocardial cells (Hausenloy and Yellon, 2013). The
macrophage-associated immune response plays an
important role in MIRI. After reperfusion, macrophages in
M1 status create a pro-inflammatory environment and
clear away dead cells. Later, macrophages in M2 status
through anti-inflammatory cytokines, secrete growth
factors, processing scar formation. Thus, the two
macrophage phenotypes and the regulations of changing
two statuses are important for infarct healing (Ong et al.,
2018). By promoting earlier and more M2 macrophage
infiltration, shifting the balance between M1 and M2
macrophages might be a potential way of treating MIRI.

Exosomes are membrane nanovesicles that exist in
almost all biological fluids (Elahi et al., 2020; Kourembanas,
2015; Raposo and Stoorvogel, 2013). They were reported as
the important mediator of paracrine mechanisms and
potential clinic applications in lung injury, cardiovascular
disease, regenerative medicine, and therapy of inflammatory
diseases (Elahi et al., 2020; Liu et al., 2020; Ha et al., 2020;
Harrell et al., 2019; Wang et al., 2020; Chen et al., 2020).
Recent studies have shown that exosomes were associated
with many pathological and physiological conditions (Chen
et al., 2020; Elahi et al., 2020; Ha et al., 2020; Harrell et al.,
2019; Liu et al., 2020; Wang et al., 2020). Emerging evidence
suggests that exosome derived from a mesenchymal stem
cell (MSC) (MSCexo) could exert beneficial effects on some
diseases, including MI (Liu et al., 2017; Ma et al., 2018;
Zhang et al., 2016; Zhao et al., 2015), hepatic fibrosis (Li et
al., 2013; Jiang et al., 2018; Qu et al., 2017), and cancers
(Phinney and Pittenger, 2017; Ono et al., 2014; Kim et al.,
2018; Lee et al., 2013; Qi et al., 2017; Reza et al., 2016).

CircRNA is a new member of non-coding RNAs,
produced by a back-splicing event from pre-mRNA.
CircRNA could tolerate the digestion of exonuclease for
lacking 5’ cap and 3’ poly (A), which suggests that it is
much more stable than linear RNA. Moreover, circRNA
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mainly locates in the cytoplasm and exerts its function by
acting as a sponge of miRNAs (Hansen et al., 2013; Jeck et al.,
2013). It only has been revealed that circDLPAG4 (Chen et al.,
2020; Wang et al., 2019), circNCX1 (Li et al., 2018), and
circACR (Zhou et al., 2019) could play roles in MIRI.
Recently, it was reported that miR-182 in MSCexo played a
role in the macrophage polarization of MIRI (Zhao et al.,
2019), and circBCRC-3 could bind to miR-182 (Xie et al.,
2018). Therefore, we speculate that circBCRC-3 may play a
regulatory role in the macrophage polarization of MIRI. In this
study, we showed that an exosome derived from a circBCRC-3
knockdown mesenchymal stem cell could promote
macrophage polarization indicating its potential in MIRI cure.

Materials and Methods

Isolation of exosome of mesenchymal stem cell (MSCexo)
Two 6–8 weeks-old c57bl/6 mice were sacrificed. The femurs
and tibias of the mice were obtained, then they were soaked
and washed in cold PBS. The epiphysis of the femur and tibia
was cut off, exposing the medullary cavity. PBS was used to
blow and suspend marrow cells. Mesenchymal stem cells in
marrow tissue were collected through centrifugation (1000
rpm, 10 min). MSCs were resuspended with 5 mL PBS and
washed twice. Then, MSCs were resuspended in DMEM and
maintained cell culture as described. The ExoQuickTM Plasma
Prep and Exosome Precipitation Kit (SBI System Biosciences,
USA) were used to isolate MSCexo from the MSC cell
supernatants according to the manufacturer’s instructions.

Cell culture
RAW264.7 cells (from ATCC) were cultured in DMEM
medium (Gibco, Gaithersburg, MD, USA) containing 10%
fetal bovine serum (FBS) at a cell culture incubator (Thermo
Scientific HeraCell 240i) at 37°C. For M1 macrophage
induction, 500 ng/mL LPS was used.

Reverse Transcription polymerase chain reaction (PCR) assay
Total RNA was extracted from cells using TRIzol Reagent
(Invitrogen; Carlsbad, CA, USA) according to the
manufacturer’s instructions. Using a Primescipt RT reagent
kit with gDNA Eraser, the cDNA was then synthesized with
reverse transcriptase (RTase) following the manufacturer-
provided protocols (with random primers). Polymerase
chain reactions were run using PrimeSTAR� Max DNA
Polymerase (TaKaRa), following manufacturer’s instructions.
Real-time-polymerase chain reactions (RT-PCR) were run
using SYBR� Premix Ex TaqTM II (Tli RNaseH Plus)
(TaKaRa), following manufacturer’s instructions.

CircRNA BCRC-3 siRNA and transfection
A siRNA against the reverse splicing site of Circular RNA
BCRC-3 was designed with the online prediction tool
(Sidirect2), with the target sequence CTGTTTCCATCG
AGTCACTGAATAGAATGAACCC. MSC cell transfection
was performed according to the manufacturer’s instruction.
5 μL Lipofactamine 2000 (Invitrogen, USA) was added to
50 μL optiMEM (Invitrogen, USA), and 2 μg siRNA was
added into 50 μL optiMEM; two solutions were mixed and
stayed for 15 min. The siRNA mixture was then added into

the serum-free cell culture; after incubating for 6 h, the cell
culture was changed to the complete medium. After 48 h,
the cell culture was collected to isolate exosomes as described.

Western blotting
Western blotting was performed using the ECL Western
Blotting Substrate Kit (Abnova) and antibodies, Calnexin
(Abcam, ab22595), CD63 (Abcam, ab216230), TSG101
(Abcam, ab30871).

Flow cytometry of detection of the polarization of macrophages
Cells were resuspended and adjusted to a concentration of 1 ×
106 cells/mL in staining buffer. After 48 h treatment, cells were
washed three times with PBS and collected. Then cells were
stained for the antibody iNOS-FITC (FabGennix, P35228)
CD206-PE (Biolegend, 141708) and PI (50 μg/mL) and kept
in the dark. All samples were then run on a BD AccuriTM

C6 (BD Bioscience) with a four-color (FITC, PE, PerCP
Cy5.5, and APC) fluorescence flow cytometry analysis.

TEM and size analyze for MSCexo identification
The MSCexo were dropped on the gilder grids and dyed with
uranyl acetate. Then the morphology was observed and
photographed under a JEM-2100F transmission electron
microscope was used to identify the exosomes isolated from
MSC. The size of exosomes was measured by Malvan
MastersizerTM.

Statistical analysis
All data analyses were completed using R Statistical Software (v
2.15.0, http://www.r-project.org/). Analysis of variance
(ANOVA) was used to determine the differences in circBCRC-
3 expression levels between groups. The p-values which are
smaller than 0.05 were regarded as statistically significant.

Results

Identification of circBCRC-3 in MSCs
CircBCRC-3 (circBase ID: hsa_circ_0001110) is located at
proteasome 26S subunit, non-ATPase 1 (PSMD1) gene
locus, and its post-splicing sequence length is 1002 bp
(Fig. 1A). Agarose gel electrophoresis was used to determine
the specificity of the PCR product of circBCRC-3. Divergent

TABLE 1

Primers used for PCR

Name of Primer Primer’s Sequence

divergent–H-BCRC3-F GTCAGGAGGGCAGCAGTAGA

divergent–H-BCRC3-R AACTCAATAGCCATTTCACCAC

convergent–H-BCRC3-F CTTTAGTAATGTATGGGAGGAT

convergent–H-BCRC3-R GTTTGCTATAACGGTTGC

divergent–H-GAPDH-F GAAGGTGAAGGTCGAGTC

divergent–H-GAPDH-R GAAGATGGTGATGGGATTTC

convergent–H-GAPDH-F CAATGACCCCTTCATTGACC

convergent–H-GAPDH-R TTGATTTTGGAGGGATCTCG
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primers (Tab. 1) detected circular RNA BCRC-3 in cDNA but
not genomic DNA (gDNA) (Fig. 1B), which further
characterize its circular form.

Characterization of exosome of MSC
Multiple approaches were employed to characterize the
morphology features and molecular markers of the isolated
extracellular vesicles of MSC in order to identify exosomes.
The MSCexo were studied under transmission electron
microscopy (TEM). The morphological features of exosomes
could be clearly observed: a round or elliptical shape with a
diameter range of 30–100 nm (Fig. 2A). Then, the size
distribution of extracellular vesicles was assessed with the
nanoparticle-tracking analysis, which showed that the mean
size of extracellular vesicles was 132.5 ± 37.4 nm; and most
of the extracellular vesicles were distributed within the range
of the exosome diameter (30–150 nm) (Fig. 2B). Moreover,
the expressions level of CD63 and TSG101 (molecular
markers of exosomes) were determined using western
blotting analysis. High levels of CD63 and TSG101 were
detected in the isolated exosomes, whereas little calnexin (a

molecular marker of the endoplasmic reticulum) could be
found (Fig. 2C). Meanwhile, the expressions of circBCRC-3
in MSCexo and MSCs were compared. The RT-PCR results
indicated that the expression of circBCRC-3 was much
higher in purified exosomes than in donor MSCs (Fig. 2D).
The difference was significant (p < 0.05*).

CircBCRC-3 involvement in MSCexo mediated macrophage
polarization in vitro
To study the effects of circBCRC-3 on macrophage polarization,
flow cytometry analysis was performed to detect the levels of M1
(iNOS+CD206-) and M2 (iNOS-CD206+) markers. After the
lipopolysaccharide (LPS) treatment, most raw264.7 cells
transformed into M1 macrophage (iNOS+CD206−). With
siRNA treatment, the percentage of M2 macrophage
(iNOS−CD206+, the second quadrant) was elevated (Fig. 3A).
The results of Fig. 3A demonstrated that the polarization of
macrophages from M1 to M2 under the inflammatory
environment was facilitated by treating with circBCRC-3
siRNA, and it suggested that circBCRC-3 might be the key
regulatory factor determining the macrophage polarization.

FIGURE 1. Identification of
circBCRC-3 in MSCs.
A. The genomic structure indicates that
circular RNA BCRC-3 consists of nine
exons (1,002 bp) from the PSMD1
gene. B. Agarose gel electrophoresis
analysis of PCR product with divergent
and convergent primers of circBCRC-3
in cDNA and gDNA. GAPDH was
used as the negative control.

FIGURE 2. A. The morphology of
exosomes under a transmission
electron microscope (scale bar, 100
nm).
B. With Malvern Mastersizer, the size
of exosomeswasmeasured. The x-axis
is the diameter distribution of
exosomes (nm); the y-axis is the
intensity of exosomes. C. The protein
expression of exosome and MSC
cells. Calnexin: ER marker, CD63,
and TSG101: exosome markers. D.
The circBCRC-3 expression in MSCs
and MSC-derived exosomes detected
by RT-PCR.
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To confirm the role of circBCRC-3 in MSCexo,
MSCs were transfected with circBCRC-3 siRNA, and the
exosomes were subsequently isolated from the culture
supernatants. As circBCRC-3 siRNA was fluorescein
amidites (FAM)-labeled, it was seen under a fluorescence
microscope (Fig. 3B). RT–PCR analysis revealed that the
expression level of circBCRC-3 was significantly decreased in
circBCRC-3 siRNA transfected MSCexo compared to negative
control (NC) siRNA transfected MSCexo (Fig. 3C). LPS-
stimulated macrophages were then treated with NC siRNA
MSCexo or circBCRC-3 siRNA MSCexo for 48 h, and then
the cells were collected for flow cytometry analysis. Compared
to the LPS treatment group, myocardial macrophages treated
with the circBCRC-3 siRNA transfected exosomes showed
more percentage of M2 macrophage (iNOS+CD206−, 22.9% to
7.76%) (Fig. 3D). The result showed that the polarization of
macrophages from M1 to M2 was significantly elevated by
circBCRC-3 siRNA MSCexo (Fig. 3D), suggesting that

MSCexo from circBCRC-3 knocked down MSC could be a
key factor that affected macrophage polarization.

Discussion

Macrophages are central inflammatory mediators of the heart
tissue, involving in both the initiation and resolution of the
inflammatory process. Multiple reports have highlighted the
significance of macrophages in MIRI models (de Couto
et al., 2017; de Couto et al., 2015). Increasing evidence
suggested that MSC could trigger the macrophage to switch
to the anti-inflammatory M2 phenotype (Kudlik et al., 2016;
Ben-Mordechai et al., 2013). Our work further confirmed
that MSCexo could effectively shift the macrophage
polarization state from M1 towards the M2 phenotype. Stem
cells have a strong ability of proliferation, and multi-
directional differentiation and could secrete chemokines,
growth factors, microbubbles, cytokines, and exosomes to

FIGURE 3. CircBCRC-3 is involved in MSC-Exo mediated macrophage polarization in vitro.
A. Representative flow cytometry plots showing the percentages of M1 (iNOS+CD206-) and M2 (iNOS−CD206+) phenotype in LPS-stimulated
RAW264.7 cells after transfection with circBCRC-3 siRNA or NC siRNA for 48 h. B. Representative images of the uptake of circBCRC-3
transfected MSCs. C. Real-time PCR analysis of circBCRC-3 levels in exosomes derived from NC siRNA MSC-Exo and circBCRC-3 siRNA
MSC-Exo (N = 5). D. Representative flow cytometry plots showing the percentages of M1 (iNOS+CD206−) and M2 (iNOS−CD206+)
phenotype in LPS-stimulated RAW264.7 cells treated with circular circBCRC-3 siRNA MSC-Exo or NC siRNA MSC-Exo for 48 h.
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the injured site, which promotes the differentiation,
proliferation, and chemotaxis of the injured site cells.
Among these secretions, exosomes play an important role in
signal transduction, intercellular transportation, and tissue
regeneration (Zhang et al., 2015; Hu et al., 2015).

Mammalian macrophages are induced to a variety of
phenotypes in response to different external stimuli. Some
researchers have noted that the change of a subset of
miRNA expression was repeatedly found to be involved in
the macrophage polarization (Chen et al., 2009; Cheng et
al., 2012; Forrest et al., 2010; Cai et al., 2012; Zhang et al.,
2013; Rückerl et al., 2012; Chaudhuri et al., 2011).
CircRNAs, always as miRNA sponges, are stable transcripts
expressed from different genomic locations and have been
recently recognized as important regulators for cellular
miRNA abundance and thus are major players in the
miRNA-mediated post-transcriptional regulatory network.
With the interactions between circRNAs and miRNAs,
circRNAs are potentially involved in many disease
processes, cell processes, and gene expressions (Memczak et
al., 2013; Ghosal et al., 2013).

As a circBCRC-3 is a sponge of miR-182, we testified
that circBCRC-3 knockdown MSCexo could promote
macrophage changed from M1 to M2, which indicated its
role in MIRI therapy. Although our data provided
circBCRC-3 as a target for MIRI treatment, its clinical
application needs further exploration.
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