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Abstract: Sepsis, characterized as life-threatening sequential organ failure, is caused by a dysregulated host immune

response to a pathogen. Conventional practice for sepsis is to control the inflammation source and administer high-

grade antibiotics. However, the mortality rate of sepsis varies from 25–30% and can reach 50% if a septic shock

occurs. In our current study, we used bioinformatics technology to detect immune status profiles in sepsis at the

genomic level. We downloaded and analyzed gene expression profiles of GSE28750 from the Gene Expression

Omnibus (GEO) database to determine differential gene expression and immune status between sepsis and normal

samples. Next, we used the CIBERSORT method to quantify the proportions of immune cells in the sepsis samples.

Then we explored the differentially expressed genes (DEGs) related to sepsis. Furthermore, gene ontology (GO)

function and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to

present potential signaling pathways in sepsis. We found that in the sepsis samples, the CD8+ T cell fraction was

consistently lower, based on the CIBERSORT method, whereas the neutrophil fraction was significantly higher in the

sepsis samples. The GO function and KEGG pathway enrichment analysis identified 1573 DEGs that were

significantly associated with neutrophil activation, neutrophil degranulation, neutrophil activation involved in the

immune response, neutrophil-mediated immunity, and T cell activation in the biological processes group. In our

study, we provided a first glance of associations between immune status and sepsis. Furthermore, our data regarding

the reciprocal interaction between immune cells (neutrophils and CD8+ T cells) could improve our understanding of

immune status profiles in sepsis. However, additional investigations should be performed to verify their clinical value.

Introduction

Sepsis, a complex life-threatening organ dysfunction that
ranks as the 10th leading cause of death, is a perplexing
imbalance between a pathogen and the body’s immune
response (Porte et al., 2019; Verdonk et al., 2017). It was
reported that the rapidly increasing incidence of severe
bloodstream infections with multidrug-resistant (MDR)
pathogens have caused higher health care burdens for

governments worldwide (Dalhoff et al., 2018). Sepsis not
only causes primary infectious injury but also secondary
damage to the infected tissues. Studies have been performed
to examine the possible systemic effects of intensive sepsis
that leads to the most severe consequence of septic shock,
which causes significant morbidity and mortality (Muller-
Redetzky, 2017; Osborn, 2017; Singer et al., 2016).

Currently, there are few molecular-based immunotherapies
in existence for septic patients (Schrijver et al., 2019). In
clinical practice for sepsis, the first step is to control the
inflammation source and administer high-grade antibiotics
(Liu et al., 2017; Sterling et al., 2015). Furthermore, vital
organ support and even resuscitation may also be required
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for severe consequences (Busani et al., 2017). In the past few years,
clinical trials from some large institutions have proven to be
disappointing because of the complex heterogeneity of
study populations and immunological phenotypes (Peters
Van Ton et al., 2018). To date, researchers have explored
immunosuppressive avenues for the treatment of sepsis, which
leads to striking morbidity and mortality caused by sepsis-
induced immunoparalysis (Bruse et al., 2019; Zijlstra et al.,
2019). However, the current therapeutic focus has shifted from
immunosuppressive strategies to enhancing the host’s immune
response (Esposito et al., 2017; Hagel et al., 2019).

It is well known that the initial immune response to
infection is mounted by host cellular and humoral
mediators, while neutrophils, as early responding immune
cells, are recruited to the site of infection to exert their
functions (Liu and Sun, 2019). However, recent studies
showed that neutrophils may in fact be a double-edged
sword in sepsis that could induce pyroptosis to fulfill their
role in the active immune response. Therefore, it is crucial
that we should pay close attention to the regulation of
neutrophils when dealing with sepsis clinically.

Thus, in our current study, we used bioinformatics
technology to detect immune status profiles in sepsis at the
genome level. The Gene Expression Omnibus (GEO)
database offers a pioneering medium of the genomic events
in large cohorts worldwide, which serves as a public
repository for archiving high-throughput microarray
experimental data. We downloaded and analyzed the gene
expression profiles of GSE28750 from the GEO database to
determine the differential gene expression and immune
status between sepsis and normal samples.

Materials and Methods

Data resources
The differentially expressed genes (DEGs) and the immune status
during sepsis were investigated, relative to normal samples, after
downloading and analyzing GSE28750 (Sutherland et al., 2011)
profiles from the GEO database (Clough and Barrett, 2016)
(http://www.ncbi.nlm.nih.gov/geo/) that essentially serves as a
public repository, wherein high-throughput microarray
experimental data is archived. The platform of GSE28750 was
GPL 570 (Affymetrix Human Genome U113 Plus 2.0 Array).

Estimation of immune cell fractions
The well-designed CIBERSORT method (Newman et al.,
2019) (http://cibersort.stanford.edu/), validated on gene
expression profiles measured using microarrays, helped
quantify the immune cell proportions in sepsis samples.
CIBERSORT comprises 547 genes and specifically facilitates
highly sensitive discrimination of 22 human hematopoietic
cell phenotypes, including B cells, T cells, natural killer cells,
macrophages, dendritic cells, and myeloid subsets.
CIBERSORT established a P-value via the Monte Carlo
method for deconvolution of each sample, offering a
measure of confidence in our results, wherein the fractions
of immune cell populations inferred at a threshold of <0.05
were considered accurate (Newman et al., 2015), and only
patients conforming to this were then considered eligible for
further investigation. The immune cell proportions were

individually projected for each gene expression series, so for
each sample, the sum of all estimates equaled 1.

Identification of DEGs
The downloaded original files were cataloged into sepsis and
normal groups. The Bioconductor package ‘affy’ (http://
www.bioconductor.org/) standardized and transformed raw
data into expression values (Gautier et al., 2004). The DEGs
between early-detection sepsis and normal tissue samples
were identified via applying a significance analysis of the
empirical Bayes method within the Limma package (Ritchie
et al., 2015). Adj. P-value < 0.01 and logFC > 1 were the
designated cut-off criteria to select significant DEGs.

Functional enrichment analysis
R language clusterProfiler package enrichment analysis facilitated
the analysis of potential biological processes (BP), cellular
components (CC) and molecular functions (MF) related to
DEGs (Ashburner et al., 2000; Pickett and Edwardson, 2006; Yu
et al., 2012). A KEGG pathway enrichment analysis presented
potential signaling pathways. KEGG, as a comprehensive
resource to ascertain functional and metabolic pathways,
comprises exhaustive database compilations with detailed
information on genomes, biological pathways, diseases, chemical
substances, and drugs (Kanehisa and Goto, 2000; Ogata et al.,
1999). A P-value of <0.05 was deemed statistically significant.

Results

Estimation of immune cell fractions
The CIBERSORT fractions presented in Fig. 1B revealed
CD8+ T cells were consistently lower in sepsis, compared
with normal samples, whereas the neutrophil fraction was
considerably higher in sepsis samples.

Identification of DEGs
Subsequent to pre-processing, a total of 1573 DEGs were
identified in sepsis, relative to control samples. Fig. 2
presents a volcano plot of sepsis DEGs from each dataset.

GO function and KEGG pathway enrichment analysis
R language clusterProfiler, used to apply GO function and
KEGG pathway enrichment analysis, offered a detailed
insight into DEGs, and the GO results were further
categorized functionally to incorporate MF, BP, and CC. For
MF, these DEGs were enriched for MHC class II protein
binding complex, MHC protein binding complex, cytokine
binding, protein tyrosine kinase binding, and protein kinase
regulator activity. Moreover, these genes were significantly
enriched in specific and tertiary granules, cytoplasmic
vesicle lumen, vesicle lumen, and secretory granule lumen in
the CC category. In the BP group, these DEGs were
significantly associated with neutrophil activation,
neutrophil degranulation, neutrophil activation involved in
immune response, neutrophil-mediated immunity, and T
cell activation (Fig. 3 and Tab. 1). The results of the KEGG
pathway analysis showed that DEGs were mainly enriched
in pathways in the hematopoietic cell lineage, Th1 and Th2
cell differentiation, Th17 cell differentiation, inflammatory
bowel disease (IBD), programmed death (PD) ligand 1
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expression and the PD-1 checkpoint pathway in cancer,
human T-cell leukemia virus 1 infection, the T cell receptor
signaling pathway, primary immunodeficiency, Epstein-Barr
virus infection and leishmaniasis (Fig. 4 and Tab. 2).

Discussion

Sepsis, characterized as life-threatening sequential organ failure,
is caused by a dysregulated host immune response to a
pathogen (Pei et al., 2018). It is vital that a balanced host
immune response is maintained to eliminate systemic
inflammatory responses and restore sequential organ
functions. However, the underlying evolutionary mechanisms
of host sepsis-induced inflammation, immunosuppression,
and organ failure remain unknown (Drigo et al., 2018). Some
immune modulators, such as Thymosin alpha 1 (Tα1), have
been employed to great biological effect for septic patients

with systemic inflammatory response syndrome (Pei et al.,
2018; Pica et al., 2018). Although Tα1 seems to serve as an
important alternative therapy supporting treatment for sepsis
in these previous studies, sepsis manifests diversely, including
systemic inflammatory response syndrome, and so identical
treatment is not appropriate for all septic patients.
Nevertheless, it is understood that there are powerful links
between activation of first-line immune cells and the
immunopathogenesis of sepsis (Kumar, 2018). Experiments
investigating dysregulated activation of immune cells during
sepsis progression could provide promising targets for
immunomodulatory therapy.

In order to seek potential targets for immunomodulatory
therapy, we have provided a first glance of associations
between immune status and sepsis. In our current study, we
first downloaded and analyzed the gene expression profiles
of GSE28750 from the GEO database to investigate the
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FIGURE 1. (A) Differences in immune status between normal and sepsis samples. (B) Box plot of 22 immune cells in normal and sepsis samples.
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differential gene expression and immune status between sepsis
and normal samples. Next, we used the CIBERSORT method
to quantify the proportions of immune cells in the sepsis
samples and detected highly sensitive and specific
discrimination of 22 human hematopoietic cell phenotypes,
including B cells, T cells, natural killer cells, macrophages,
dendritic cells, and myeloid subsets. Significance analysis by

the empirical Bayes methods within the Limma package was
then applied to identify DEGs between early detection of sepsis
samples and control samples based on the original CEL files.
We identified a total of 1573 DEGs in sepsis samples compared
with normal tissue samples, and the fractions of CD8+ T cells
were consistently lower as determined by CIBERSORT, whereas
the fractions of neutrophils were significantly higher in the
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sepsis samples. Furthermore, GO function and KEGG pathway
enrichment analysis found that these 1573 DEGs were
significantly associated with neutrophil activation, neutrophil

degranulation, neutrophil activation involved in the immune
response, neutrophil-mediated immunity, and T cell activation
in the BP group.
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TABLE 1

GO enrichment analysis of the DEGs

ONTOLOGY ID Description P-value

BP GO:0042119 neutrophil activation 5.90E-26

BP GO:0043312 neutrophil degranulation 1.67E-25

BP GO:0002283 neutrophil activation involved in immune response 2.61E-25

BP GO:0002446 neutrophil mediated immunity 1.30E-24

BP GO:0042110 T cell activation 6.35E-22

CC GO:0042581 specific granule 2.35E-22

CC GO:0070820 tertiary granule 1.34E-17

CC GO:0060205 cytoplasmic vesicle lumen 3.05E-15

CC GO:0031983 vesicle lumen 3.47E-15

CC GO:0034774 secretory granule lumen 5.28E-15

MF GO:0023026 MHC class II protein complex binding 2.49E-08

MF GO:0023023 MHC protein complex binding 3.01E-07

MF GO:0019955 cytokine binding 8.38E-06

MF GO:1990782 protein tyrosine kinase binding 1.88E-05

MF GO:0019887 protein kinase regulator activity 7.65E-05
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During the first stage of the body’s innate response to
infection, neutrophils which serve as early responders play a
key role in adaptive immune response progress, which
includes anti-microbial CD4+ and CD8+ T-cell responses. It
is well established that a reciprocal relationship exists
between neutrophils and T cells, with neutrophils
suppressing T cell activation. Research has revealed that
neutrophils, by releasing reactive oxygen species,
myeloperoxidase, and arginase to exert their effects, can
suppress human T cell activation in vitro (El-Hag et al.,
1986). A similar phenomenon of neutrophil-mediated T cell
inhibition can be observed in both tumor patients and
normal pregnancy. Recent research has found that with the
increasing proportions of neutrophils, T cell function was
remarkably reduced because of increasing arginase-1 levels
in glioma patients (Kropf et al., 2007). Likewise, during
normal pregnancy, it was found that the higher levels of
arginase-1 expressed by neutrophils in the placenta and
maternal blood were associated with T cell
hyporesponsiveness. In our study, we identified that CD8+ T
cell fractions were consistently lower in sepsis samples,
while the neutrophil fraction was significantly higher in the
sepsis samples.

In conclusion, we suggest a comprehensive estimate of
associations between inflammatory response and sepsis. The
fractions of both CD8+ T cells and neutrophils could
improve our understanding of the heterogeneity of sepsis
that promotes the immune status profiles in sepsis. More
experiments are required to detect the reciprocal
relationship between neutrophils and CD8+ T cells to
elucidate the mechanism of action and identify prospective
insights during sepsis progression.
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