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Abstract:Mitochondria are important in eukaryotic cells due to their functions in energy production and regulation over

other cellular activities. Oocytes are produced by a long and precisely controlled process, the dysfunction of which leads to

impaired female fertility. As oocytes mature, mitochondria are constantly under the regulation of nuclear genes, the

process of which can be modulated by extracellular signals. Understanding how nuclear genes regulate mitochondrial

functions is important for studying animal reproduction and human fertility. As more and more genes regulating

mitochondrial functions in oocytes are being revealed, new approaches for improving female fertility in both human

and animals through mitochondria can be developed.

Introduction

Mitochondria have always been a hotspot for research since
first observed in eukaryotic cells in the late 19th century.
Later, with the invention of the electron microscope in 1956,
scientists observed the pattern of yolk deposition during the
development of the frog oocyte, and found unique
distribution pattern of mitochondria in the cell (KEMP NE,
1956). In the next few decades, more studies observed
changes of mitochondria shape, number and distribution
during oocyte development in many different species
(Bezzaouia et al., 2014; Calarco, 1995; Dadarwal et al., 2015;
Kątska-Książkiewicz et al., 2011; Takahashi et al., 2016;
van Blerkom and Runner, 1984; Wischnitzer, 1967). This
organelle originated from an intrusive bacterium which then
became an indispensable part for the normal development
of oocytes.

Before scientists took an interest in the role of
mitochondria in oocytes, the function of this organelle has
already been widely studied in somatic cells. The most
obvious function is related to cellular respiration, but
mitochondria are also important for maintaining female
fertility besides providing energy for meiosis (Amoushahi
et al., 2018; Krisher et al., 2007). Experiments on oocytes
showed that the proper functioning of mitochondria is vital
for cytoplasmic calcium regulation (Marchant et al., 2002;

Tiwari et al., 2017; Wakai and Fissore, 2019; Wang et al.,
2018a), reactive oxygen species (ROS) production and
intracellular redox potential regulation (Dumollard et al.,
2007), and spindle formation during cell division (Liu et al.,
2016). Mitochondrial copy number is also relevant to female
fertility (May-Panloup et al., 2005; Reynier et al., 2001; Wai
et al., 2010). Abnormal mitochondrial functioning can be
caused by oocyte aging (Perez et al., 2005) and diseases
such as polycystic ovary syndrome (Qi et al., 2020),
thus emphasizing the necessity to learn about the
mechanism of regulating mitochondrial functions during
oocyte development.

The maturation process of oocytes includes meiosis I
(MI) and meiosis II (MII), resulting in the formation of one
oocyte and three polar bodies (PBs). This process might
take from weeks to years in mammals because the
development can be paused for a long time. The oocyte
enters such a quiescence stage at prophase I and remains
there for a long time. In prophase I, mammalian oocytes are
trapped at the germinal vesicle (GV) stage until follicle
stimulating hormone induce them to continue the pre-
ovulatory stage. And then luteinizing hormone triggers
germinal vesicle breakdown (GVBD), which is a process of
nuclear envelope and nucleoli breaking down, followed by
chromosomal condensation. This marks the cell’s readiness
to continue MI and grow into a mature oocyte. Then as the
oocyte proceeds through MI and extrudes the first polar
body, the oocyte remains arrested at MII, waiting to become
fertilized. In both MI and MII, mitochondria aggregate
around the spindle and are asymmetrically divided into two
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cells. Most of them are preserved in the oocyte when polar
bodies are separated and later degenerated, avoiding the
waste of this organelle (Dalton and Carroll, 2013).

Importantly, during MI and MII, patterns of
mitochondrial distribution in oocytes are different among
animal species (Brevini et al., 2005; Dumollard et al., 2007;
Yu et al., 2010). For instance, clustered mitochondria
associated with smooth endoplasmic reticulum (SER) and
lipid droplets are observed in porcine GV oocytes (Cran,
1985; McGaughey et al., 1990). In contrast, mitochondria
are evenly distributed in mouse and cattle oocytes before
GVBD (Bavister and Squirrell, 2000; Tokura et al., 1993).
In human, before GVBD, spherical and oval mitochondria
are absent from the cortical part of the oocyte. In mature
oocytes, transverse mitochondria form mitochondrial-
vesicle complexes and mitochondrial-SER aggregates, both
required for fertilization and early embryogenesis (Pereda
and Croxatto, 1978). Therefore, extra caution should be
taken when using animal models for studying
mitochondria in oocytes.

Most oocytes will remain unfertilized and eventually
enter a process of apoptosis which is called post-ovulatory
oocyte aging, with the remaining small portion of oocytes
supporting female fertility. However, mitochondrial
dysfunction will lead to pre-ovulatory aging in oocytes
(Miao et al., 2009), indicating the important role that
mitochondria play in human oocytes. Many nuclear genes
can regulate mitochondrial functions in oocytes and several
extracellular signaling molecules are shown to have impacts
on oocyte mitochondrial function (Abdulhasan et al., 2017;
Boruszewska et al., 2020; He et al., 2016). This review is
focused on the nuclear control over mitochondria in oocytes
on the basis of several different studies on the pathways and
nuclear genes regulating mitochondrial functions during the
maturation of oocytes.

Mitochondrial Genome
The ancestor of mitochondria in eukaryotic cells is a symbiotic
α-proteobacterium. After a long time of evolving and losing
more than 99% of its genome, only the necessary genes
remain and a large proportion of them are now located in
the nuclear genome (Selosse et al., 2001). By contrast, no
nuclear genes were found in mitochondria to date.

Starting from the Mitochondrial Eve, the common
maternal ancestor of humans today, mitochondrial DNA
(mtDNA) haplotypes were evolving over billions of years.
Human mtDNA haplogroups A-Z were divided based on
studies over different populations from all around the world
(Ruiz-Pesini et al., 2000). The two strands of mtDNA called
heavy and light strand due to different density
centrifugation results (Priesnitz and Becker, 2018) are semi-
conservatively replicated just like nuclear DNA. The double-
stranded circular DNA in human mitochondria is 16.6 kB
long and contains 37 genes, encoding 2 ribosomal RNAs,
22 transport RNAs that are involved in mtDNA translation
processes, and 13 essential subunits out of about totally
80 subunits in the electron transport chain (ETC) (Schon
et al., 2012). The other mitochondrial proteins,
approximately adding up to 1500, are nuclear encoded and
are produced in the cytosol.

As a semiautonomous organelle, the replication of
mtDNA is not tightly coupled to the cell cycle (Clayton,
1991), and mitochondrial number varies greatly in different
cells. Mitochondria are inherited maternally (Dumollard
et al., 2007), which means they are transmitted through the
female germ line. There are more than 100,000 copies of
mtDNA in mature mammalian oocytes, with each
mitochondrion containing 1 or 2 copies (Legros et al.,
2004). Maternal mitochondria support the energy
production of early embryo development, when energy
provided by glycolysis is limited (Barbehenn et al., 1974). By
contrast, the approximately 100 copies of mtDNA in sperm
are ubiquitinated and destroyed during early embryogenesis
(Rojansky et al., 2016) to avoid deleterious mutations of the
sperm mtDNA, which might be caused by exposure to high
ROS levels during spermatogenesis (Sutovsky et al., 1999).

As the blastocyst differentiate to produce germ cells for
the next generation, only a small portion of mitochondria
can be passed on to the next generation. The number of
mitochondria in each cell grows as primordial germ cells
migrate and mature. This process is called the “bottleneck”
of mitochondria replication, and is believed to reduce the
risk of passing pathogenic mtDNA mutations to zygotes
that would harm the development of the embryo. Different
animal species have different sizes of mtDNA bottleneck
(Cao et al., 2009; Floros et al., 2018; Ma et al., 2014; Otten
et al., 2016). So far, the exact mechanism of the mtDNA
bottleneck is not clear with no regulating gene identified as
yet (Cao et al., 2007; Chinnery et al., 2000; Li et al., 2016).

Nuclear Control Over Mitochondria
Several well-established cellular pathways were found to
control mitochondrial functions. Studies on some individual
genes have also revealed their roles in mitochondrial
regulation. Understanding the nuclear control over
mitochondria can help us to develop clinical applications to
improve female fertility. Experiments on human oocytes are
scarce due to a lack of material and ethical problems, so we
collected researches on animals, mainly focusing on mouse
studies (Fig. 1).

AMP-activated kinase
AMP-activated kinase (AMPK) together with MAPK can up-
regulate PGC1α regulating mitochondrial biogenesis. AMPK
is sensitive to cellular AMP/ATP ratio and also has an
impact on cytoskeleton dynamics. In mouse oocytes,
knockout of a1ampk disturbs the regulation of SIRT1, and
the salt-inducible kinases (SIK1 and SIK2) and microtubule
associated protein-regulating kinase (MARK) may
compensate for some of the functions of AMPK (Bertoldo
et al., 2015).

The famous secondary messenger cAMP can regulate
oocyte mitochondrial functions through AMPK in mouse
oocytes. Concentration of cAMP depends on both the
cAMP-synthesizing activities of adenylate cyclases and the
degradation of cAMP by phosphodiesterases. Changes in
cAMP level affects the GVBD initiator MPF. Increased
cAMP in oocytes blocks MPF activation and GVBD, while
increased AMP level will stimulate AMPK by
phosphorylating T172 in the activation loop of the subunit.
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Protein kinase B (PKB) and cAMP-mediated protein kinase A
(PKA) signaling can dephosphorylate an inhibitory site of
AMPK, and the activated AMPK promotes the utilization of
ATP generating catabolic pathways (Stricker et al., 2010).

Mitochondrial transcription factor A
Mitochondrial transcription factor A (TFAM) is a classic
factor controlling mtDNA expression. It belongs to the
HMG box family whose function is to package mtDNA
(Alam et al., 2003). This mitochondrial matrix protein
contributes to the replication and transcription of mtDNA,
thus making it critical for mitochondrial biogenesis during
oocyte development. TFAM works together with TFBM,
POLG and the mtDNA helicase TWINKLE, all of which are
also located in the mitochondrial matrix (Novin et al.,
2015). TWINKLE, POLG and TFAM together stabilize the
structure of mtDNA (Harvey et al., 2007). In a mouse study,
expression level of TFAM increases as the oocyte matures
and then decreases when full development is achieved
(Mahrous et al., 2012). Human studies showed similar
results and the corresponding changes in NRF expression
level in oocytes (Novin et al., 2015).

In the nucleus, nuclear respiratory factor-1 and -2 (NRF1
and NRF2) guarantee the coordination between nuclear and
mitochondrial gene expression by regulating the expression
of TFAM and many other nuclear encoded mitochondrial
proteins. NRF1 can trans-activate promotors of the tfam
gene and many mitochondrial genes encoding respiratory
subunits and factors involved in the replication and
transcription of mtDNA (Machatkova et al., 2012). One

example is DNA methyltransferase1 (DNMT1) which can
be up-regulated by NRF1 and peroxisome proliferator-
activated receptor gamma co-activator 1-alpha (PGC1α).
DNMT1 regulates mitochondrial metabolism by increasing
the levels of nuclear-encoded mitochondrial proteins
(Sirard, 2019).

Factors regulating mitochondrial fusion and fission
Mitofusin-1 and -2 (MFN1 and MFN2) function in the fusion
of mitochondrial outer membrane, while optic atrophy 1
(OPA1) functions in the fusion of mitochondrial inner
membrane. And the fission of mitochondria is mediated by
cytoplasmic proteins such as dynamin-related protein-1
(DRP1) and fission protein 1 (FIS1). The two balanced
processes together maintain the morphology of
mitochondria in mammalian oocytes (Wakai et al., 2014).

In mouse studies, mfn1 andmfn2 overexpression triggers
mitochondrial aggregation and disturbs the distribution of the
chromosomes and SER, and decreasing the Ca2+ storage in
SER. Deletion of mfn1 down-regulates cadherins and
connexins, thus damaging oocyte-granulosa cell
communication that eventually results in female infertility
(Zhang et al., 2019a). Knockout of mfn2 causes bigger,
rounder and fewer mitochondria and shorter telomeres
(usually positively correlated with mtDNA copy number) in
mice oocytes but has little effect on female reproduction
(Zhang et al., 2019b). Interestingly, although MFN1 alone
can support female fertility, MFN1 and MFN2 have
nonredundant roles in oocytes. In fact, the loss of MFN2
can partly reverse the negative effect of MFN1 loss on

FIGURE 1. Nuclear regulation of mitochondrial functions in mouse oocyte.
All proteins reviewed are encoded by the nuclear genome. Proteins regulating mouse oocyte mitochondrial functions are distributed in
cytoplasm, nucleus and mitochondria. Cytoplasmic proteins including AMP-activated kinase (AMPK), dynamin-related protein-1 (DRP1),
fission protein 1 (FIS1), sirtuin 2 (SIRT2), engulfment and cell motility domain-containing protein 2 (ELMOD2), growth arrest-specific gene 6
(GAS6), and Ras related protein Rab-7 (RAB7) form pathways to regulate intracellular energy production, cytoskeleton dynamics and other
activities related to mitochondrial functions. Nuclear respiratory factor-1 (NRF1), nuclear respiratory factor-2 (NRF2), sirtuin 1 (SIRT1),
DNA methyltransferase1 (DNMT1), and ubiquitin-like 5 (UBL5) in the nucleus have functions in regulating mitochondrial activities.
Mitochondrial transcription factor A (TFAM), mitochondrial transcription factor B (TFBM), twinkle mtDNA helicase (TWINKLE),
sirtuin 3 (SIRT3), caseinolytic peptidase P (CLPP), mitofusin-1 (MFN1), mitofusin-2 (MFN2), mitoguardin 1 (MIGA1), mitoguardin 2
(MIGA2), and Mito-phospholipase D (Mito-PLD) are important nuclear-encoded mitochondrial proteins. Vermilion arrows represent
activations, bluish green arrows represent inhibitions, dashed arrows represent regulative or indirect effects on the downstream proteins
or other molecules, and solid double arrow represents transformation between two types of molecules.
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female fertility. This could be explained by upregulated
phosphoinositide 3 kinase-protein kinase B (PI3K-PKB)
signaling, which is dysregulated in MFN1 deficient mice,
and is of vital importance in the oocyte-granulosa cell
communication process (Carvalho et al., 2020).

Mitoguardin (MIGA) is located on the outer-membrane
of mitochondria and promotes the mitochondrial fusion.
MIGA1 and MIGA2 performs their function by interacting
with Mito-phospholipase D (Mito-PLD), which is also
located on the outer-membrane of mitochondria and serves
as a signaling molecule in the process of mitochondrial
fusion. Knockout of MIGA and MIGA2 causes subfertile
female mice with decreased mtDNA copy number and
mitochondrial membrane potential (Liu et al., 2016).

In mouse oocytes, drp1 knockout leads to aggregated and
elongated mitochondria with less contact with SER. Thus Ca2+

storage in SER decreases and intercellular communication is
impaired, blocking GVBD and oocyte maturation (Udagawa
et al., 2014). Fission protein 1 (FIS1) recruits DRP1 in the
cytoplasm to the outer membrane of mitochondria. INF2
also mediates mitochondrial fission by recruiting DRP1 to
mitochondrial division sites (Pan et al., 2020).

Membrane-associated RING-CH protein 5 (MARCH5),
a mitochondrial ubiquitin ligase, participates in controlling
mitochondrial fission and fusion by stimulating
mitochondrial elongation. Knockdown of march5 leads to
reduced DRP1 and increased MFN1 levels (Park et al., 2010).

Factors mediating mitochondrial distribution
The serine/threonine kinase rho-kinase (ROCK) serves as the
effector of the small GTPase Rho. ROCK can phosphorylate
LIM kinase (LIMK) 1 and 2 to promote the phosphorylation
of Cofilin, thus inhibiting its actin-depolymerizing activity.
After GVBD, ROCK is colocalized with mitochondria in
mouse oocytes. Disrupting the distribution of ROCK leads
to fewer mitochondria around spindles and harms the ATP
supply for oocyte maturation (Duan et al., 2014).

An important microtubule-dependent monomeric
motor, kinesin family member 1B (KIF1B) functions during
mouse oocyte development. Loss of KIF1B causes reduced
ATP level and disrupts mitochondrial distribution during
the metaphase of meiosis (Kong et al., 2016).

A small GTPase RAB7 regulates mitochondria
distribution and actin dynamics in mouse oocytes. It also
maintains mitochondrial membrane potential during
meiosis, possibly by phosphorylating DRP1 at Ser616 (Pan
et al., 2020).

Sirtuin family
There are seven members of the sirtuin family (SIRT1-7)
observed in mammals. They are NAD-dependent deacylases
with a wide range of histone or non-histone targets. SIRT1,
6, and 7 are found in the nucleus, while SIRT3, 4, and 5 are
in mitochondria. SIRT2 exists mainly in the cytoplasm but
can also be found in the nucleus.

In mouse studies, SIRT1, SIRT 2, and SIRT 3 have been
proven to regulate intracellular ROS, and the inhibition of
their activity in aged oocytes lead to dramatic increases in
ROS levels and decreases female fertility (Zhang et al., 2015;
Zhang et al., 2016). SIRT1 has overlapping functions with

SIRT3, and SIRT1 levels rises when sirt3 gene is knocked
out (Iljas and Homer, 2020).

SIRT3 regulates the acetylation of mitochondrial
regulatory proteins and many other proteins in cellular
metabolic pathways such as tricarboxylic acid cycles (Zhao
et al., 2016). Less sirt3 expression was observed in human
oocytes matured in vitro, making it a possible target to
improve assisted reproductive technology outcomes.

SIRT2, which can be competitively inhibited by NADH,
can suppress the expression of many genes. SIRT2 inhibition
disturbs the distribution of mitochondria, SER and cortical
granules during meiosis, and can also inhibit mitochondrial
biogenesis by downregulation of tfam in bovine oocytes
(Xu et al., 2019).

Proteins in mitochondrial unfolded protein response
The belief that mitochondria lack methods to repair DNA was
proven wrong with the discovery of several nuclear-like
pathways of mtDNA repairment including homologous
recombination (Benkhalifa et al., 2014). Even when mutations
in mtDNA trigger mitochondrial dysfunction, mtUPR can
prevent oocyte aging. Mitochondrial unfolded protein response
(mtUPR) is activated under mitochondrial stress such as
excessive ROS. Decreased efficiency of transporting
mitochondrial peptides leads to accumulated unfolded proteins
of various functions in the mitochondrial matrix, which will
hamper cell activities (Aldridge et al., 2007). So increased
folding or degradation, limited import and decreased
translation of mitochondrial proteins can reverse this situation.
Caseinolytic peptidase P (CLPP) in the mitochondrial matrix
activates mtUPR, the depletion of which will activate the
mTOR pathway. Misfolded proteins cleaved by CLPP are
exported to the cytoplasm to activate the stress activated
transcription factor 1 (ATFS1). Then ATFS1 can enter the
nucleus to activate ubiquitin-like 5 (UBL5) and affect the
transcription of nuclear genes (Wang et al., 2018b).

Other factors regulating mitochondria in mouse oocytes
Engulfment and cell motility domain-containing protein
2 (ELMOD2) belongs to the ELMOD family and has the
strongest GTPase-activating activity compared to other
members within the family. Its main targets are a group of
typical GTPases called the ADP-ribosylation factors (ARFs),
and particularly the ADP-ribosylation factor-like 2 (ARL2)
with multiple aspects of impacts on mitochondria in mouse
oocytes. Loss of ELMOD2 reduces ATP level and disrupts
mitochondrial distribution during mouse oocyte
development (Zhou et al., 2017).

Growth arrest-specific gene 6 (GAS6) regulates
mitophagy through MTOR and BNIP3 proteins in mouse
oocytes. Loss of GAS6 functioning leads to overactivation of
mitochondria and impairs oocyte maturation. This process
includes increased mitochondrial membrane potential,
increased ATP level, increased expression of mitochondrial
proteins and tyrosine-protein phosphatase non-receptor
type 11 (PTPN11), and decreased expressions of
mammalian target of rapamycin (mTOR), mitogen-activated
protein kinase (MAPK), B-cell lymphoma 2 interacting
protein 3 (BNIP3) and other mitophagy-related genes (Kim
et al., 2019).
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Pathways regulating oocyte mitochondria in other animal
models
Besides mouse models, scientist have also used many other
species for oocyte studies. Some well-established pathways
regulating oocyte mitochondrial functions are observed in
Xenopus, porcines, Drosophila (Fig. 2) and other animal
models (Paranko et al., 1996). They may provide inspiration
for studying mouse and eventually promotes human clinical
applications, or can directly benefit modern animal
husbandry by helping to improve female fertility.

Xenopus studies helped us understand the mechanisms
underlying apoptosis related to mitochondria in oocytes. In
mammals, aged unfertilized oocytes and oocytes
encountering unfavorable conditions enter apoptosis.
Apoptosis also eliminates more than 99% of germ cells in
the ovary, which can be triggered by both intrinsic and
extrinsic pathways. The former is mitochondria-mediated
and the latter is achieved by the cell surface death receptor,
and the two pathways are linked by the cleavage of BID
(Yue et al., 2015). The cell death process depends on both
Cytochrome c (Cyt c) release from the intermembrane space
of mitochondria and caspase activation. And the regulation
comes from the B-cell lymphoma 2 (BCL2) family including
BAX, BAD, BCL extra large (BCLXL) and myeloid cell
leukemia 1 (MCL1). Cyt c is released into the cytosol, where
it forms a complex with apoptotic protease activating factor
1 (APAF1) to activate procaspase 9, which then activates
caspase 3. When the oocyte is stimulated by a death signal,
phosphorylated BCL2 associated agonist of cell death (BAD)
is translocated to the outer membrane of mitochondria,
subsequently activating BCL2-associated X protein (BAX)
and inactivating anti-apoptotic proteins. BAD activity is
inhibited in prophase oocytes, with mediating phosphatases
such as protein phosphatase 2A, protein phosphatase 1, and
protein phosphatase 2C controlling the meiosis resumption.
When ovulation happens, BAD is phosphorylated on Ser128
by mechanisms controlled by CDK1 and c-JUN NH2-
terminal protein kinase (JNK), which will ultimately trigger
apoptosis unless the oocyte is fertilized (Du Pasquier et al.,

2011). Mitochondrial dysfunction reduces mitochondrial
membrane potential through mitochondrial permeability
transition pores, triggering the release of Cyt c, apoptosis
inducing factor (AIF) and endonuclease G (Tsui et al., 2017).

Several factors mediating oocyte mitochondrial functions
are revealed in porcine studies. One example is POLG, the
dominant mutations of which lead to premature ovarian
failure in clinical studies (Pagnamenta et al., 2006). Both
mitochondrial DNA polymerase subunit gamma 1 and 2
(POLG1 and POLG2) are linked with the proper
functioning of the mitochondrial genome. The catalytic
subunit encoded by POLG1 and the accessory subunit
POLG2 compose a complex involved in mtDNA replication
(Harvey et al., 2007). The expression level of polg2 keeps
increasing during oocyte development and decreases when
the oocyte comes close to maturation. Knockdown of polg2
causes abnormal spindle and actin distribution and inhibits
ATP synthesis in porcine oocytes (Lee et al., 2015). TFAM
initiates a process to enable POLG1 to copy mtDNA. Other
factors involved in this process include POLG2,
mitochondrial single stranded binding protein (mtSSB),
mitochondrial-specific DNA topoisomerase I (TOP1MT),
and twinkle mtDNA helicase (TWINKLE) (Korhonen et al.,
2003). Other proteins regulating mitochondrial functions in
porcine oocytes include mitochondrial permeability
transition pore (mPT), a nonselective channel in the inner
membrane of mitochondria, VDAC, an anion channel in
the outer membrane of mitochondria, and cyclophilin-D
(Cassará et al., 2009; Schatten et al., 2014).

The insulin pathway studied in Drosophila oocyte has
also been studied in mouse models but focused on other cell
types. According to the fruit fly oocyte studies, activated
JNK enhances insulin receptor expression and initiates the
feedforward insulin-MYC signaling loop, promoting
mitochondrial respiration and biogenesis by increasing the
levels of electron transport chain (ETC) subunits and other
mitochondrial functional proteins. It is assumed that the
insulin signal stabilizes the MYC protein by inhibiting GSK
activity of phosphorylating v-myc myelocytomatosis viral

FIGURE 2. Nuclear regulation of
mitochondrial functions in oocytes
from different animal models.
On the left is a Xenopus oocyte
presenting the mitochondrial-related
apoptosis mechanism. In the middle is
a porcine oocyte representing nuclear-
encoded mitochondrial proteins with
regulating functions identified so far.
On the right is a Drosophila oocyte
presenting the insulin pathway
regulating mitochondrial functions.
Vermilion arrows represent activations,
bluish green arrows represent
inhibitions, dashed arrows represent
regulative or indirect effects on the
downstream proteins or other
molecules, and solid arrow represents
the transferring process of molecules.
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oncogene homolog (MYC) and leading to its ubiquitination
and degradation (Wang et al., 2019). The insulin pathway
inhibits glycogen synthase kinase 3 (GSK3), a target gene of
PKB, and represses mitochondrial respiratory quiescence by
adjusting the protein content in mitochondria through
protein import, export and synthesis. The ecdysone
signaling pathway, another pathway linked to insulin
function, represses PI3K and its downstream mTOR
functioning (Sieber et al., 2016). Mitogen activated protein
kinase kinase 2 (MAP2K2) is also identified as part of the
insulin receptor-signaling pathway (Laskowski et al., 2017).

Clinical Application of Mitochondria-Controlled Oocyte
Development
With the development of global economy and subsequent changes
in modern life styles, infertility is becoming a more and more
severe threat to the wellbeing of humans and human societies.
According to relevant data, female infertility is the leading cause
of more than 15% couples in developed countries and 25%
couples in developing countries who fail to have children in the
first five years of marriage (World Health Organization 2016).
With several important functions in regulating oocyte
maturation discussed in the above sessions, mitochondria are
currently a research hotspot for improving oocyte quality.

Scientists have found several factors that harm the
quality of mitochondria in human oocytes including delayed
childbearing age (Schwartz and Mayaux, 1982; Sugimura
et al., 2012; van Noord-Zaadstra et al., 1991; Wang et al.,
2009), environmental heat stress (Gendelman and Roth,
2012), abnormal blood glucose level, and exposure to
cigarette smoke (Grindler and Moley, 2013). For instance,
exposure to cigarette smoke leads to abnormally high levels
of BAX expression and ROS in oocytes. The popular
assisted reproductive technology, oocyte in vitro maturation
(IVM) also harms mitochondrial functioning. IVM
procedures lead to lower mtDNA copy number and
decreased Cyt c oxidase activity in oocytes, which have
negative effects on reproductive outcome (Amoushahi et al.,
2018; Zeng et al., 2009).

Mitochondrial transfer was suggested as a therapeutic
strategy for infertility treatment in 1998 but was suspended
by the US Food and Drug Administration in 2002 due to
uncertain downstream effects (Brown et al., 2006). Culture
media additives such as coenzyme Q10 (Heydarnejad et al.,
2019), melatonin (An et al., 2019), nitric oxide, and
antioxidant molecule cocktails (Labarta et al., 2019) can
improve the embryonic development in animal models.
Mitochondria-targeting transcription activator-like effector
nucleases (mitoTaLens), mitochondrially-targeted zinc finger
nucleases (mtZFNs), and mitochondria-targeted adeno-
associated virus (mTS-aav) aimed at altering mtDNA
sequences to enhance female fertility are also currently
explored (Gammage et al., 2014; Kleinstiver et al., 2016; Yu
et al., 2015). Such approaches to achieve ovarian
rejuvenation are still at early stage, allowing us to expect
more advances and achievements in the future.
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