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Abstract: Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by abnormal cellular and

humoral immune responses and excessive autoantibody production. The precise pathologic mechanism of SLE remains

elusive. The advent of single-cell RNA sequencing (scRNA-seq) enables unbiased analysis of the molecular differences of

cell populations at the single-cell level. We used scRNA-seq to profile the transcriptomes of peripheral blood

mononuclear cells from an SLE patient compared with a healthy control (HC). A total of 16,021 cells were analyzed

and partitioned into 12 distinct clusters. The marker genes of each cluster and the four major immune cell types

(B cells, CD4+ T cells, CD8+ T cells, myeloid cells, and NK cells) were determined. Moreover, several genes involved

in antigen processing and presentation through MHCII were highly enriched. GO enrichment analyses revealed

abnormal gene expression patterns and signaling pathways in SLE. Of note, pseudotime analysis revealed that there

was a different lineage hierarchy in the peripheral blood mononuclear cells (PBMCs) of the SLE patient, indicating

that the cell states were substantially altered under disease conditions. Our analysis provides a comprehensive map of

the cell types and states of the PBMCs of SLE patients at the single-cell level for a better understanding of the

pathogenesis, diagnosis, and treatment of SLE.

Introduction

Systemic lupus erythematosus (SLE) is a complex
autoimmune disorder that mainly afflicts women of child-
bearing age. This disease is characterized by the abundant
production of autoantibodies to components of the cell
nucleus (Maria and Davidson, 2018; Sui et al., 2013).
Although the precise pathologic mechanism of SLE is not
yet fully understood, susceptibility genes, hormones,
immunomodulatory factors, and environmental risk factors
have been reported to be important for the development of
the disease. Many abnormalities of the immune system
leading to loss of immune tolerance have been reported in
SLE (Sui et al., 2013). Dysregulated immune activation and

responses of both T and B cells and the abnormal
production of proinflammatory cytokines play a crucial role
in the occurrence and progression of tissue pathology and
organ injury in SLE. The molecular basis of the abnormal
immune response in SLE remains elusive (Sui et al., 2015).
Identification of the underlying genetic and biochemical
mechanisms will enhance our understanding of the
pathogenesis of SLE as well as identify novel targets for
future pharmacological intervention.

Advances in sequencing technology now permit
interrogation of complex sequencing targets at a reasonable
cost and unprecedented depth. Bulk cell RNA-sequencing
(RNA-seq) technology is widely used in transcriptome
profiling to study gene and transcript expression levels,
transcriptional structures, and splicing patterns (Li and Li,
2018). However, conventional RNA-seq methods process
millions of cells, and cellular heterogeneity cannot be
addressed since signals of variably expressed genes would be
averaged across cells. The understanding of biological
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systems requires knowledge of their individual components.
Fortunately, single-cell RNA sequencing (scRNA-seq)
technologies are now emerging as a powerful technology for
unbiased analysis of cell types and cell states based on gene
activity (Rheaume et al., 2018; Zeisel et al., 2018). scRNA-seq
allow unbiased determination of cellular heterogeneity, the
discovery of previously unrecognized disease-associated cell
populations or functional states, and identification of novel
biomarkers and potential molecular regulators (Cochain et
al., 2018). Here, we used systematic scRNA-seq to generate a
molecular census of cell types and states within peripheral
blood mononuclear cells (PBMCs) from an SLE patient
compared with a healthy volunteer. Analysis of immune cells
by scRNA-seq identified B cells, CD4+ T cells, CD8+ T cells,
myeloid cells, and NK cells. We combined this technology
with clustering analysis to resolve the differential responses
by cell type and characterize gene expression at the single-cell
level to identify abnormal cellular subpopulations and
disordered signal pathways involved in the disease initiation,
maintenance, and progression of SLE.

Materials and Methods

Study group
An SLE patient and a healthy individual of the same gender
and age (female, 34-year-old, Chinese) were enrolled in the
study. SLE was confirmed by pathologic diagnosis and
clinical evidence. SLE diagnosis was according to the 2012
Systemic Lupus International Collaborating Clinics (SLICC)
classification criteria (Hartman et al., 2018). The clinical
characteristics of the patient were as follows: Acute
cutaneous lupus erythematosus is present in the face and
arms; anti-dsDNA antibodies and antinuclear antibody were
positive; 24-h urine protein was 2.4 g/day; the ESR value
was 77; the patient underwent renal biopsy for diagnostic
evaluation, and identified as lupus nephritis (WHO class III
nephritis). Twenty milliliters of whole blood samples were
collected from each subject. Peripheral blood mononuclear
cells (PBMCs) were isolated from whole blood using density
gradient centrifugation with Ficoll-Hypaque. This study was
conducted in accordance with the tenets of the Declaration of
Helsinki and was approved by the Ethics Committee of the
Shenzhen People’s Hospital, China (ref. no. 2015-313). All
participating individuals provided written informed consent.

Single-cell capture, library preparation, and RNA-seq
The PBMC suspension was diluted to a concentration of ∼1 ×
106 cells/mL in PBS plus 0.04% bovine serum albumin (BSA).
The percent PBMC viability was more than 80%. PBMC count
and viability were determined using trypan blue on a Countess
FL II system. Then, single-cell RNA-seq (scRNA-seq) libraries
were prepared following the Single Cell 3’ Reagent Kit User
Guide v2 (10X Genomics) (Xie et al., 2018). Briefly, cellular
suspensions were loaded on a Chromium Controller
instrument (10X Genomics) to generate single-cell gel bead-in-
emulsions (GEMs). GEM-reverse transcription (GEM-RT)
reactions were performed in a 96-deep well reaction module:
55°C for 45 min, 85°C for 5 min, and hold at 4°C. After the
RT step, the GEMs were broken, and barcoded cDNA was
purified with DynaBeads MyOne Silane Beads (Thermo Fisher

Scientific, 37002D). Subsequently, cDNAs were amplified with
a 96-Deep Well Reaction Module (98°C for 3 min; cycled
12 times: 98°C for 15 s, 67°C for 20 s, and 72°C for 1 min; 72°
C for 1 min; hold at 4°C) and cleaned up with the SPRIselect
Reagent Kit (Beckman Coulter) (Scott et al., 2018). Indexed
sequencing libraries were constructed using the GemCode
Single-Cell 3’ Library Kit for enzymatic fragmentation, end
repair, A-tailing, adaptor ligation, ligation cleanup, sample
index PCR, and PCR cleanup (Xie et al., 2018). Quantification
of the constructed libraries was evaluated using the
QubitdsDNA HS Assay Kit (Thermo Fisher), Agilent cDNA
High Sensitivity Kit, and Kapa DNA Quantification Kit for
Illumina platforms, according to the manufacturer’s
instruction. The library was sequenced on an Illumina
HiSeq2500 using the paired-end 2 × 125 bp sequencing
protocol. Sequencing run parameters were set up according to
version 2 chemistry, and the number of cycles for each read
was as follows: Read 1: 26 cycles, i7 index: 8 cycles, i5 index:
0 cycles, and Read 2: 98 cycles (D’Avola et al., 2018).

Processing of scRNAseq data
Single-cell expression was analyzed using CellRanger software
(version 2.1.1) to perform quality control, sample
demultiplexing, barcode processing, and single-cell 3’ gene
counting as previously described (Zheng et al., 2017).
Sequencing reads were aligned to the UCSC hg38
transcriptome using the Cell Ranger suite with default
parameters. As a quality control (QC) step, we first filtered
out genes detected in less than three cells and cells where
< 200 genes had nonzero counts. In addition, cells with a
percentage of total unique molecular identifiers (UMIs)
derived from the mitochondrial genome greater than 10%
were removed since increased detection of mitochondrial
genes can be associated with cells undergoing stress and cell
death (Ilicic et al., 2016). The remaining data were
normalized and log-transformed, and the log-transformed
matrix was used for all downstream analyses. Based on the
Louvain modularity optimization algorithm, the cluster
identities were defined by K-means clustering in Cell
Ranger. In addition, we adopted the DDRTree method for
pseudotime analysis. Briefly, genes with the top 1,500
highest standard deviations were obtained as highly variable
genes. Principal component analysis (PCA) was used for
dimensionality reduction using highly variable genes. Using
the first ten principal components as input, we then used
t-distributed stochastic neighbor embedding (t-SNE) for
data visualization in two dimensions.

Cluster cell type annotation and marker gene identification
We used the feature plot function to highlight the expression of
known marker genes to identify which clusters belonged to
which immune cell type. Markers used to type cells included
CD4, CD3D, CD3E, and CD3G (CD4+ T cells); CD8A, CD8B,
CD3D, CD3E, and CD3G (CD8+ T cells); CD19, MS4A1,
CD79A, and CD79B (B cells); and S100A8, S100A9, and LYZ
(myeloid cells); CD14, CD68, and CSF1R (monocytes cell);
CD4, FOXP3, IL2RA (Regulatory T cell); IL17RA, IL17RC,
IL17RE (Th17 cell); NCAM1 (NK cell); FUT4 (neutrophils).
Then, to identify marker genes for each of these 12 subclusters
within these 5 major cell types, we used the Seurat
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FindMarkers function to contrast cells from that subcluster to all
other cells of that subcluster (Lambrechts et al., 2018). Marker
genes were required to have an average expression in that
subcluster that was >2.0-fold higher than the average
expression in the other subclusters from that cell type and a
p-value <0.05. Violin plots for the given genes were generated
using the Seurat toolkit VlnPlot function (Burl et al., 2018). In
addition, we used the PANTHER Overrepresentation Test to
assess the Gene Ontology (GO) of DEGs (http://www.
geneontology.org/), with p-values corrected by the Bonferroni
adjustment for multiple comparisons.

Statistical analysis
Assessment of statistical significance was performed using
unpaired t-tests or Mann–Whitney U-tests where appropriate.
Statistical analyses were performed using SPSS20, and a two-
tailed p-value less than 0.05 was considered significant.
P values are indicated as follows: *p < 0.05; **p < 0.01; ***p
< 0.001; ****p < 0.0001; not significant (ns) p > 0.05.

Results

To generate a deep transcriptional map of the immune cell
states and gene expression in the SLE patient at the

single-cell level, we performed scRNA-seq analysis on total
PBMCs from an SLE patient compared with an HC
individual. After the aapplication of quality control filters,
8,030 cells from the SLE patient and 7,991 cells from the
HC were included in the scRNA-seq analysis. The median
numbers of UMIs and genes detected per cell in the SLE
patient were 3,137 and 936, respectively. In the HC, we
detected a median of 3,138 UMI counts and 825 genes per
cell. Sequencing saturation was 84.0% and 86.7% for the
SLE and HC groups, respectively, indicating a
comprehensive sampling of the available transcripts. The
number of detected UMIs and genes and the percentage of
UMIs derived from mitochondrial and ribosomal genomes
in each cell are displayed in Supplementary Figs. 1 and 2.

Single-cell profiling and unbiased clustering of PBMCs
To construct a global atlas of immune cells, we merged data
across the SLE patient and the healthy controls. We then
reduced the dimensionality of the expression matrix and
placed individual cells into two-dimensional space using
tSNE, revealing a diverse set of 12 clusters (Fig. 1A). The
percentage of each cluster in the SLE and HC groups is
displayed in Supplementary Tab. 1. Based on the expression
of known markers for each cell type, we designated these

FIGURE 1. Unbiased characterization of the immune system across SLE patients and healthy controls.
(A) tSNE plot of 16,021 PBMCs (8,030 cells from the SLE patients and 7,991 cells from the HCs) passing quality control, color-coded by the
sample type of origin (left) and their associated cluster (right). Each point represents a cell, and each cell is grouped into one of the 12 clusters.
The complete list of DEGs that define these clusters is presented in Supplementary Tab. 2. (B) Five major immune cell types (B cells, CD4+ T
cells, CD8+ T cells, myeloid cells, and NK cells) were identified by the expression of known markers for each cell type. (C) Feature plots of
canonical markers for B cells are shown, and the gradient of purple reflects expression levels.
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clusters as B cells, CD4+ T cells, CD8+ T cells, myeloid cells, NK
cells, and monocytes cells (Figs. 1B, 1C), Supplementary Figs. 3
and 4). In addition, CD4+ T cells were further subdivided into
10 clusters (Supplementary Fig. 5), and myeloid cells were
further subdivided into 5 clusters (Supplementary Fig. 6).
Moreover, a few scattered, non-aggregated cells were also
identified, which include regulatory T cells (Supplementary
Fig. 4B), Th17 cells (Supplementary Fig. 7), and neutrophils
(Supplementary Fig. 8).

Major immune cell type-specific markers
To further differentiate these major immune cell types (B cells,
CD4+ T cells, CD8+ T cells, myeloid cells, and NK cells), we
then analyzed differentially expressed genes between cell
types based on mean expression and covariance patterns to
discover marker gene sets sufficient to uniquely identify cell
types with high probability (Supplementary Tab. 2). A
heatmap of the top 20 genes that were unique to each
cluster based on the average log fold-change showed a high
degree of heterogeneity between the clusters (Fig. 2). B cells
are distinguished by harboring a unique set of significant
genes, including IGLC2, IGKC, HBB, IGLC3, and HBA1,
etc. A set of strong, unique signature genes, including LTB,
IL7R, PPBP, MAL, and TRAT1, were found to be highly
and specifically expressed in CD4+ T cells from both the

SLE and HC groups. CCL5, GZMH, CD8B, NKG7, CD8A,
etc., were the most abundant genes expressed in CD8+ T
cells. GNLY, CMC1, PRF1, XCL2, and CLIC3 were
significantly expressed in NK cells. LYZ, S100A9, S100A8,
CST3, and FCN1 were significantly expressed in myeloid
cells. In addition, the top 20 most distinct signature genes in
each cell type were presented as violin plots and compared
for the differences between the SLE and HC groups (Fig. 3,
Supplementary Figs. 9–17).

Gene expression differences between SLE and HC groups in
each immune cell type
The scRNA-seq analysis allowed us to perform a detailed
comparison of the gene expression patterns between the SLE
and HC groups in each immune cell type. Based on the
selection criteria, fold change (FC) ≥ 2 and p-value < 0.05,
we identified 93, 81, 148, 156, and 93 differentially
expressed genes (DEGs) between the SLE and HC groups in
B cells, CD4+ T cells, CD8+ T cells, NK cells, and myeloid
cells, respectively. Among these DEGs, DNAJB1,
MARCKSL1, RPS26, TCL1A, and HSPA1B were the genes
with the strongest downregulation, and HBB, HBA2, HBA1,
S100A8, and IGHG3 were the genes with the strongest
upregulation in the B cells of the SLE patient. SOX4,
MARCKSL1, KLF2, DNAJB1, and FHIT were the top

FIGURE 2. The specificity of marker gene expression.
Heatmap of standardized expression for the top 20 marker genes identified for each of the four immune cell types (B cells, CD4+ T cells, CD8+

T cells, myeloid cells, and NK cells). Genes are in rows, and single cells are in columns. Yellow indicates high expression of a particular gene,
and purple indicates low expression.
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downregulated genes, and HBB, HBA2, S100A8, S100A9, and
HBA1 were the top upregulated genes in the CD4+ T cells of
the SLE patient. In the CD8+ T cells of the SLE patient, the
top 5 significantly downregulated genes were GNLY, DNAJB1,
HSPA6, TRDC, and TYROBP; the top 5 significantly
upregulated genes were HBB, S100A8, HBA2, S100A9, and
IFI27. In addition, the top downregulated genes for the NK
cell of the SLE patient were GADD45B, JUN, EGR1, PTGDS,
and HSPA6, and the top 5 significantly upregulated genes
were HBB, S100A8, CD3D, S100A9, and HBA2. Moreover,
IGHG2, TMEM176B, GNLY, CEBPD, and FCER1A were the
genes with the strongest downregulation, and HBB, HBA2,
MT2A, FOLR3, and IFI27 were the genes with the strongest
upregulation in the myeloid cells of the SLE patient.

Differentially expressed genes in GO/KEGG analysis
To further investigate SLE disease-associated cell functional
states and potential molecular regulators, we performed GO
analysis of the differentially expressed genes (DEGs) between
the SLE and HC groups and found that biological processes
such as immune system process, immune response, cell
activation, defense response, leukocyte activation, immune
effector process, response to stress, regulation of immune
system process, leukocyte mediated immunity, etc., were
highly enriched in B cells, CD4+ T cells, NK cells and

myeloid cells (Fig. 4, Supplementary Figs. 13–17). GO term
analysis of CD8+ T cells revealed enrichment of expected
biological processes such as cell cycle, mitotic cell cycle
process, mitotic cell cycle, cell cycle process, and cell cycle
phase. Based on the DisGeNET disease database, we found
that these DEGs were highly enriched in SLE or rheumatoid
arthritis diseases in all four major immune cell types (B cells,
CD4+ T cells, CD8+ T cells, myeloid cells, and NK cells),
which confirmed the reliability of the experimental results
and indicated that SLE is a highly complex disease. Moreover,
both the KEGG pathway and protein-protein interaction
network analyses were performed on DEGs between the SLE
and HC groups. Notably, the IL-17 signaling pathway and
Th17 cell differentiation were highly enriched in B cells,
CD4+ T cells, and monocytes.

Cell states were substantially altered in SLE
By means of pseudotemporal ordering of single cells, we
elucidated how these cell types and states were related to
each other. We reconstructed differentiation trajectories to
generate a trajectory plot that can reflect both branched and
linear differentiation processes (Nguyen et al., 2018). Cells
located on the same or adjacent branches are expected to be
more hierarchically related compared to cells on the
neighboring branches in a given trajectory tree. Our unbiased

FIGURE 3. Violin diagram showing gene expression. Comparison of the expression distribution of the top 20 marker genes between the SLE
patients and the healthy controls in CD4+ T cells is indicated by violin plots.
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clustering analysis and pseudotemporal reconstruction of
differentiation trajectories revealed that five cell states were
found in both the SLE and HC groups. As shown in Fig. 5,
however, the morphology of differentiation trajectories was
inverted between the SLE and HC groups, which suggested a
different lineage hierarchy among the major immune cell
types of PBMCs between these two groups. Therefore, cell
states may be substantially altered in SLE disease states.

Discussion

Systemic lupus erythematosus is a complex autoimmune
disease. Abnormal expression of key signaling molecules
and defective immune cell functions play a significant role

in the pathogenesis of SLE. However, the precise pathologic
mechanisms underlying abnormal immune cell functions in
SLE remain incompletely understood. Here, we report
comprehensive single-cell expression profiling of PBMCs in
a patient with SLE and a healthy control individual. We
analyzed 16,021 cells (8,030 cells from the SLE patient and
7,991 cells from the HC). Clustering analysis identified
12 distinct cell clusters consisting of as few as 104 cells to as
many as 3,080 cells per cluster. This analysis identified
12 clusters, including 5 major immune cell types: B cells,
CD4+ T cells, CD8+ T cells, myeloid cells, and NK cells. The
marker genes of each cluster and the four major immune
cell types are displayed. Of note, we discovered a large
number of differentially expressed genes (DEGs) between

FIGURE 4. Analysis of differences in gene expression variance between the SLE patients and the healthy controls in B cells.
(A) Gene ontology enrichment analysis of the differentially expressed genes (DEGs) between the SLE patients and the healthy controls in B
cells. (B) DEGs between the SLE and HC groups in B cells were highly enriched in SLE and rheumatoid arthritis diseases and immune-related
diseases. (C) KEGG pathway analysis of the DEGs between the SLE patients and the healthy controls in B cells. The top 20 pathways are
displayed. The size of the circles depicts the gene count, and its color depicts significance levels. The number 12-16 in the label is
equivalent to the -log p-value. (D) Protein-protein interaction network analysis of the DEGs between the SLE patients and the healthy
controls in B cells. The top 50 genes were displayed based on the degree of complexity of the nodes.
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the SLE and HC groups in B cells, CD4+ T cells, CD8+ T cells,
myeloid cells, and NK cells. Our analyses confirmed many
important observations made previously in vitro, in bulk, or
using animal models. A previous study proved that distinct
transcriptional profiles were observed in B cell, CD4+ T cell,
and CD33+ myeloid cell subsets of the SLE patients
compared with the controls (Becker et al., 2013). Among the
top 5 significantly downregulated/upregulated expressed
genes identified in each immune cell type, S100A8 and
S100A9 could be found in B cells, CD4+ T cells, CD8+

T cells, and NK cells, which suggested that these two genes
played an essential role in the pathogenesis of this SLE
patient. Previous research has indicated that differential
expression of S100A8/A9 was found in SLE patients, and
high levels of S100A8/A9 predispose patients to
cardiovascular disease (Lood et al., 2016; Pavon et al., 2012;
Tyden et al., 2013). Moreover, other differentially expressed
genes between the SLE and HC groups (e.g., HSPA1B,
IFI27, CD3D) were identified in this study, which was in
agreement with previous studies (Bing et al., 2016; Fürnrohr
et al., 2010; Lindén et al., 2017). Reyes et al. utilized a low-
input microfluidic system to identify subset-specific disease
signatures by profiling four immune cell subsets (CD4+

T cells, CD8+ T cells, B cells, and CD14+ monocytes ) in
blood from patients with SLE and matched control subjects.
They found that gene sets with targets of IFN are
upregulated in patients with SLE (Reyes et al., 2019).

The top 20 GO terms of the differentially expressed genes
(DEGs) between the SLE and HC groups strongly overlapped
among B cells, CD4+ T cells, myeloid cells, and NK cells and
included immune system process, immune response, cell
activation, defense response, leukocyte activation, immune
effector process, response to stress, regulation of immune
system process, and leukocyte mediated immunity, which
indicated that these biological processes play a pivotal role
in the pathogenesis and development of SLE. These results
were further confirmed by the fact that these DEGs were
highly enriched in SLE and rheumatoid arthritis diseases in
all five major immune cell types. Moreover, comprehensive
cell atlases of both healthy individual and the SLE patient
revealed that cell states were substantially altered in disease
states. This observation was consistent with previous studies.
Work carried out by Sinai et al. reported that T/B-cell
interactions are transient in response to weak stimuli in
SLE-prone mice (Sinai et al., 2014). A previous study by
Katsuyama et al. (2018) showed that SLE T cells are
characterized by multiple aberrant signaling pathways, such
as an activated PI3K-Akt-mTORC1 pathway, calcium/
calmodulin kinase IV (CaMKIV), Rho-associated protein
kinase (ROCK), protein phosphatase 2A (PP2A), and
decreased CD3ζ. It was also reported that Act1 has a novel
function as a negative regulator in T and B cells via direct
inhibition of STAT3, thereby contributing to the
development of SLE (Zhang et al., 2018).

FIGURE 5. Reconstruction of differentiation and relation of cell states to immune cells in the SLE patients and the healthy controls (HCs).
(A, B) Five cell states were found both in the HC (A) and SLE groups (B). (C, D) Pseudotemporal trajectory of immune cells in the HCs (C) and
the SLE patients (D) is shown, which are colored by cell state designation. The morphology of differentiation trajectories was also inverted
between the SLE and HC groups.
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In conclusion, our scRNA-seq analysis of human PBMCs
from SLE patient and healthy control for the first time allows
unbiased, de novo identification of distinct cell types and states.
By identifying cell subtype alterations, differentially expressed
genes, and altered pathways, this technique provides a system-
level understanding that is rooted in molecular information
and forms the basis for improved methods of early detection
of SLE and possible strategies for SLE prevention.
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SUPPLEMENTARY FIGURE 1. Quality Control. Plots of number of genes, UMIs, and the percentage of UMIs that derived from
mitochondrial and ribosomal genome detected per single cell for health control (Upper) and SLE patient (Bottom).
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SUPPLEMENTARY FIGURE 2. Plot
of the percentage of UMIs that derived
from mitochondrial versus number of
UMIs per single cell for all the cells
from health control (A) and SLE
patient (B). Plot of number of genes
versus number of UMIs per single
cell for all the cells from health
control (C) and SLE patient (D).
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SUPPLEMENTARY FIGURE 3. Expression patterns of the canonical marker genes across the major immune cell types. t-SNE plots of
canonical markers for the CD4+ T cell (A), and CD8+ T cell (B) were shown, and the gradient of purple reflects expression levels.

SUPPLEMENTARY FIGURE 4. Expression patterns of the canonical marker genes across the major immune cell types. t-SNE plots of
canonical markers for the monocytes cell (A), and regulatory T cell (B) were shown, and the gradient of purple reflects expression levels.

570 XIANLIANG HOU et al.



SUPPLEMENTARY FIGURE 5. CD4+ T cells were further subdivided
into 10 clusters.

SUPPLEMENTARY FIGURE 6.Myeliod cells were further subdivided
into 5 clusters.
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SUPPLEMENTARY FIGURE 7. Expression patterns of the canonical
marker genes across the major immune cell types. t-SNE plots of
canonical markers for the Th17 cell were shown, and the gradient of
purple reflects expression levels.

SUPPLEMENTARY FIGURE 8.
Expression patterns of the canonical
marker genes across the major
immune cell types. t-SNE plots of
canonical markers for the neutrophils
were shown, and the gradient of red
reflects expression levels.
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SUPPLEMENTARY FIGURE 9. Compare of the expression distribution of the top 20 marker genes between SLE patient and health control in
B cell were indicated by violin plots.
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SUPPLEMENTARY FIGURE 10. Compare of the expression distribution of the top 20 marker genes between SLE patient and health control
in CD8+ T cell were indicated by violin plots.
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SUPPLEMENTARY FIGURE 11. Compare of the expression distribution of the top 20 marker genes between SLE patient and health control
in myeliod cells were indicated by violin plots.
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SUPPLEMENTARY FIGURE 12. Compare of the expression distribution of the top 20 marker genes between SLE patient and health control
in NK cell were indicated by violin plots.
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SUPPLEMENTARY FIGURE 13. Analysis of differences in gene expression variance between SLE patient and health control in the CD4+ T
cells. Gene ontology enrichment analysis of the differentially expressed genes (DEG) between SLE patient and health control in CD4+ T cell
(A). DEGs between SLE and HC in CD4+ T cell were highly enriched in SLE and rheumatoid arthritis diseases, etc, immune-related diseases
(B). KEGG pathway analysis of the DEGs between SLE patient and health control in CD4+ T cell (C). The top 20 pathways were displayed. Size
of the circles depicts the gene count, and its color depicts significance levels, the number 12–16 in the label is equivalent to -log p-value. Protein-
protein interaction networks analysis of the DEGs between SLE patient and health control in CD4+ T cell (D). The top 50 genes were displayed
base on the degree of complexity of the nodes.
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SUPPLEMENTARY FIGURE 14. Analysis of differences in gene expression variance between SLE patient and health control in the CD8+
T cells. Gene ontology enrichment analysis of the differentially expressed genes (DEG) between SLE patient and health control in CD8+ T cell
(A). DEGs between SLE and HC in CD8+ T cell were highly enriched in SLE and rheumatoid arthritis diseases, etc, immune-related diseases
(B). KEGG pathway analysis of the DEGs between SLE patient and health control in CD8+ T cell (C). The top 20 pathways were displayed. Size
of the circles depicts the gene count, and its color depicts significance levels, the number 12-16 in the label is equivalent to -log p-value. Protein-
protein interaction networks analysis of the DEGs between SLE patient and health control in CD8+ T cell (D). The top 50 genes were displayed
base on the degree of complexity of the nodes.
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SUPPLEMENTARY FIGURE 15. Analysis of differences in gene expression variance between SLE patient and health control in the
monocytes. Gene ontology enrichment analysis of the differentially expressed genes (DEG) between SLE patient and health control in
monocytes (A). DEGs between SLE and HC in monocytes were highly enriched in SLE and rheumatoid arthritis diseases, etc, immune-
related diseases (B). KEGG pathway analysis of the DEGs between SLE patient and health control in monocytes (C). The top 20 pathways
were displayed. Size of the circles depicts the gene count, and its color depicts significance levels, the number 12-16 in the label is equivalent to
-log P-value. Protein-protein interaction networks analysis of the DEGs between SLE patient and health control in monocytes (D). The top
50 genes were displayed base on the degree of complexity of the nodes.
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SUPPLEMENTARY FIGURE 16.
Analysis of differences in gene
expression variance between SLE
patient and health control in the
myeliod cell. Gene ontology
enrichment analysis of the
differentially expressed genes (DEG)
between SLE patient and health
control in myeliod cell (A). KEGG
pathway network analysis of the
DEGs between SLE patient and
health control in myeliod cell (B).
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SUPPLEMENTARY FIGURE 17.
Analysis of differences in gene
expression variance between SLE
patient and health control in the NK
cell. Gene ontology enrichment
analysis of the differentially expressed
genes (DEG) between SLE patient and
health control in NK cell (A). KEGG
pathway network analysis of the
DEGs between SLE patient and health
control in NK cell (B).
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SUPPLEMENTARY TABLE 1

The cell number and percentage of each cluster in SLE and HC

Cluster HC SLE

Number % Number %

1 985 12.37 2099 26.34

2 1033 12.97 1333 16.73

3 1538 19.31 662 8.31

4 1238 15.55 941 11.81

5 1312 16.48 534 6.70

6 216 2.71 710 8.91

7 550 6.91 343 4.30

8 347 4.36 425 5.33

9 340 4.27 350 4.39

10 66 0.83 420 5.27

11 322 4.04 63 0.79

12 16 0.20 88 1.10

SUPPLEMENTARY TABLE 2

The top 20 marker genes in each of the immune cell types

B cell CD4+ T cell CD8+ T cell NK cell Myeliod cell

IGLC2 LTB CCL5 GNLY LYZ

IGKC IL7R GZMH CMC1 S100A9

HBB PPBP CD8B PRF1 S100A8

IGLC3 MAL NKG7 XCL2 CST3

HBA1 TRAT1 CD8A CLIC3 FCN1

HBA2 TSHZ2 GZMA GZMB RP11-1143G9.4

HLA-DRA LDHB FGFBP2 KLRF1 CXCL8

CD74 AQP3 CST7 NKG7 TYROBP

IGHA1 RGCC RP11-291B21.2 CCL4 S100A12

CD79A SOCS3 CTSW SPON2 CSTA

IGHG1 CORO1B TRGC2 FCGR3A G0S2

JCHAIN GPR183 GZMK CTSW CCL3

IGHM NOSIP GZMM KLRB1 FCER1G

MS4A1 CREM CD3D TRDC LST1

HLA-DQB1 ARID5B GZMB KLRD1 IFITM3

IGHG4 SARAF HCST TYROBP AIF1

HLA-DPB1 LEF1 C12orf75 HOPX CTSS

CD79B DEFA3 LYAR FGFBP2 TYMP

HLA-DPA1 TMEM123 IL32 FCER1G IL1B

IGHD ZFP36L2 KLRG1 CST7 LGALS1
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