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ABSTRACT

A methodology for achieving the maximum bulk or shear modulus in an elastic composite composed of two
isotropic phases with distinct Poisson’s ratios is proposed. A topology optimization algorithm is developed which
is capable of finding microstructures with extreme properties very close to theoretical upper bounds. The effective
mechanical properties of the designed composite are determined by a numerical homogenization technique. The
sensitivities with respect to design variables are derived by simultaneously interpolating Young’s modulus and Pois-
son’s ratio using different parameters. The so-called solid isotropic material with penalization method is developed
to establish the optimization formulation. Maximum bulk or shear modulus is considered as the objective function,
and the volume fraction of constituent phases is taken as constraints. The method of moving asymptotes is applied
to update the design variables. Several 3D numerical examples are presented to demonstrate the effectiveness of
the proposed structural optimization method. The effects of key parameters such as Poisson’s ratios and volume
fractions of constituent phase on the final designs are investigated. A series of novel microstructures are obtained
from the proposed approach. It is found that the optimized bulk and shear moduli of all the studied composites are
very close to the Hashin-Shtrikman-Walpole bounds.
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1 Introduction

Methods to achieve optimal engineering designs have been intensively investigated for decades.
Various topology optimization approaches have been proposed and developed in the field of struc-
tural designs [1-5], such as homogenization method [5], solid isotropic material with penalization
(SIMP) [6-£], evolutionary structural optimization (ESO) [9,10] and bi-directional evolutionary
structural optimization (BESO) [11,12], and level set method [13,14]. The application of topology
optimization has also been extended to the design of cellular and composite materials. Sig-
mund [15] initially incorporated an inverse homogenization concept to the topology optimization
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of materials with exceptional mechanical properties. Inspired by this approach, many attempts
have been made to develop materials with different functionalities, including elastic [16], thermos
elastic [17,18], piezoelectric [19,20] and auxetic materials [15,21,22].

The bulk modulus and shear modulus are generally devoted to describe the stiffness of
an isotropic elastic material. And earlier work in topology optimization of materials normally
involves maximizing the bulk modulus or shear modulus of a 2D or 3D material. Except for the
existing composites such as composite sphere, finite rank laminates and Vigdergauz microstruc-
tures, Sigmund [23] developed a series of two-phase microstructures and their bulk moduli
coincided with the well-established Hashin—Shtrikman (HS) bounds. Gibiansky et al. [24] extended
this work to three-phase material design, generating a range of novel microstructures which
exhibited achievability of the Hashin—Shtrikman—Walpole (HSW) upper bounds. Guest et al. [25]
presented an optimal design for maximum elastic stiffness and fluid permeability. Challis et al. [26]
employed the level-set method to maximize stiffness and conductivity of two-phase materials.
Microstructures contained the so-called Schwartz interface and diamond minimal surface have
been observed, which had maximum bulk modulus and conductivity. Andreassen et al. [27] pro-
posed a method for designing manufacturable materials with negative Poisson’s ratio and revisited
the problem of maximizing the bulk modulus. Huang et al. [28] utilized BESO approach to design
2D and 3D microstructures with extremal bulk and shear moduli, which demonstrated certain
advantages over SIMP approach in 0-1 representation and convergence speed. The BESO methods
have been extended to similar issues to obtain isotropic composite microstructures [29], multi-
phase materials with maximum stiffness and conductivity [30], functionally graded materials [31],
and phonoic band gap crystals [32]. Unlike regular elastic materials, viscoelastic materials exhibit
both viscous and elastic characteristics when deforming, which are widely adopted in reducing
vibrations. Andreasen et al. [33] further studied the homogenization concept of viscoelastic com-
posites. Several new microstructures were found to have viscoelastic bulk modulus close to the
theoretical upper bound. In recent years, much works have focused on the topological design of
metamaterial [34-36].

In comparison to traditional cellular materials composed of a solid phase and a void phase,
composites made of two or more materials are more preferable to practical applications due to
their synthetic mechanical properties. Conventional topological design of composite microstruc-
ture with maximized stiffness always involves constituent phases with different Young’s moduli
and the same Poisson’s ratios. However, Liu et al. [37,38] revealed that the effective Young’s
modulus of composites could exceed the Voigt estimation if one constituent phase approached
the incompressibility limit. Kocer et al. [39] further investigated this phenomenon in materials
containing inclusions with negative Poisson’s ratio (NPR). They found significantly enhanced
stiffness when alternating different layers of auxetic or non-auxetic materials. Other research
also observed evident increase in stiffness beyond any individual constituent phase with positive
or negative Poisson’s ratio [40,41]. The stiffening effect could be governed by multiple factors
simultaneously, such as the values of Poisson’s ratio of constituent phases, topologies of the NPR
inclusions, and so on. More recently, Pasternak et al. [42] evaluated the coefficient of thermal
expansion and thermal stresses by adding NPR inclusions into positive Poisson’s ratio (PPR)
material. They also found reduction in the thermal stress due to Poisson effect. Zuo et al. [43]
proposed an optimization method to maximize the stiffness in both longitudinal and transverse
directions of laminate composites based on the explicit effective stiffness function. An in-depth
investigation was conducted to find the influence of effective Young’s moduli when Poisson effect
was considered. Long et al. [44] established a topology optimization framework for maximizing
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the effective Young’s modulus of composite containing multiple constituent phases with distinct
Poisson’s ratios. However, no reports can be found in literature regarding the design of composites
with extremal bulk or shear modulus made of constituent phases with significantly different
Poisson’s ratios.

The rest of the paper is organized as follows. The homogenized effective elasticity matrix
is calculated within periodic base cell (PBC) in Section 2. Also, the sensitivity of the elastic
matrix is derived from the interpolation of both Young’s modulus and Poisson’s ratio. Section 3
establishes the topological optimization formulation the microstructure. Section 4 provides several
typical numerical examples to validate the effectiveness of the proposed approach. Finally, the
main conclusion of this paper is drawn in Section 5.

2 Elasticity by Homogenization and Sensitivity Analysis
2.1 Homogenization

For a two-phase periodic heterogencous material, the macroscopic elasticity tensor Egd of a

periodic composite material can be obtained by
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where |2 denotes the volume of PBC. The locally varying stiffness tensor, Ejgy, depends on the
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Here Q is the Q-periodic admissible displacement field corresponding to six strain fields, which
are derived from six linearly independent unit tests. These unit strains are el =(1,0,0,0,0,0)7,
g2 = (0,1,0,0,0,0)7, & = (0,0,1,0,0,0)7, &* = (0,0,0,1,0,007, &> = (0,0,0,0,1,0)7, &6 =
(0,0,0,0,0, ).

Based on Eq. (2), the effective elasticity matrix can be obtained by using the numerical
homogenization approach as described in the work [45,46].

2.2 Sensitivity Analysis of Elasticity

The constituent phases are assumed to be isotropic in this study. To derive the sensitivities, a
SIMP function for both the Young’s modulus and Possion’s ratio is adopted to interpolate between
two phases in each element [6]. The SIMP method is developed in the current study and the
mathematical formulation reads

E(xe)=Ey+ (Ey — E)x%, v (xe) =4 (v — ) xh 3)

where E; and v; are the Young’s modulus and Poisson’s ratio for phase j (j = 1,2), respectively,
and x, denotes the relative density of the eth element, which can be purely phase 1 when x, =1
or phase 2 when x, =0. o and S8 represent the penalization exponents. Typically, when « =4 and
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B varies from 1 to 3, reasonable results for all the examples in this paper can be obtained. From

Eq. (3), we have

IE (xe) /xe = p (Ey — E2) x%71,

IV (xe) /X =q (v —v2) Xb~

1

(4)

We assume the materials used to build the composite are isotropic, the elastic matrix for the
element e can be expressed as

qurs (Xe) = e
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where A, and u, are Lamé’s first and second parameter for the material in element e, respectively.

Lamé’s parameters can be computed from Young’s modulus F and v using the relations:
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Using the chain rule, the sensitivity of the elastic matrix for the element e with respect to x,

can be calculated as
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Thus, the macroscopic elasticity tensor with respect to density variable can be derived by using
the adjoint method, which is

dE 1 9E y N
ikl pqrs ( 03i)) (l/)) ( 0(kl) (kl))
——=— | —— &y —¢ e, —e dQ 9
axe 1QJy ax, P TP " ©)
dbIEH,
where /= can be obtained from Eq. (8).
Xe

3 Inverse Homogenization Formulation and Solution

The bulk modulus K and shear modulus G can be treated as one of the stiffness measures,
which can be optimized by using the method provided in literature [28]. When the microstructure
of composite is cubic or isotropic symmetry, the bulk modulus and shear modulus can be
expressed in regard to the 3D effective elasticity tensor, i.e.,

1 H H H H H H H H H

K= 9 (Ellll tE T E By T By H By H By +Esyy +E3333) (10)
1 H H H

G= 3 <E2323 tE, +E1212> (11)

To obtain optimal design of composites with homogenized properties, the optimization prob-
lem is defined through maximizing bulk modulus or shear modulus subjected to volume fraction
constraints of phase 1.

maximize: K or G

12
subject to: V1/Vy <f (12)

where V7 (x) and ¥V are the volume of phase 1 material and the volume of design domain, f is
the target volume fraction.

4 Analytical Bounds for Materials

The bounds of physical properties are of significant importance in composite design. HS
bound is one of the most popular estimations, which defines tight theoretical limits of bulk and
shear moduli for isotropic materials, in terms of volume fraction of two-phase composites based
on variational principles. Such bounds are achievable when the microstructures and volume frac-
tion of individual phase are determined [47]. If the phase exhibits larger (smaller) bulk modulus
(K) and larger (smaller) shear modulus (G) simultaneously, the materials can be recognized to be
‘well-ordered’, i.e., (K; — K1)(Gy — G1) > 0. Walpole [48,49] extended the HS bounds to the cases
in which the bulk modulus and shear modulus are not well ordered (i.e., (K> — K1)(G> — G1) <0).

The bulk and shear moduli of each phase are defined as
Ej _ &

K=—""— S A
TT3(1-2v) T 2(14y)

G=12) (13)
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For two-phase composites with 3D microstructure, the HSW upper limits on effective bulk
modulus KV and shear modulus GV can be found by

4 Ginax (OKmax + 8Gimax)
U U max max max
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where Kpax and Gpax are the maximal values of bulk and shear moduli for constituent phases,
respectively. V{ is the given volume fraction of phase 1.

The HSW upper bound is attainable if the following conditions are satisfied.

KV <K, if Gi>G;
or (16)
KY>K;, if Gi<G,

Here in it is assumed that G, < G;. The HSW upper bounds of shear moduli are attainable
under the following condition:

GY <G, Ky<K| (17)

5 Illustrative Examples and Discussion

In this section, several numerical examples are presented to demonstrate the effectiveness
and capabilities of the proposed optimization method. It is assumed that in all cases the PBC,
which represents the microstructure of a composite, is discretized to 40 x 40 x 40 brick elements
with 8nodes. To eliminate the checkerboard patterns and mesh-dependency phenomena which
is popular in topology optimization, filtering technique is applied [3]. Based on the first-order
derivatives, the Eq. (12) can be usually solved by a magnitude of optimizers, such as optimality
criteria, convex linearization or the method of moving asymptotes and so on [3,49].

In this study, we simply define two different initial designs. In initial design 1, the element
density increases proportionally to the distance from the element center to the base cell center, as
shown in Fig. la. Inversely, in initial design 2, the element density decreases proportionally to the
same distance as illustrated in Fig. 1b. The color bar shows the range of density (x,) with the
value varying from 0 (blue) to 1 (red).

For easier identification, the phase 1 in the microstructure is displayed in red, while phase 2
in blue.

5.1 Example I

The objective of topology optimization of this example is to obtain microstructure with
maximum bulk modulus. In this example, the material properties are defined as: Young’s modulus,
E{ =2.5 for phase 1 and E, = 1.0 for phase 2; Poisson’s ratio, v; =0.0 for phase 1 and vy =—0.5
for phase 2. The bulk moduli are K; =0.8333 and K, =0.1190 for the two phases, respectively.
The prescribed volume fraction of phase 1 is 60%. The obtained optimal microstructures and their
effective matrices are given in Fig. 2.



CMES, 2021, vol.126, no.1 299

1

09
08
0.7
06
|os
04
03
02

0.1

0

Figure 1: Density distribution for different initial designs: (a) Initial design 1; (b) initial design 2

It can be seen that the obtained microstructures are cubic symmetry, thus the two-phase
composites are orthotropic. The bulk moduli can be calculated from the obtained microstructures
as 0.5148 and 0.5128, starting from initial designs 1 and 2, respectively. These results are slightly
below the HSW upper bound KY =0.5159 according to Eq. (15). As revealed in literature [17],
completely different topologies of microstructures could be achieved, depending on initial guesses.
Nevertheless, they may have similar values of maximum bulk modulus due to the non-uniqueness
of the solution. The interface between the two phases in Fig. 2b can be seen as an approximation
to a Schwartz P minimal surface which was reported to be structures with maximum permeability
or conductivity [25,26]. Interestingly, the shear moduli for the two optimized composites are 1.1410
and 1.1407, respectively, also slightly below HSW upper bound of shear modulus in this case
GY =1.1432 according to Eq. (15).

The stiffness of resulting composites in one or more directions could be enhanced, as the
benefits of using phase with significantly different Poisson’s ratios. For the purpose of comparison,
the upper bound of effective Youngs modulus estimated by Voigt theory can be calculated
as Evoigt = fE1 + (1 — f)E2. The resulting effective Young’s modulus from elasticity matrix of
composite material in three directions is 1.9716 and 1.9679 in Fig. 2, which exceeds the Voigt
limit 1.9000. These results clearly demonstrate the additional advantage of composites containing
multiple phases of distinct Poisson’s ratios.

To better understand the influence of constituent phase on the topology of optimal compos-
ites, optimization process on design domain of merely phase 1 is performed. The two optimal
microstructures and the corresponding elasticity matrices of the composite are presented in Fig. 3.
The void elements starting from initial design 1 are displayed in blue color. To provide a clear
angle of view, one half of PBC is shown in Fig. 3a.
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Figure 2: Base cell and effective elasticity matrix of composite material, starting from different
initial designs: (a) From initial design 1; (b) From initial design 2

The microstructure obtained from initial design 1 in Fig. 3a is a hollowed cube with rounding
interior corners. The microstructure obtained from initial design 2 in Fig. 3b is actually composed
by walls in three directions. The unit cell is partitioned into eight individual spaces. These two
microstructures are similar to the designs with maximum bulk modulus in literature [23,25].
Comparing Figs. 2 and 3 in the process of finding microstructures with achievable HSW upper
bound, significant difference in the distribution of phase 1 between two-phase composites and
cellular materials can be witnessed.
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Figure 3: Base cell and effective elasticity matrix of cellar material, starting from different initial
designs: (a) Cross-section from initial design 1; (b) From initial design 2

5.2 Example Il

To investigate the effect of the Poisson’s ratio on the maximum bulk modulus and the HSW
bounds, the change in Poisson’s ratios of phase 2 are manually defined, ranging from —0.95 to
0.45 with two ends, i.e., —0.99 and 0.49, while phase 1 has a fixed Poisson’s ratio. Meanwhile, the
prescribed volume fraction of phase 1 is set to be 50%. Other parameters are the same as those
in Example I. Tab. | lists the resulting bulk modulus, HSW upper bound for bulk modulus and
their relative percentage differences with typical topologies plotted in Fig. 4. It should be noted
that when v, changes from —0.55 to 0.25 as listed in Tab. 1, (K — K1)(Gy — G1) > 0. In all the
other cases, the composites are not well-ordered. Also, the effective Young’s moduli of resulting
composite are drawn in Fig. 5.

Fig. 4 shows that the obtained bulk modulus well agrees with the HSW upper bounds
predicted by Eq. (16). It demonstrates that the proposed optimization method is capable of finding
a microstructure with the largest bulk modulus close to the HSW upper bound in both the well-
ordered or non-well-ordered cases. The curve does not monotonically increase with the increase
of vy. When vy, = —0.75, the resulting bulk modulus and HSW upper bound have their minimum
values. When vy approaches 0.45, the resulting bulk modulus experiences a sharp rise and phase 2
becomes totally embedded into the surrounding phase 1 of PBC. The topology of phase 2 changes
from Schwartz P structure to spherical shape. When vy approaches 0.49, the topology of phase 2
is totally different.
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Table 1: The resulting bulk modulus, the HSW upper bound for bulk modulus, and
relative difference

Poisson’s ratio (1) Resulting bulk modulus HSW upper bound (bulk modulus) Relative difference (%)

—-0.99 0.4674 0.4707 0.698
—0.95 0.4566 0.4648 1.764
—0.85 0.4415 0.4528 2.489
—-0.75 0.4369 0.4444 1.692
—0.65 0.4373 0.4396 0.528
—0.55 0.4424 0.4434 0.233
—0.45 0.4505 0.4545 0.888
—-0.35 0.4624 0.4682 1.235
—-0.25 0.4783 0.4852 1.426
—0.15 0.5007 0.5072 1.298
—0.05 0.5306 0.5367 1.145
0.05 0.5732 0.5782 0.876
0.15 0.6374 0.6410 0.565
0.25 0.7452 0.7471 0.254
0.35 0.9639 0.9649 0.238
0.45 1.6654 1.6667 0.258
0.49 2.7430 2.7333 0.355
—e— Resulting bulk modulus ]
0 HSW bound = .

g

g

=

A

14

i i

T — T T U T L — T T
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Poisson's ratio of phase 2

Figure 4: Maximizing the bulk modulus for various Poisson’s ratios of phase 2

Fig. 5 shows a parabola curve of the resulting effective Young’s modulus for various Poisson’s
ratios of phase 2. Parts of the results exceed the Voigt estimation of 1.75. It can be observed
that the enhancement effects of the effective Young’s modulus are dependent on the difference
between the Poisson’s ratio of two constituent materials, which agrees well with the phenomena
in literature [43,44]. The optimized topologies in Fig. 4 are different with those seeking for
maximizing the effective Young’s modulus [44]. It can be inferred that the optimized topologies
highly influence the mechanical properties of the resulting composites.
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Figure 5: The effective Young’s moduli for various Poisson’s ratios of phase 2

5.3 Example 111

In this example, the effect of various volume fractions of constitute phase on resulting bulk
modulus is investigated. The Young’s moduli of two constituent materials are E1 =2.5 and E, =
1, respectively, and the Poisson’s ratio are vi = 0.0 and v, = —0.5, respectively. Different volume
fractions of phase 1 are referred to as the constraints, aiming to find maximized bulk modulus.
According to Eq. (15), the HSW upper bound KU is calculated based on various volume fractions.
Tab. 2 lists the resulting bulk modulus, HSW upper bound and their relative percentage difference.
The corresponding PBC topologies are shown in Fig. 6.

Table 2: The resulting bulk modulus, the HSW upper bound for bulk modulus, and the
relative difference

Volume fraction Resulting bulk modulus HSW upper bound Relative difference (%)

of phase 1 (%) (bulk modulus)

15 0.2396 0.2431 1.440
25 0.2944 0.2976 1.071
35 0.3519 0.3554 0.971
45 0.4136 0.4167 0.733
55 0.4795 0.4818 0.466
65 0.5509 0.5511 0.030
75 0.6249 0.6250 0.017
85 0.7039 0.7040 0.013

Fig. 6 shows that at the beginning, with a low V{ , phase 1 occupies the corners of the base
unit cell. With the increase of V{', the topology of phase 2 changes from Schwartz P minimal

surface to sphere surface. When V{' increases to 65%, phase 2 is totally embedded in phase 1 with
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a spherical shape. In all cases, the resulting bulk modulus is slightly less than the HSW upper
bound. The relative percentage differences are within 1.5%, which also proved HSW upper bound
of bulk modulus can be attainable by the proposed method.

—e— Rusulting bulk modulus
089 -0~ HSW bound

f=4
(=)}
|

Bulk modulus

f=4
N
1

L L B s p e B s |
0.0 0.1 02 03 04 05 06 07 08 09 1.0

Volume fraction of phase 1

Figure 6: Maximizing the bulk modulus for various volume fractions of phase 1

5.4 Example 1V

The objective of this example is to obtain the optimal microstructure with maximum shear
modulus via the proposed optimization method. The Young’s moduli of constituent phases are
selected as Ey1 = 5.5 and E», = 1. The Poisson’s ratios are assumed to be vi =0.0 and vy, = —0.5.
The shear moduli for the two materials are G; =2.75 and G, = 1.00, respectively. The prescribed
volume fraction of phase 1 is 60%. According to Eq. (15), the HSW upper bound is calculated
as 1.8710. The final optimized microstructures of orthotropic composites obtained from different
initial designs and their effective matrices are presented in Fig. 7.

From the effective matrices, the shear moduli of the two designs are 1.8668 and 1.8677,
respectively. As discussed previously, the two types of topologies differ significantly due to the
distinct initial designs. However, the shear moduli are almost identical and slightly below the
respective HSW bounds for shear modulus.

5.5 Example V

The objective of this example is to find the optimal microstructure with a maximum shear
modulus. The Young’s modulus of constituent phase 1 is investigated and set to be ranging from
3.0 to 11.0. Other mechanical properties are the same as those in example IV. The prescribed
volume fraction of phase 1 is defined as 50%. Tab. 3 lists the resulting shear modulus, HSW
upper bound for shear modulus and their relative percentage differences. The evolution of the
corresponding topologies is plotted in Fig. &.

Fig. 8 shows that, with the increase of Ej, the maximizing shear modulus and HSW upper
bound rises. The microstructure of phase 2 is a Schwartz P structure when E> = 3.0. The Schwartz
P structure and sphere inclusions for each phase coexist in the base cell when the Young’s modulus
of phase 2 increases. The configurations of the microstructure are affected by the Young’s modulus
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of constitute phases. In all cases, the resulting shear moduli well agree with HSW upper bound
calculated by Eq. (15). Their relative percentage differences are less than 0.958%.

phase 1 phase 2

>
n.,‘

3.5255 -0.2383 -0.2383 0 0 0
-0.2383 3.5255 -0.2383 0 0 0
-0.2383 -0.2383 3.5255 0 0 0

0 0 0 1.8561 0 0

0 0 0 0 1.8561 0

0 0 0 0 0 1.8561

(a)

3.4468 -0.2308 -0.2308 0 0 0
-0.2308 3.4468 -0.2308 0 0 0
-0.2308 -0.2308 3.4468 0 0 0

0 0 0 1.8554 0 0

0 0 0 0 1.8554 0

0 0 0 0 0 1.8554

(b)

Figure 7: Base cell and effective elasticity matrix of composite material, starting from different
initial designs: (a) From initial design 1; (b) From initial design 2
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Table 3: The resulting shear modulus, the HSW upper bound for shear modulus, and the relative
difference

Young’s modulus (E;)  Resulting shear modulus  HSW upper bound (shear modulus)  Relative difference (%)

3.0 1.2189 1.2256 0.544
4.0 1.4094 1.4231 0.958
5.0 1.5932 1.6071 0.866
6.0 1.7695 1.7838 0.803
7.0 1.9416 1.9559 0.731
8.0 2.1089 2.1250 0.757
9.0 2.2800 2.2921 0.524
10.0 2.4426 2.4576 0.610
11.0 2.6048 2.6221 0.660

3.0 —e— Resulting shear modulus
-~ HSW bound
2.54
172}
=
3
S 2.0+
g
)
<
Q
<
17
1.54
V1=50%
1.0 T T T T 1
2 4 6 8 10 12

Young's modulus of phase 1

Figure 8: Maximizing the shear modulus for various Young’s moduli of phasel

5.6 Example VI

In this example, various volume fractions of the constituent phase on the final design are
investigated. The mechanical properties and objective function are the same with those in example
IV. The prescribed volume fraction of phase 1 ranges from15% to 85%. Tab. 4 lists the resulting
shear modulus, HSW upper bound for shear modulus and their relative percentage differences.
The corresponding microstructural topologies are depicted in Fig. 9.

From Tab. 4, all the relative percentage differences between the resulting shear modulus and
HSW upper bound for shear modulus are within 3.095%. The results indicated that the theoretical
upper bound could be attained under different given volume fraction. From Fig. 9, the topology

of each phase changes with the increase of V{ and exhibits different shapes.
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Table 4: The resulting shear modulus, the HSW upper bound for shear modulus, and the relative
difference

Volume fraction of  Resulting shear modulus ~ HSW upper bound  Relative difference (%)

phase 1 (%) (shear modulus)

15 1.1461 1.1827 3.095
25 1.2824 1.3158 2.540
35 1.4338 1.4592 1.739
45 1.5975 1.6140 1.020
55 1.7726 1.7818 0.514
65 1.9629 1.9641 0.065
75 2.1628 2.1631 0.014
85 2.3683 2.3811 0.538
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Figure 9: Maximizing the shear modulus for various volume fractions of phase 1

6 Conclusion

In this paper, a topology optimization methodology is presented to design microstructures of
materials that are composed of two isotropic phases with distinct Poisson’s ratios. The objective
is to maximize the bulk or shear modulus of the composites. The effective elasticity matrix is
determined by means of homogenization. Several 3D examples are presented to demonstrate the
effectiveness of the proposed method. The examples show that the proposed approach is capable
of generating composite microstructures with properties very close to the Hashin—Shtrikan—
Walpole upper bounds. In the future research, several important directions furthered the proposed
method includes the concurrent design of macrostructure and microstructure containing multiple
phases [50]. Moreover, it will be of great interest to obtain the smooth boundary directly by
variable density method [51].
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