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ABSTRACT

In this paper, Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to
deduce the scheme for solving the Helmholtz equation. First of all, the interpolation basis function is applied to
treat the spatial variables and their partial derivatives, and the collocation method for solving the second order
di�erential equations is established. Secondly, the di�erential matrix is used to simplify the given di�erential
equations on a given test node. Finally, based on three kinds of test nodes, numerical experiments show that
the present scheme can not only calculate the high wave numbers problems, but also calculate the variable wave
numbers problems. In addition, the algorithm has the advantages of high calculation accuracy, good numerical
stability and less time consuming.
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1 Introduction

In the present work, we consider the following two-dimensional Helmholtz equation:

∂2u
∂x2 +

∂2u
∂y2 + k

2 (x,y)u (x,y)= f (x,y) , (x,y) ∈Ω (1.1)

where Ω= [a,b]× [c,d] is the problem region, u (x,y) is an unknown function of x and y. k (x,y)
is the wave number, which could be either a constant or a function of x and y. f (x,y) is a source
term. The Dirichlet boundary conditions are given as:{
u (a,y)= g1 (y) , u (b,y)= g2 (y) , y ∈ [c,d]
u (x, c)= g3 (x) , u (x,d)= g4 (x) , x ∈ [a,b] (1.2)

Helmholtz equation is an elliptical partial differential equation, which represents the solution
of the wave equation independent of time and it arises from time-harmonic wave propagation [1].
This equation can simulate a variety of physical phenomena, including vibration analysis, water
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wave propagation, electromagnetic scattering, acoustic scattering, and radar scattering, etc. [2–6].
There is a long history about the development of wave propagation [7]. When the wavenumber
is large, the solution of Helmholtz equation is highly oscillatory, so there are some dif�culties in
obtaining the numerical solution. Meanwhile, because of the complexity of variable wave number
Helmholtz equation, it also brings great dif�culties to numerical calculation, which still need to
be further studied. Therefore, the research on numerical solution method of Helmholtz equation
has important theoretical value and practical signi�cance. A variety of numerical methods have
been developed to solve the Helmholtz equation, such as the �nite element method, boundary
element method, �nite difference method, meshless method and so on [8–11]. Among them, the
�nite element method is the most widely used method, but the calculation accuracy of the �nite
element method will sharply reduce with the increase of the wave number of the equation. At the
same time, the meshless method is favored by many researchers because of its many advantages,
such as simple discretization, easy derivation of format, easy realization of calculation program,
high calculation accuracy and good numerical stability.

A new boundary method with method of external sources for eigenproblems was presented by
Reutskiy [12] to solve Helmholtz equation in simply and multiply connected domains. However,
this method depends on the grid, so when it applied to eigenproblem in irregular region, meshless
technique is needed. Chen et al. [13] put forward a �rst-order system least square method for
solving high wave number problems, and then a nontrivial decomposition is used to solve the
�rst-order system least square problem, which was a new method different from the standard
�nite element method. Dogan et al. [14] studied the dispersion error of the Helmholtz equation
by using the local meshless boundary integral equation method and the radial basis integral
equation method. Both methods used the second-order polynomial and the frequency dependent
radial basis function to interpolate the potential �eld, which can solve the high wave number
problems. But the cost is to solve a larger linear system, which is computationally intensive.
Based on the meshless and boundless analysis of Helmholtz equation, Chen et al. [15] proposed a
boundless Burton Miller method by using Burton Miller formula. This method can �nd the unique
solution for all wave numbers, and can also deal with Helmholtz equation under the high wave
numbers. However, the cost of calculation is expensive and the derivation process is complicated.
Qu et al. [16] developed a local basic solution method which was different from the traditional
basic solution method. According to the nodes, the calculation domain was divided into several
overlapping subdomains. Finally, the sparse strip matrix was used to solve large-scale problems.
Whereas, the numerical implementation is complicated. By using an asymptotic expansion that
removes the singularities up to several leading orders, Britt et al. [17] put forward a method
that can keep high order convergence even if there is singular solution for Helmholtz equation.
Whereas, it did not give out the results in the case of large wave number. A circular boundary
knot method was studied by Lin et al. [18] by placing the collocation nodes on the boundary
surface in a circular form to solve the high wave number Helmholtz equation, the BKM matrix
obtained has the block structure of cyclic matrix and can be solved effectively. Which needs to
solve a lot of small matrices, the calculation storage capacity is large. Wang et al. [19] considered
the Helmholtz equation in the outer domain, and proposed a �nite difference scheme in polar or
spherical coordinates, which can solve high wave number problems. Whereas, the “pollution effect”
in the domain of the origin of coordinates is inevitable. In addition, the common disadvantage
of the above literature is that there is few mention of the case of variable wave number problem.

In this paper, based on the Chebyshev nodes, the scheme for solving the Helmholtz equation
is derived by using barycentric Lagrange interpolation basis function. This method is simple in
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theory, needs few interpolation nodes, and the �nal discrete matrix is easy to be dealt with.
It can not only calculate the high wave number problems, but also calculate the variable wave
number problems. It has the advantages including short calculation time, high accuracy and good
stability. In this meshless method, the point collocation technique is used for forming the �nal
system of linear algebraic equations. Thus, the present method is a variant of the well-known
�nite point method [20]. And another analogous method is the localized method of fundamental
solutions [21]. The remainder of this paper is arranged as follows: in Section 2, the calculation
formula of the two-dimensional barycentric Lagrange interpolation and some theoretical knowl-
edge of the simpli�ed matrix are introduced. In Section 3, the interpolation collocation method
and its discrete matrix for calculating the two-dimensional Helmholtz Eq. (1.1) are derived. In
Section 4, the numerical results for some test problems are given and compared with the results
in the literature. Finally, conclusions are included in Section 5.

2 Barycentric Lagrange Interpolation

2.1 Barycentric Lagrange Interpolation Formula
Let xi, i = 1, 2, . . . ,m, be a given interpolation node, and the corresponding function value is

fi, then Lagrange polynomial interpolation formula can be expressed as

p (x)=
m∑
i=1

Li (x) fi (2.1)

where Li (x) is Lagrange interpolation basis function in the form of

Li (x)=

m∏
i=1

(x− xi)

m∏
i=1,i 6=j

(
xj − xi

) (2.2)

According to Eq. (2.1), it can be concluded that when new interpolation nodes are added, the
interpolation basis function needs to be recalculated, which increases the calculation amount.
However, if we start from the basis function and extract the common part, its expression will be
changed and the calculation amount will be reduced consequently.

Set

l (x)= (x− x1) (x− x2) . . . (x− xm) (2.3)

De�nes weight of the barycentric Lagrange interpolation function as

ωi =
1

m∏
i=1,i 6=j

(
xj − xi

) (2.4)

As usual, we can get the following algorithm �ow diagram (see Fig. 1) for computing ωi.

Then, the interpolation basis function (2.2) can be changed to

Li (x)= l (x)
ωi

x− xi
, i= 1, 2, . . . ,m (2.5)
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Figure 1: The algorithm �ow diagram of ωi

Substitute Eq. (2.5) into Eq. (2.1) to get

p (x)= l (x)
m∑
i=1

ωi

x− xi
fi (2.6)

The Eq. (2.6) is called the improved Lagrange interpolation formula [22]. The part of main
improvement is to construct Eq. (2.3), thus rewriting the interpolation basis function Eq. (2.2)
into the form of Eq. (2.5). The purpose is with number of Lagrange interpolation nodes increases,
the computation amount decreases a lot, from O

(
m2
)

to O (m).

By using Eq. (2.6) to interpolate the constant 1 with (xi, 1) , i= 1, 2, . . . ,m, then we have

1=
m∑
i=1

Li (x)= l (x)
m∑
i=1

ωi

x− xi
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After simpli�cation, it can be obtained

l (x)=
1

m∑
i=1

ωi

x− xi

(2.7)

Substituting Eq. (2.7) into Eq. (2.6), we have

p (x)=

m∑
i=1

ωi

x− xi
fi

m∑
i=1

ωi

x− xi

(2.8)

The Eq. (2.8) is called the barycentric Lagrange interpolation formula [22]. Compared with
Eq. (2.6), Eq. (2.8) overcomes the Runge phenomenon effectively while maintaining the same
computational cost O (m).

2.2 Bivariate Barycenter Lagrange Interpolation Formula
Let the u (x,y) be a function about the variable x and y, and de�ne the interval as (x,y) ∈

[a,b]× [c,d]. When the interval [a,b] and [c,d] is discretized into m and n nodes, respectively, then
there are m×n tensor product interpolation nodes in the whole domain

(
xi,yj

)
, i= 1, 2, . . . ,m; j=

1, 2, . . . ,n. Then the barycentric Lagrange interpolation formula [23] of the u (x,y) is

u (x,y)=
m∑
i=1

n∑
j=1

Li (x)Mj (y)uij (2.9)

where uij = u(xi,yj). Li(x) and Mj(y) are the interpolation basis functions in the x and y direction,
respectively.

Li (x)=

ωi

x− xi
m∑
k=1

ωk

x− xk

, Mj (y)=

vj
y− yj
n∑

k=1

vk
y− yk

, i= 1, 2, . . . ,m, j= 1, 2, . . . ,n (2.10)

where the weight is

ωi =
1

m∏
i 6=k

(x− xk)

, vj =
1

n∏
j 6=k

(y− yk)

(2.11)

2.3 Interpolation Knot
We can see from the expression of the barycentric Lagrange interpolation weight function

Eqs. (2.4) or (2.11) that the selection of the interpolation weight is only related to the distribution
of the nodes. Therefore we consider the three kinds of nodes as interpolation nodes and test
nodes. They are random nodes, uniform nodes and Chebyshev nodes. Because random nodes and



30 CMES, 2021, vol.126, no.1

uniforms nodes can be directly implemented in programming language, this part only gives the
Chebyshev nodes formula:

Chebyshev nodes of the �rst kind:

xi = cos
(2i+ 1)π

2m+ 2
, i= 1, 2, . . . ,m (2.12)

Chebyshev nodes of the second kind:

xi = cos
iπ
m

, i= 1, 2, . . . ,m (2.13)

What needs to be explained is that for two types of Chebyshev node formulas, the de�ned
interval is [−1, 1] . As for the general interval [a,b] , the coordinate transformation formula x̄ =
x(b−a)

2 +
(b+a)

2 of the interval can be used.

2.4 Differential Matrix of Barycenter Lagrange Interpolation
The differential matrix was �rst found in the study of Chebyshev quasi-spectral method [24].

The barycentric Lagrange interpolated differential matrix can directly obtain the derivative func-
tion of the unknown function in the Helmholtz equation at the computing node. Therefore,
the differential matrix is a very important part in the solution of the barycentric interpolation
Lagrange collocation method.

When m nodes are inserted on the interval [a,b], there is a= x1 < x2 < · · ·< xm = b, to set the
function value of the unknown function u (x) at the node xi is ui = u (xi) , i= 1, 2, . . .m, then the
barycentric Lagrange interpolation formula of the function u (x) is

u (x)=
m∑
i=1

Li (x)ui (2.14)

In which, Li (x)=
ωi

x−xi∑m
i=1

ωi
x−xi

is the barycentric interpolation basis function, and ωi =
1∏m

i 6=j xi−xj

is the weight of gravity interpolation.

Using Eq. (2.14), the k derivative of the function u (x) at the node xj (j= 1, 2, . . . ,m) can be
expressed as

u(k)
(
xj
)
=
dku

(
xj
)

dxk
=

n∑
i=1

L(k)i
(
xj
)
ui =

n∑
i=1

D(k)ij ui, k= 1, 2, . . .

In the form of a matrix as

u(k) =D(k)u (2.15)
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where u(k) =
[
u(k)1 ,u(k)2 , . . . ,u(k)m

]T
and u= [u1,u2, . . . ,um]T are the vector. The matrix D(k) is as the

k order differential matrix of the function u (x), and D(k)ij =L
(k)
i

(
xj
)

. In addition, we can calculate

D(k) (see [25]) with

D(k)ij =L
(k)
i

(
xj
)
=


k

xi− xj

(
ωj

ωi
D(k−1)
jj −D(k−1)

ij

)
, i 6= j

−

m∑
i=0,i 6=j

D(k)ij , i= j
(2.16)

When the solution of some partial differential equation is obtained by numerical method, it
is also necessary to use the differential matrix to calculate the derivative values of the unknown
function on calculating nodes.

2.5 Kronecker Product of a Matrix
Kronecker product is an operation form between two matrices of any size and a special form

of tensor product. The Kronecker product of any matrix A=
(
aij
)
m×n and matrix B=

(
bij
)
p×q is

A⊗B, recorded as following

A⊗B=
(
aijB

)
m·p×n·q (2.17)

where aijB=


aijb11 aijb12 · · · aijb1q
aijb21 aijb22 · · · aijb2q
...

... · · ·
...

aijbp1 aijbp2 · · · aijbpq


Using the Kronecker product of the barycentric Lagrange interpolation differential matrix,

the discrete equation of the Helmholtz equation can be expressed as a simple matrix form.

2.6 Relationship between Partial Derivative of Differential Equation and Differential Matrix
The Kronecker product with the barycentric Lagrange interpolated differential matrix can also

be used. The unknown function in the Helmholtz equation has the following corresponding rela-
tion between the partial derivative of the variable and the Kronecker product of the corresponding
differential matrix.

The number of nodes for the unknown function u (x,y) in x and y directions of the two-
dimensional Helmholtz equation are m and n then by using Eq. (2.17), the expressions of the
differential matrices corresponding to the partial derivative of the differential equation about the
variables x and y can be brie�y expressed as

∂2u (x,y)
∂x2 =D(2)⊗ In,

∂2u (x,y)
∂y2 = Im⊗C(2), u (x,y)= Im⊗ In (2.18)

where Im and In represent the unit matrices of m order and n order, respectively, and the D(2)

and C(2) are barycentric interpolates of the second-order matrices at the node x1, x2, . . . , xm and
y1, y2, . . . , yn, respectively.
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Using the above marks, the discrete forms of partial differential equations and boundary
conditions can be written directly into matrix form, which makes programming much easier.

3 Discrete Equations of the Two-Dimensional Helmholtz Equation

By substituting the barycenter Lagrange interpolation Eq. (2.9) into Eq. (1.1), we can obtain

n∑
j=1

m∑
i=1

[
Li′′ (x)Mj (y)+Li (x)M ′′j (y)+ k2 (x,y)Li (x)Mj (y)

]
uij = f (x,y) (3.1)

If Eq. (3.1) holds at the nodes of (xI , yJ) , I = 1, 2, . . . ,m; J = 1, 2, . . . ,n, then Eq. (3.1) is
replaced by the following

n∑
j=1

m∑
i=1

[
Li′′ (xI)Mj (yJ)+Li (xI)M ′′J (yJ)+ k

2 (xI ,yJ)Li (xI)Mj (yJ)
]
uij = f (xI ,yJ) (3.2)

Set k2 (xI ,yJ) = k2
ij, f (xI ,yJ) = fij, Li (xI) = LiI ,Mj (yJ) = LjJ . From the properties of the

Lagrange interpolation basis, Li (xI) = δiI ,Mj (xJ) = δjJ ,L(r)i (xI) = D(r)iI ,M(r)
j (yJ) = C(r)jJ , r = 1, 2,

and using Eqs. (2.15), (2.16) and (2.18), then Eq. (3.2) can also be expressed as(D(2)⊗ In)+ (Im⊗C(2))+
k

2
1n · · · 0

...
...

...
0 · · · k2

mn

 (Im⊗ In)

u1n

...
umn

=
f1n...
fmn

 (3.3)

Let

k2
= diag

(
k2

11, . . . ,k2
1n,k

2
21, . . . ,k2

2n, . . . ,k
2
m1, . . . ,k2

mn
)

,
U = [u11, . . .u1n,u21, . . . ,u2n, . . . ,um1, . . . ,umn]T ,
F = [f11, . . . f1n, f21, . . . , f2n, . . . , fm1, . . . , fmn]T

Then Eq. (3.3) can be written into[(
D(2)⊗ In

)
+

(
Im⊗C(2)

)
+ k2 (Im⊗ In)

]
U = F (3.4)

That is

LU = F (3.5)

In which L=
(
D(2)⊗ In

)
+
(
Im⊗C(2)

)
+ k2 (Im⊗ In).

The above two-dimensional Helmholtz equation is discretized by the barycentric Lagrange
interpolation method, and the �nal scheme is Eq. (3.5). In addition, the boundary conditions need
to be discretized, and the following discrete formulas for boundary conditions are elaborated.

By employing Eqs. (2.17) and (2.18), we obtain the matrix form of the boundary condition
in Eq. (1.2){(
e1
m⊗ In

)
U = g1,

(
enm⊗ In

)
U = g2(

Im⊗ e1
n
)
U = g3,

(
Im⊗ emn

)
U = g4

(3.6)
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where e1
m and emm represent the �rst and m lines of the �rst order differential matrix of the m

order unit matrix, e1
n and enn represent the �rst and n lines of the �rst order differential matrix of

the n order unit matrix, and g1 = [g1 (y1) ,g1 (y2) , . . . ,g1 (yn)]T ,g2 = [g2 (y1) ,g2 (y2) , . . . ,g2 (yn)]T ,

g3 = [g3 (x1) ,g3 (x2) , . . . ,g3 (xm)]T ,g4 = [g4 (x1) ,g4 (x2) , . . . ,g4 (xm)]T .

Combining Eqs. (3.5) and (3.6), we can obtain the value of the function u (x,y) on each node.

4 Numerical Examples

In this section, we solve some test problems to demonstrate the effectiveness and accuracy
of the barycentric Lagrange interpolation method. Six numerical examples of Helmholtz equation
including high wavenumber and variable wavenumber problems are given. In which, the maximum
absolute error (E∞) and relative error (Er) are de�ned as follows:

E∞ = max
1≤i≤Nt,1≤j≤Mt

|uij − ueij|, Er =

√√√√√√√√√√√

Nt∑
i=1

Mt∑
j=1

(
uij − ueij

)2
Nt∑
i=1

Mt∑
j=1

ueij2
(4.1)

where uij and ueij represent numerical and exact solutions, respectively. Nt and Mt are the numbers
of test nodes in the x and y directions, respectively.

Example 1 [26]:

Consider the following non-homogeneous Helmholtz equation

uxx+ uyy+ k2u=
(
k2
−π2

− k2π2
)

sin (πx) sin (kπy) , (x,y) ∈ [0, 1]× [0, 1]

with the boundary conditions:

u (0,y)= u (1,y)= u (x, 0)= u (x, 1)= 0

The exact solution is

u (x,y)= sin (πx) sin (kπy)

Tab. 1 gives the calculation results of E∞ for the four kinds of interpolation nodes with
Nt =Mt = N, k = 5. In which, N is the number of interpolation nodes in the domain, Nt and
Mt are the numbers of test nodes, and the test nodes type are the second kind of Chebyshev
nodes (that is Chebyshev II) rather than the �rst kind of Chebyshev nodes (that is Chebyshev
I). The results show that the random interpolation nodes are bad for our proposed method, the
uniform interpolation nodes are not good and the two kinds of Chebyshev interpolation nodes
are very good. What’s more, the numerical results show that the accuracy of the Chebyshev node
is highest, the stability is best, and the calculation error is smallest. Therefore, we use the two
kinds of Chebyshev nodes rather than the random or uniform nodes as the interpolation nodes
to calculate the Tabs. 2 and 3 for Example 1. In addition, the numerical results of the Chebyshev
II is a little better than that of the Chebyshev I.
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Table 1: The E∞ with four kinds of interpolation nodes when Nt=Mt=N,k= 5 for Example 1

N Random Uniform Chebyshev I Chebyshev II

16 3.254(+0) 2.591(−2) 3.246(−5) 9.017(−6)
20 4.562(+0) 1.903(−4) 4.982(−8) 1.118(−8)
24 1.011(+8) 2.442(−2) 3.602(−11) 7.128(−12)

Table 2: The E∞ with two kinds of interpolation nodes and three kinds of test nodes when Nt=
Mt= 100,k= 5 for Example 1

N Chebyshev I Chebyshev II

Random Uniform Chebyshev II Random Uniform Chebyshev II

16 3.245(−5) 3.246(−5) 3.246(−5) 1.846(−5) 1.833(−5) 1.844(−5)
20 4.982(−8) 4.982(−8) 4.982(−8) 2.646(−8) 2.596(−8) 2.645(−8)
24 3.602(−11) 3.602(−11) 3.602(−11) 1.898(−11) 1.895(−11) 1.896(−11)

Table 3: The E∞ with two kinds of interpolation nodes and three kinds of test nodes when
N = 24,k= 5 for Example 1

(Nt,Mt) Chebyshev I Chebyshev II

Random Uniform Chebyshev II Random Uniform Chebyshev II

(24,24) 3.602(−11) 3.602(−11) 3.602(−11) 1.746(−11) 1.828(−11) 7.128(−12)
(50,50) 3.601(−11) 3.602(−11) 3.602(−11) 1.695(−11) 1.743(−11) 1.663(−11)
(90,60) 3.602(−11) 3.602(−11) 3.602(−11) 1.875(−11) 1.828(−11) 1.783(−11)
(100,150) 3.598(−11) 3.602(−11) 3.602(−11) 1.890(−11) 1.887(−11) 1.888(−11)
(150,100) 3.600(−11) 3.602(−11) 3.602(−11) 1.848(−11) 1.897(−11) 1.890(−11)
(500,500) 3.602(−11) 3.602(−11) 3.602(−11) 1.902(−11) 1.900(−11) 1.902(−11)

Then the E∞ with two kinds of Chebyshev interpolation nodes and three kinds of test nodes
when Nt=Mt= 100,k= 5 and N = 24,k= 5 is given in Tabs. 2 and 3, respectively. What should
we know is that the two kinds of interpolation nodes here are Chebyshev I and the Chebyshev
II. Three kinds of test nodes are random test nodes, uniform test nodes and Chebyshev II test
nodes all the time. According to the calculation results, �rstly, we can know that the results of
Chebyshev II is better than Chebyshev I and there is almost no difference between three kinds
of test nodes. In addition, the error, error order and the convergence order is almost constant
as Nt and Mt change, which means that the number of test nodes has little in�uence on our
numerical results. So we can take the value of Nt and Mt with any reasonable number in the left
numerical examples. What’s more, the numerical results of the Chebyshev II is a little bit better
than the Chebyshev I and the convergence order with the two kinds of interpolation nodes is
almost identical, therefore, we use the Chebyshev II interpolation nods and three kinds of test
nodes to calculate the left numerical examples in our work.
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Finally, the calculation results of E∞ with the 4th-order method in [26] and with the present
scheme are compared when Nt= 130,Mt= 140,k= 30 in Tab. 4. The results show that the error
order and the convergence order of the scheme in this paper reaches O

(
10−9

)
and 12th-order,

respectively when the number of collocation points is N = 128, while that in the literature just
reaches O

(
10−4

)
and 4th-order, respectively. It shows that the calculation accuracy of the present

scheme is much better than that in the literature.

Table 4: The E∞ when Nt= 130,Mt= 140,k= 30 for Example 1

N 4th-order [26] Present scheme

Random Uniform Chebyshev II

64 1.28(−2) 1.097(−5) 1.074(−5) 1.097(−5)
128 7.10(−4) 1.445(−9) 4.660(−9) 4.521(−9)

The node distribution for the four kinds of interpolation nodes with Nt =Mt = N,k = 5 is
shown in Fig. 2. We can observe that the random nodes are distributed randomly within the
interval, uniform nodes are distributed equably in the interval and the two kinds of Chebyshev
nodes are concentrated at the boundaries while the middle is sparse relatively.

Then the exact solution with Chebyshev test nodes is plotted in Fig. 3a-III, numerical solu-
tions with random test nodes are plotted in Fig. 3b-I, uniform test nodes in Fig. 3b-II and
Chebyshev test nodes in Fig. 3b-III; errors with random test nodes in Fig. 3c-I, uniform test nodes
in Fig. 3c-II and Chebyshev test nodes in Fig. 3c-III with Nt= 130, Mt= 140, k= 30, N = 12.
Among them, because the exact solutions with three kinds of test nodes are almost the same, we
only give the �gure with Chebyshev test nodes. In addition, it can be observed that all numerical
solutions with the three kinds of test nodes agree well with the exact solution. What’s more,
because of the addition of test nodes on the boundaries to calculate the numerical solution with
proposed method, these nodes’ values on the boundaries are no longer given by the exact solution
and resulting in some error’s appearance on the boundaries. It can also be observed from Fig. 3c
that the errors are equivalent with that in the interior region.

Finally, the convergence order with Nt =Mt = 100,k = 5 and Nt = 130,Mt = 140,k = 30 is
shown in Fig. 4. It can be seen that with the wave number of k increases, the order of convergence
decreases. Meanwhile, the convergence order of the two kinds of interpolation nodes Chebyshev
I and Chebyshev II is almost identical. And then the convergence order of the proposed method
is much higher than that in the literature.

Example 2 [27]:

Consider the following non-homogeneous Helmholtz equation

uxx+ uyy+ k2u= f (x,y) , (x,y) ∈ [0,π ]× [0,π ]
f (x,y)= 2α2 {sinh (αx) sinh [α (π − x)]− cosh (αx) cosh [α (π − x)]}
+2β2 {sinh (βy) sinh [β (π − y)]− cosh (βy) cosh [β (π − y)]}
+k2 {sinh (αx) sinh [α (π − x)]+ sinh (βy) sinh [β (π − y)]}
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with the boundary conditions:

u (0,y)= u (π ,y)= sinh (βy) sinh [β (π − y)]
u (x, 0)= u (x,π)= sinh (αx) sinh [α (π − x)]

The exact solution is

u (x,y)= sinh (αx) sinh [α (π − x)]+ sinh (βy) sinh [β (π − y)]

(a) (b)

(c) (d)

Figure 2: Random (a), uniform (b), Chebyshev I (c) and Chebyshev II (d) interpolation nodes
when Nt=Mt=N,k= 5 for Example 1
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Figure 3: Exact (a) and numerical (b) solutions and error (c) with different test nodes: random
(I), uniform (II) and Chebyshev (III) when Nt= 130,Mt= 140,k= 30,N = 128 for Example 1

Figure 4: The convergence order with Nt = Mt = 100,k = 5 and Nt = 130,Mt = 140,k = 30
for Example 1

Tab. 5 gives the E∞ computed by the present scheme and compares with EB-6 method
in [27] when α = 0.5,β = 0.7,Nt =Mt = 120,k = 6.4. The results show that the error order of
the proposed scheme reaches O

(
10−11

)
when the number of collocation points is N = 16, while

that in the literature, the error order only reaches O
(
10−7

)
when N = 16 and O

(
10−10

)
when

N = 64. Therefore, the number of calculation points needed in the present scheme is much less
than that in the literature and we can save more computational amount. In addition, we notice the
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error order of the proposed scheme decreases gradually and the error increase gradually with the
increase of the number of nodes N, but the overall calculation result is better than that in the
literature. What’s more, convergence order of the proposed method is the 21th-order, while that in
the literature is the 6th-order, so the precision of present method is also better than the method in
the literature. Compared with the �nite difference method, the barycentric Lagrange interpolation
collocation method does not mean that the more nodes there are, the better the calculation results
will be. Sometimes, we can obtain the better results with comparably a few nodes.

Table 5: The E∞ when α = 0.5,β = 0.7,Nt=Mt= 120,k= 6.4 for Example 2

N EB-6 [27] Present scheme

Random Uniform Chebyshev

8 8.44(−5) 2.887(−6) 2.888(−6) 2.879(−6)
16 8.58(−7) 1.153(−11) 1.566(−11) 1.154(−11)
32 1.31(−9) 9.147(−11) 9.136(−11) 9.149(−11)
64 2.02(−10) 1.568(−9) 1.569(−9) 1.569(−9)

The E∞, Er and CPU time with α = 0.6,β = 0.8,Nt =Mt = 50,k = 10 are given in Tab. 6.
It shows that the proposed scheme can approximate the exact solution with a few nodes. It is
necessary to note that for the determination of CPU time in our work, we select the longest
time taken by the three test nodes method. Even so, we still �nd that for the two-dimensional
Helmholtz equation, the CPU time with the present scheme is very small when the number of
collocation points is less, which shows that this method is less time-consuming and can save
calculation time effectively.

Table 6: The E∞, Er and CPU time when α = 0.6,β = 0.8,Nt=Mt= 50,k= 10 for Example 2

N E∞ Er CPU time

Random Uniform Chebyshev Random Uniform Chebyshev

8 1.859(−5) 1.813(−5) 1.845(−5) 1.802(−6) 1.519(−6) 2.215(−6) 0.270
12 1.844(−9) 1.842(−9) 1.818(−9) 2.084(−10) 2.072(−10) 2.320(−10) 0.280
16 1.419(−11) 1.448(−11) 1.437(−11) 2.197(−12) 1.929(−12) 2.051(−12) 0.439
20 1.847(−8) 1.847(−8) 1.857(−8) 2.681(−9) 2.847(−9) 3.042(−9) 0.946

Fig. 5. gives the exact (a) and numerical (b) solutions and error (c) with different test nodes:
random (I), uniform (II) and Chebyshev (III) with α = 0.6,β = 0.8,Nt=Mt= 50,k= 10,N = 16.
It shows that the numerical solution with three kinds of test nodes have the similar shape and
are in good agreement with the exact solution as well. What’s more, Figs. 3c-I, 3c-II and 3c-III
show that the error order reaches O

(
10−11

)
.
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Figure 5: Exact (a) and numerical (b) solutions and error (c) with different test nodes: ran-
dom (I), uniform (II) and Chebyshev (III) when α = 0.6,β = 0.8,Nt =Mt = 50,k = 10,N = 16
for Example 2

Example 3 [28]:

Consider the following non-homogeneous high wavenumber Helmholtz equation

uxx+ uyy+ k2u=−a2 sin (ax) sin (ky) , (x,y) ∈ [0, 1]× [0, 1]

with the boundary conditions:

u (0,y)= 0,u (1,y)= sin (a) sin (ky)
u (x, 0)= 0,u (x, 1)= sin (ax) sin (k)

The exact solution is

u (x,y)= sin (ax) sin (ky)

The calculation results with the 6th-order method in [28] and the present scheme are com-
pared under different wave numbers with k = 24 and k = 48 when a = 1,Nt = 130,Mt = 150 in
Tab. 7. The results show that the calculation error and error order of the present scheme are
much better than that in the literature. Therefore, it is more suitable for solving high wavenumber
problems as well. Then the E∞, Er and CPU time with a= 0.5,Nt=Mt= 60,k= 12 are given in
Tab. 8. It shows the advantages of the present scheme, such as less number of collocation points,
short calculation time, high precision and small error.

Fig. 6. gives the exact (a) and numerical (b) solutions and error (c) with different test nodes:
random (I), uniform (II) and Chebyshev (III) with a = 1,Nt = 130,Mt = 150,k = 48,N = 128,
respectively. It shows that the numerical solutions agree very well with the exact solution, and the
error of three kinds of test nodes has little difference.

Example 4 [29]:

Consider the following non-homogeneous variable wavenumber Helmholtz equation

uxx+ uyy+ k (x,y)2 u=
[
k (x,y)2− 13

]
sin (2x+ 3y) , (x,y) ∈ [0, 1]× [0, 1]
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with the boundary conditions:

u (0,y)= sin (3y) ,u (1,y)= sin (2+ 3y)
u (x, 0)= sin (2x) ,u (x, 1)= sin (2x+ 3)

The exact solution is

u (x,y)= sin (2x+ 3y)

Table 7: The E∞ with different wave numbers when a= 1,Nt= 130,Mt= 150 for Example 3

N 6th-order [28] Present scheme

Random Uniform Chebyshev

k= 24 64 4.60(−3) 1.935(−9) 2.752(−9) 4.374(−9)
128 5.99(−5) 6.654(−8) 1.147(−7) 1.120(−7)

k= 48 64 1.43 1.249(−8) 1.287(−8) 1.286(−8)
128 1.83(−2) 1.406(−7) 1.392(−7) 1.398(−7)

Table 8: The E∞, Er and CPU time when a= 0.5,Nt=Mt= 60,k= 12 for Example 3

N E∞ Er CPU time

Random Uniform Chebyshev Random Uniform Chebyshev

12 2.659(−4) 2.711(−4) 2.597(−4) 4.930(−4) 4.654(−4) 4.064(−5) 0.941
16 4.241(−7) 4.269(−7) 4.252(−7) 7.224(−7) 7.327(−7) 6.486(−7) 0.617
24 1.882(−11) 1.847(−11) 2.102(−11) 1.368(−11) 1.250(−11) 1.433(−11) 1.688
32 2.259(−11) 3.657(−11) 3.658(−11) 1.537(−11) 1.897(−11) 2.240(−11) 1.392

Tab. 9 shows the E∞ when Nt = 150,Mt = 130 with variable wavenumber k (x,y) =
√

cos (x)+ ey. Compared with the MHADI method in [29], the error order of the present scheme
is O

(
10−12

)
with N = 16, while that in the literature is only O

(
10−2

)
. In addition, the accuracy in

the literature is the 4th-order, while that in this paper is up to the 9th-order. So the present scheme
has higher calculation accuracy compared with that in the literature. We notice that although
the error order of the proposed scheme decreases with the increase of the number of nodes, the
overall calculation results are still better than that in the literature. Then the E∞, Er at different
collocation points and CPU time with Nt=Mt= 50, k (x,y)=

√
sin (x)+ ey are given in Tab. 10.

The numerical results show that compared with the �nite difference, the barycentric Lagrange
interpolation method is more suitable for solving the problem of variable wavenumber. At the
same time, we can obtain the better results with relatively a few nodes.

Fig. 7. gives the exact (a) and numerical (b) solutions and error (c) with different test nodes:
random (I), uniform (II) and Chebyshev (III) with Nt =Mt = 50,N = 16,k (x,y) =

√
sin (x)+ ey,

respectively. It shows that although k is the variable wavenumber, the numerical solutions are also
in good agreement with the exact solution, and the error is steady as a whole.
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Figure 6: Exact (a) and numerical (b) solutions and error (c) with different test nodes: ran-
dom (I), uniform (II) and Chebyshev (III) when a = 1,Nt = 130,Mt = 150,k = 48,N = 128
for Example 3

Table 9: The E∞ when Nt= 150,Mt= 130,k (x,y)=
√

cos (x)+ ey for Example 4

N MHADI [29] Present scheme

Random Uniform Chebyshev

16 1.70(−2) 7.064(−12) 8.911(−12) 9.255(−12)
32 1.30(−3) 1.155(−10) 1.990(−10) 1.968(−10)
64 7.10(−5) 3.513(−9) 4.694(−9) 6.344(−9)
128 5.10(−6) 9.268(−8) 1.300(−7) 1.467(−7)

Table 10: The E∞, Er and CPU time when Nt=Mt= 50,k (x,y)=
√

sin (x)+ ey for Example 4

N E∞ Er CPU time

Random Uniform Chebyshev Random Uniform Chebyshev

8 8.942(−7) 8.948(−7) 8.930(−7) 5.651(−7) 5.478(−8) 4.514(−7) 0.319
12 1.584(−11) 1.594(−11) 1.603(−11) 1.139(−11) 9.730(−12) 8.066(−12) 0.304
16 4.761(−12) 8.564(−12) 8.488(−12) 5.709(−13) 7.908(−13) 1.405(−12) 0.427
24 2.562(−11) 8.154(−11) 8.213(−11) 3.927(−12) 5.838(−12) 9.301(−12) 0.639
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Figure 7: Exact (a) and numerical (b) solutions and error (c) with different test nodes: ran-
dom (I), uniform (II) and Chebyshev (III) when Nt = Mt = 50,k (x,y) =

√
sin (x)+ ey,N = 16

for Example 4

Table 11: The E∞, Er and CPU time when Nt=Mt= 50,k= 5 for Example 5

N E∞ Er CPU time

Random Uniform Chebyshev Random Uniform Chebyshev

20 5.305(−6) 5.755(−6) 5.704(−6) 3.381(−6) 3.382(−6) 3.404(−6) 0.732
24 4.838(−9) 5.502(−9) 5.078(−9) 1.209(−9) 2.156(−9) 2.148(−9) 1.004
40 1.686(−9) 1.969(−9) 1.431(−9) 5.450(−10) 4.917(−10) 5.305(−10) 5.726

Table 12: The E∞, Er and CPU time when Nt=Mt= 50,k= 10 for Example 5

N E∞ Er CPU time

Random Uniform Chebyshev Random Uniform Chebyshev

24 5.317(−2) 6.593(−2) 6.160(−2) 2.441(−2) 2.356(−2) 2.423(−2) 0.951
32 5.982(-6) 5.982(−6) 6.141(−6) 2.614(−6) 2.614(−6) 2.549(−6) 2.329
48 1.112(−8) 1.313(−8) 1.056(−8) 5.243(−9) 5.010(−9) 5.036(−9) 10.638
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Example 5 [30]:

Consider the following homogeneous Helmholtz equation

uxx+ uyy+ k2u= 0, (x,y) ∈Ω

with the Dirichlet boundary condition. The computational domain is an ameba-shape domain (see
Fig. 7) with the boundary de�ned by the parametric equation:

ρ (θ)= exp (sin (θ)) sin2 (2θ)+ exp (cos (θ)) cos2 (2θ) ,
x= ρ (θ) cos (θ) , y= ρ (θ) sin (θ) , 0≤ θ ≤ 2π

Figure 8: The ameba-shape domain with different test nodes: random (a), uniform (b) and
Chebyshev (c) when Nt=Mt= 50,k= 10,N = 48 for Example 5
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Figure 9: Exact (a) and numerical (b) solutions and error (c) with different test nodes: random
(I), uniform (II) and Chebyshev (III) when Nt=Mt= 50,k= 10,N = 48 for Example 5

Table 13: The E∞ when Nt=Mt= 50 for Example 6

N Liu [30] Present scheme

Random Uniform Chebyshev

20 1.7(−2) 1.275(−11) 2.991(−11) 4.136(−11)

Table 14: The E∞, Er and CPU time when Nt=Mt= 50 for Example 6

N E∞ Er CPU time

Random Uniform Chebyshev Random Uniform Chebyshev

8 1.183(−5) 1.573(−5) 1.552(−5) 3.867(−6) 6.715(−6) 7.788(−6) 0.203
12 3.981(−8) 5.827(−8) 5.834(−8) 1.182(−8) 2.188(−8) 2.674(−8) 0.244
16 1.746(−10) 2.228(−10) 2.215(−10) 6.391(−11) 7.581(−11) 9.435(−11) 0.340
24 2.021(−11) 4.141(−11) 4.207(−11) 7.508(−12) 1.067(−11) 1.218(−11) 0.482

The exact solution is

u (x,y)= sin
[
k
√

2
(x+ y)

]
Tab. 11 and Tab. 12 give the E∞, Er and CPU time with an ameba-shape domain when Nt=

Mt= 50,k= 5 and Nt=Mt= 50,k= 10, respectively. What should be noted is that the [30] only
computed a square domain, so we do not make comparisons with it and just give the results
of our proposed method. The results show that even in an arbitrary region, the accuracy and
convergence order of the present method are still very high. It is obvious that the present method
is an effective method with high precision.
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Figure 10: Exact (a) and numerical (b) solutions and error (c) with different test nodes: random
(I), uniform (II) and Chebyshev (III) when Nt=Mt= 50,N = 16 for Example 6

Then the Fig. 8. gives the computational domain with different test nodes: random (a),
uniform (b) and Chebyshev (c) when Nt =Mt = 50,k = 10,N = 48. Similar to Fig. 1, we can
observe the distribution of the three test nodes. Fig. 9. gives the exact (a) and numerical (b)
solutions and error (c) with different test nodes: random (I), uniform (II) and Chebyshev (III)
with Nt=Mt= 50,k= 10,N = 48. It shows that the even though under the general domain, the
numerical solutions agree very well with the exact solution, and the errors of three kinds of test
nodes have little difference.

Example 6 [30]:

Consider the following non-homogeneous modi�ed Helmholtz equation

uxx+ uyy− u= f (x,y) , (x,y) ∈Ω= [0, 1]× [0, 1]
f (x,y)=

(
x2
+ y2

) 2 sin(xy)
cos3(xy)

− tan (xy)

with the boundary conditions:

u (0,y)= 0,u (1,y)= tan (y)
u (x, 0)= 0,u (x, 1)= tan (x)

The exact solution is

u (x,y)= tan (xy)

Lastly, we consider the non-homogeneous modi�ed Helmholtz equation for Example 6.
Tab. 13 gives calculation results with the present scheme and compared with [30]. Then the E∞, Er
and CPU time with different collocation points under Nt=Mt= 50 is given in Tab. 14. We �nd
that the error and convergence order of our proposed method are still much better than that in
the literature. Fig. 10 gives the exact (a), numerical (b) solutions and error (c) with different test
nodes: random (I), uniform (II) and Chebyshev (III) when Nt=Mt= 50,N = 16 for Example 6. It
is interesting that the proposed scheme is also suitable for non-homogeneous modi�ed Helmholtz
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equation, and the numerical solution and the exact solution are in good agreement as well, at the
same time the error is stable as a whole.

5 Conclusions

Based on the Chebyshev interpolation nodes, we have developed a meshless collocation
method for solving the two-dimensional Helmholtz equations with the Dirichlet boundary con-
dition, by using the barycentric Lagrange interpolation basis function. Firstly, this meshless
collocation method applies the interpolation basis function to treat the spatial variables and their
partial derivatives, and establishes the collocation method for solving the differential equations.
Secondly, at a given node, the multivariate basis function is substituted into the equation and its
boundaries and the discrete algebraic equations are obtained. Then, the differential matrix is used
to simplify it. To investigate the accuracy and ef�ciency of the proposed method, we conduct
some numerical experiments by using three kinds of test nodes. Based on our research, we can
draw some conclusions as follows:

(1) As for the choice of interpolation nodes, the numerical results show that Chebyshev II
is better than Chebyshev I for the present scheme. As for test nodes, there is almost no
difference for the numerical results with three kinds of test nodes. In addition, with the
change of the number of test nodes Nt and Mt, the error is almost unchanged. That is
say that the number of test nodes has little in�uence for the numerical results.

(2) By using comparably fewer nodes, the present scheme can obtain high-precision numerical
results and keep good stability compared with those methods in the literature. It shows the
advantages of the present scheme, such as smaller number of collocation points needed,
short calculation time, high precision, small error and high ef�ciency. What’s more, the
numerical solutions agree well with the exact solutions.

(3) Compared with the methods in the literature, the present method can not only calculate the
high wavenumber problems, but also calculate the variable wavenumber problems, and the
numerical results are better than those in the literature. For modi�ed Helmholtz equation,
the results computed by the present scheme are far better than those in the literature
as well.

(4) The present method can be extended to solve the 3D Helmholtz equations. We will report
it in the near future.
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