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ABSTRACT

The main aim of this paper is to propose a new memory dependent derivative (MDD) theory which called three-
temperature nonlinear generalized anisotropic micropolar-thermoelasticity. The system of governing equations of
the problems associated with the proposed theory is extremely difficult or impossible to solve analytically due to
nonlinearity, MDD diffusion, multi-variable nature, multi-stage processing and anisotropic properties of the con-
sidered material. Therefore, we propose a novel boundary element method (BEM) formulation for modeling and
simulation of such system. The computational performance of the proposed technique has been investigated. The
numerical results illustrate the effects of time delays and kernel functions on the nonlinear three-temperature and
nonlinear displacement components. The numerical results also demonstrate the validity, efficiency and accuracy
of the proposed methodology. The findings and solutions of this study contribute to the further development of
industrial applications and devices typically include micropolar-thermoelastic materials.
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1 Introduction

The study of thermoelastic models has recently gained growing attention due to its
many applications in aerospace technologies, geophysics, aeronautics, astronautics, robotics,
earthquake engineering, mining engineering, nuclear energy industry, military technologies, soil
dynamics, high-energy particle accelerators and detectors, and other engineering and electronic
industries [1–9].

The classical thermo-elasticity (CTE) theory of Duhamel [10] and Newman [11] has two
deficiencies: the first deficiency is the heat conduction of CTE does not include any elas-
tic term, whereas the second deficiency is that, the equation of heat conduction has infi-
nite heat propagation velocities. In order to overcome the first deficiency, Biot [12] proposed

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2021.012218


176 CMES, 2021, vol.126, no.1

classical coupled thermo-elasticity (CCTE). But CTE and CCTE have the second deficiency.
Therefore, many generalized thermo-elasticity theories have been developed to overcome the
second deficiency of CTE. Among these theories are extended thermo-elasticity (ETE) theory
of Lord et al. [13], temperature-rate-dependent thermo-elasticity (TRDTE) theory of Green
et al. [14–16] namely I, II and III, respectively, (where, GN theory I is based on Fourier’s law
of heat conduction and identical to CTE theory, GN theory II characterizes the thermoelasticity
without energy dissipation (TEWOED), and GN theory III which characterizes the thermoe-
lasticity with energy dissipation (TEWED)). Although most thermal phenomena are practically
represented using the classical Fourier thermal conductivity equation [17–22], there are a large
number of applications that require the use of the nonlinear heat conduction equation, great
attention has been paid to investigate of nonlinear generalized thermoelastic problems by using
boundary element method [23–26]. Fahmy [27] introduced the three-temperature theory in the
context of nonlinear generalized thermoelasticity.

The fractional calculus is the mathematical branch that is used to study the theory and
applications of derivatives and integrals of arbitrary non-integer order. Recently, this branch
has emerged as an effective tool for modeling of various engineering and industrial applica-
tions [28,29]. Due to the nonlocal nature of fractional order operators, they are useful for
describing the memory and hereditary properties of various materials and processes. Also,
the fractional calculus has drawn wide attention from the researchers of various countries in
recent years due to its applications in solid mechanics, fluid dynamics, quantum mechanics,
viscoelasticity, heat conduction modeling and identification, biology, food engineering, econo-
physics, biophysics, biochemistry, electrochemistry, electrical engineering, finance and control the-
ory, robotics and control theory, signal and image processing, electronics, electric circuits, wave
propagation, nanotechnology, flabby, oscillation, stochastic diffusion theory and wave propagation,
etc. [30–32].

Several famous mathematicians have contributed to the development of fractional order cal-
culus, where Euler mentioned interpolating between integral orders of a derivative in 1730. At
that point, Laplace characterized a fractional derivative by implies of an integral in 1812.

Lacroix presented the first formula for the fractional order derivative appeared in 1819, where
he introduced the nth derivative of the function y= xm as follows

dny
dxn

= Γ(m+ 1)
Γ(m−n+ 1)

xm−n. (1)

In 1967, the Italian mathematician Caputo presented his fractional derivative of order
α > 0 as

Dα
∗ f (t)=

1
Γ (m−α)

∫ t

0

f(m) (τ )

(t− τ )α+1−mdτ , m− 1<α <m, α > 0. (2)

Diethelm [33] has suggested the derivative of Caputo in the form below

Dζ
af (τ )=

∫ τ

a
Kζ (τ − ξ) f(m) (ξ) dξ . (3)
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where f(m) is the m-th order derivative and m is an integer such that m− 1< ζ≤m

Kζ (τ − ξ)= (τ − ξ)m−ζ−1

Γ (m− ζ)
. (4)

Wang et al. [34] have introduced MDD as follows

Dζ
ωf (τ )= 1

ω

∫ τ

τ−ω

Kζ (τ − ξ) f(m) (ξ) dξ , ω> 0. (5)

where the first order (ζ= 1) of MDD for a differentiable function f (τ ) can be expressed as

Dωf (τ )= 1
ω

∫ τ

τ−ω

K (τ − ξ) f ′ (ξ) dξ . (6)

Based on several practical applications, the memory effect needs weight 0≤K (τ − ξ) < 1 for
ξ ∈ [τ −ω, τ ], so the MDD magnitude Dωf (τ ) is usually smaller than f ′(τ ), where the kernel
function (0 ≤K (τ − ξ) ≤ 1 for ξ ∈ [τ − ξ , τ ]) Can be randomly selected over a staggered interval

[τ −ω, τ ], the practical kernel functions are 1, [1− (τ − ξ)] and
[
1− τ − ξ

ω

]
, = 1

4
, 1, 2, etc.

These functions are monotonically increasing with K= 0 for the past time τ −ξ and K= 1 for the
present time τ . The main feature of MDD, that the real-time functional value depends also, on
the past time [τ − ξ , τ ]. So, Dω depends on the past time (nonlocal operator), while the integration
doesn’t depend on the past time (local operator).

As a special case K (τ − ξ)≡ 1 we have

Dωf (τ )= 1
ω

∫ τ

τ−ω

f ′ (ξ)dξ = f (τ )− f (τ −ω)

ω
→ f

′(τ). (7)

The above equation shows that the common derivative
d
dτ

is the limit of Dω as ω → 0.

That is,

Dωf (τ )≤
∣∣∣∣ ∂f∂τ

∣∣∣∣= lim
ω→0

f (τ +ω)− f (τ )
ω

. (8)

Due to the computational difficulties in solving nonlinear generalized anisotropic thermoe-
lastic problems, the problems become too complicated with no general analytical solution. So,
numerical solutions should be implemented instead of analytical solutions to obtain the approx-
imate solutions for such problems, one of the best of these numerical methods is the boundary
element method (BEM) [35,36], which also called boundary integral equation method. BEM
has been extensively used for a large variety of engineering and industrial applications. In
the BEM, only the boundary of the computational domain needs to be discretized, so, it
has a major advantage over domain methods which requires the whole computational domain
discretization such as the finite difference method (FDM) [37–39] and finite element method
(FEM) [40–42]. This advantage of BEM over domain methods has significant importance for
modeling of nonlinear generalized thermoelastic problems which can be implemented using BEM
with little cost and less input data [43–57]. Through this paper, we would like to guide the reader
to this important paper of Cheng et al. [58] which narrates BEM history in a wonderful and
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interesting way. Sladek et al. [59–61] and Huang et al. [62] developed the boundary element
formulation for micropolar thermoelasticity.

Researchers in numerical methods were only aware of the importance of FEM which could
solve complex engineering problems. But now after the huge achievements of BEM and their abil-
ity to solve inhomogeneous and non-linear problems involving infinite and semi-infinite domains
very efficiently, they realized the power, ease and accuracy of BEM in solving their complex
problems by using a lot of software like FastBEM and BEASY.

The main aim of this paper is to propose a new MDD theory, called three-temperature
nonlinear generalized anisotropic micropolar-thermoelasticity and propose a novel BEM technique
for solving problems associated with the proposed theory. The numerical findings are graphically
represented to demonstrate the impacts of the time delays and kernel functions on the total
nonlinear three-temperature and nonlinear displacement components and demonstrate the validity
and exactness of the suggested technique.

A brief summary of this paper is as follows: Section 1 introduces the background and
provides the readers with the necessary information to books and articles for a better under-
standing of thermoelasticity theories, memory dependent derivative history and their applications.
Section 2 describes the physical modeling of memory dependent derivative problems of three-
temperature nonlinear generalized anisotropic micropolar-thermoelasticity. Section 3 outlines the
BEM implementation for obtaining the temperature field of the considered problem. Section 4
outlines the BEM implementation for obtaining the displacement field of the considered problem.
Section 5 introduces the computational performance of the proposed technique. Section 6 presents
the new numerical results that describe the effects of time delays and kernel functions on the
total temperature and displacement components. Section 7 outlines the significant findings of
this paper.

2 Formulation of the Problem

The geometry of the considered problem is shown in Fig. 1 for a structure which occupies the

bounded region R =
{
0< x<β, 0< y<α, 0< z< γ

}
that bounded by S, where Si (i= 1, 2, 3, 4)

such that S1+S2 = S3 +S4 = S.

Figure 1: Geometry of the considered problem
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The memory dependent derivative governing equations for three-temperature nonlinear gen-
eralized anisotropic micropolar-thermoelasticity theory and its problems can be expressed as
follows [27]

σij,j+ρFi = ρüi, (9)

mij,j + εijkσjk+ρMi = Jρω̈i. (10)

where

σij =
[
Cijkl eδij+ α̌

(
uj,i− εijkωk

)−βij (T + τ1Ṫ
)]
, (11)

mij =
[
αωk,k δij +αωi,j+αωj,i

]
, (12)

εij = εij− εijk (rk−ωk) , (13)

εij = 1
2

(
ui,j+ uj,i

)
, ri = 1

2
εiklul,k. (14)

The two dimensions three temperature (2D-3T) radiative heat conduction equations can be
expressed as

ce
∂Te(r, τ )
∂τ

− 1
ρ
∇ [Ke∇Te (r, τ )]=−Wei (Te−Ti)−Wep

(
Te−Tp

)
, (15)

ci
∂Ti(r, τ )
∂τ

− 1
ρ
∇ [Ki∇Ti (r, τ )]=Wei (Te−Ti) , (16)

4
ρ
cpT3

p
∂Tp(r, τ )
∂τ

− 1
ρ
∇ [

Kp∇Tp (r, τ )
]=Wep

(
Te−Tp

)
. (17)

where σab, mij, εij, εij, uk, Tα and Tα0 are the mechanical stress tensor, couple stress, strain tensor,
micro-strain tensor, displacement vector, temperature and reference temperature, respectively, Cabfg
(Cabfg =Cfgab=Cbafg) and βab (βab = βba) are respectively, the constant elastic moduli and stress-
temperature coefficients of the anisotropic medium, Fi, Mi and ωi are mass force, mass couple
and micro-rotation, respectively, J is micro-inertia coefficient, Kα (α = e, i,p) are the thermal
conductivity coefficients, e, i and p denote electron, ion and phonon, respectively, K∗

α is the second
order tensor associated with the TEWED and TEWOED theories, Wei, Wep, ρ, cα(α = e, i,p), τ

and Å are the electron-ion energy coefficient, electron-phonon energy coefficient, density, specific
heat capacities, time and unified parameter which introduced to consolidate all theories into a
unified equations system, respectively, τ0, τ1 and τ2 are the relaxation times, m is a functionally
graded parameter. Also, g1, g2, �f and δf are suitably prescribed functions, ta are the tractions
defined by ta = σabnb, δ1j and δ2j are the Kronecker delta functions.

3 BEM Solution for Temperature Field

The 2D-3T radiative heat conduction equations mentioned above (15)–(17) coupled with
electron, ion and phonon temperatures, can be expressed in the context of memory dependent
derivative theory [27]

∇ [(
δ1jKα + δ2jK∗

α

)∇Tα(r, τ )]=W (r, τ ) , (18)

LabTα (r, τ )= fab. (19)
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where

Lab=∇ [(
δ1jKα + δ2jK∗

α

)∇] , (20)

fab=W (r, τ ) . (21)

where

W (r, τ )=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρWei (Te−Ti)+ρWer

(
Te−Tp

)+W, α = e, δ1 = 1

−ρWei (Te−Ti)+W, α = i, δ1 = 1

−ρWer
(
Te−Tp

)+W, α = p, δ1 = 4
ρ
T3
p

. (22)

and

W (r, τ )=−δ2jKαṪα,ab+βabTα0
[
Åδ1j u̇a,b+

(
τ0+ δ2j

)
üa,b

]+ρcαδ1δ1jṪα
+ρcα

[(
τ0+ δ1jτ2+ δ2j

)
T̈α
]
. (23)

which can be written in memory dependent derivative form as follows

W (r, τ )= F (r, τ )− δ2jKα

ωα

∫ τ

τ−ωα

K (τ − ξ) ∂
∂ξ

(
∇2Tα (r, τ )

)
dξ

+ ρcαδ1δ1j
ωα

∫ τ

τ−ωα

K (τ − ξ) ∂
∂ξ
(Tα (r, τ ))dξ

+ ρcα
(
τ0+ δ1jτ2+ δ2j

)
ωα

∫ τ

τ−ωα

K (τ − ξ) ∂
2

∂ξ2
(Tα (r, τ ))dξ . (24)

where

F (r, τ )= βabTα0
[
Åδ1j u̇a,b+

(
τ0+ δ2j

)
üa,b

]
. (25)

and

Wei = ρAeiT
−2/3
e , Wer = ρAerT

−1/2
e , Kα =AαT5/2

α , α = e, i, Kp=ApT3+B
p . (26)

where δij (i, j= 1, 2), ωα (> 0) (α = e, i and p) and K (τ − ξ) are the Kronecker delta, delay times
and kernel function, respectively.

P=Pe+Pi+Pp, Pe = ceTe, Pi = ciTi, Pp = 1
ρ
cpT4

p . (27)

Initial and boundary conditions of 3T field can be written as

Tα (x,y, 0)=T0
α (x,y)= g1 (x, τ ) , (28)

Kα

∂Tα
∂n

∣∣∣∣
�1

= 0, α= e, i, Tp
∣∣
�1

= g2 (x, τ ) , (29)

Kα

∂Tα
∂n

∣∣∣∣
�2

= 0, α= e, i,p. (30)
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By using the fundamental solutions T∗
α that satisfies the following differential equation

LabT
∗
α = fab. (31)

Now, by applying the technique of Fahmy [27] to (19) we can write

CTα = D
Kα

∫ τ

O

∫
S

[
Tαq* −T∗

αq
]
dS dτ + D

Kα

∫ τ

O

∫
R
bT∗

αdR dτ +
∫
R
Ti
αT

∗
α

∣∣
τ=0 dR. (32)

which, in the absence of heat sources, can be written as follows

CTα =
∫
S

[
Tαq∗ −T∗

αq
]
dS−

∫
R

Kα

D
∂T∗

α

∂τ
TαdR. (33)

In order to transform the domain integral of (33) into the boundary, the time derivative of
temperature can be approximated as follows

∂Tα
∂τ

∼=
N∑
j=1

f j (r)aj (τ ) . (34)

where f j(r) are known functions and aj (τ ) are unknown coefficients.

We assume that T̂ j
α is a solution of

∇2T̂ j
α = f j. (35)

Then, Eq. (33) resulted in the following boundary integral equation

CTα =
∫
S

[
Tαq∗ −T∗

αq
]
dS+

N∑
j=1

aj (τ )D−1
(
CT̂j

α −
∫
S

[
Tj
αq

∗ − q̂jT∗
α

]
dS
)
. (36)

where

q̂j =−Kα

∂T̂ j
α

∂n
. (37)

and

aj (τ )=
N∑
i=1

f−1
ji
∂Tα (ri, τ )

∂τ
. (38)

where f−1
ji are the coefficients of F−1 that described as [50]

{F}ji = f j (ri) . (39)

By discretizing Eq. (36) and using Eq. (38), we get [46]

CṪα +HTα =GQ. (40)

where Q is the heat flux vector and H and G are matrices.
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The diffusion matrix may be described as

C =− [
HT̂α −GQ̂

]
F−1D−1. (41)

where{
T̂
}
ij = T̂ j (xi) , (42)

{
Q̂
}
ij = q̂j (xi) . (43)

To solve Eq. (41) numerically, the functions Tα and q have been interpolated as

Tα = (1− θ)Tm
α + θTm+1

α , (44)

q= (1− θ) qm+ θqm+1. (45)

where, 0≤ θ = τ − τm
τm+1− τm ≤ 1 determines the practical time τ of the current time step.

By differentiating Eq. (44) with respect to time, we get

Ṫα = dTα
dθ

dθ
dτ

= Tm+1
α −Tm

α

τm+1− τm = Tm+1
α −Tm

α

Δτm
. (46)

By substituting from Eqs. (44)–(46) into (40), we obtain(
C

Δτm
+ θH

)
Tm+1
α − θGQm+1 =

(
C

Δτm
− (1− θ)H

)
Tm
α + (1− θ)GQm. (47)

which can be written as follows

MX =D. (48)

in which M represents unknown matrix while X and D represent known matrices. The above
formula gives the temperature as a function of the displacement field.

4 BEM Solution for Displacement Fields

Use of the weighted residual method to the governing Eqs. (9) and (10) yields∫
R

(
σij,j+Ui

)
u∗i dR= 0, (49)

∫
R

(
mij,j + εijk σjk+Vi

)
ω∗
i dR= 0. (50)

where

Ui = ρ (Fi− üi) , (51)

Vi = ρ (Mi− Jω̈i) . (52)

in which ui and ωi are approximate solutions and u∗i and ω∗
i are weighting functions.
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The boundary conditions are

ui (x,y, τ )= ui for (x,y)∈ S1 (53)

λi = σijnj = λi for (x,y) ∈ S2, S1 ∪S2 = S, S1 ∩S2 =∅ (54)

ωi =ωi for (x,y)∈ S3, (55)

μi =mijnj =μi for (x,y)∈ S4. S3 ∪S4 = S, S3 ∩S4 =∅. (56)

By integrating the first term of Eqs. (49) and (50) by parts, we get

−
∫
R
σiju∗i,jdR+

∫
R
Uiu∗i dR=−

∫
S2
λiu∗i dS, (57)

−
∫
R
mijω

∗
i,jdR+

∫
R
εijkσjkω

∗
i dR+

∫
R
Viω∗

i dR=−
∫
S4
μiω

∗
i dS. (58)

Based on Huang et al. [62], we can write the following boundary integral equation

−
∫
R
σij,ju∗i dR+

∫
R

(
mij,j + εijkσjk

)
ω∗
i dR+

∫
R
Uiu∗i dR+

∫
R
Viω∗

i dR

=
∫
S2

(
λi−λi

)
u∗i dS+

∫
S1
(ui− ui)λ∗i dS+

∫
S4

(
μi−μi

)
ω∗
i dS+

∫
S3
(ωi−ωi)μ

∗
i dS. (59)

By integrating the left-hand side of (59) by parts, we get

−
∫
R
σijε

∗
ijdR−

∫
R
mij,jω

∗
i,jdR+

∫
R
Uiu∗i dR+

∫
R
Viω∗

i dR

=−
∫
S2
λiu∗i dS−

∫
S1
λiu∗i dS+

∫
S1
(ui− ui) λ∗i dS−

∫
S4
μiω

∗
i dS−

∫
S3
μω∗

i dS

+
∫
S3
(ωi−ωi)μ

∗
i dS. (60)

Based on Eringen [63], we can write

σij =Aijklεkl, mij =Bijklωk,l where Aijkl =Aklij and Bijkl =Bklij. (61)

Thus, Eq. (60) can be reexpressed as

−
∫
R
σ ∗
ij εijdR−

∫
R
m∗
ij,jωi,jdR+

∫
R
Uiu∗i dR+

∫
R
Viω∗

i dR

=−
∫
S2
λiu∗i dS−

∫
S1
λiu∗i dS+

∫
S1
(ui− ui) λ∗i dS−

∫
S4
μiω

∗
i dS−

∫
S3
μiω

∗
i dS

+
∫
S3
(ωi−ωi)μ

∗
i dS. (62)
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By integrating the left-hand side of (62) by parts again and neglecting body force Ui and
body couple Vi, we get∫
R
σ ∗
ij,juidR+

∫
R

(
m∗
ij,j+ εijkσ ∗

jk

)
ωidR

=−
∫
S
u∗i λidS−

∫
S
ω∗
i μidS+

∫
S
λ∗i uidS+

∫
S
μ∗
i ωidS. (63)

The weighting functions for Ui =Δn and Vi = 0 along el direction can be obtained as:

σ ∗
lj,j+Δnel = 0, (64)

m∗
ij,j+ εijkσ ∗

jk = 0. (65)

Now, we consider the following analytic fundamental solution of Dragos [64]

u∗i = u∗liel, ω∗
i =ω∗

liel, λ∗i = λ∗liel, μ∗
i =μ∗

liel. (66)

The weighting functions for Ui = 0 and Vi =Δn along el direction can be expressed as:

σ ∗∗
ij,j = 0, (67)

m∗∗
lj,j+ εljkσ ∗∗

jk +Δnel = 0. (68)

The analytic fundamental solution of Dragos [64] can also be expressed as

u∗i = u∗∗li el, ω∗
i =ω∗∗

li el, λ∗i = λ∗∗li el, μ∗
i =μ∗∗

li el, (69)

By using the above weighting functions sets into (63) we have

Cn
liu

n
i =−

∫
S
λ∗liuidS−

∫
S
μ∗
liωidS+

∫
S
u∗liλidS+

∫
S

ω∗
liμidS, (70)

Cn
liω

n
i =−

∫
S
λ∗∗li uidS−

∫
S
μ∗∗
li ωidS+

∫
S
u∗∗li λidS+

∫
S
ω∗∗
li μidS. (71)

Thus, we can write

Cnqn =−
∫
S
p∗qdS+

∫
S

q∗pdS. (72)

where

Cn=

⎡⎢⎣C11 C12

C21 C22

⎤⎥⎦, q∗=

⎡⎢⎣u
∗
11 u∗12 ω∗

13

u∗21 u∗22 ω∗
23

u∗∗31 u∗∗32 ω∗∗
33

⎤⎥⎦, p∗=

⎡⎢⎣λ
∗
11 λ∗12 μ∗

13

λ∗21 λ∗22 μ∗
23

λ∗∗31 λ∗∗32 μ∗∗
33

⎤⎥⎦, q=

⎡⎢⎣u1u2
ω3

⎤⎥⎦, p=

⎡⎢⎣λ1λ2
μ3

⎤⎥⎦.

(73)

In order to solve (72) numerically, we define the following functions

q=ψqj, p=ψpj. (74)
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By substituting from (74) into (72), we get

Cnqn =
Ne∑
j=1

[
−
∫

Γj

p∗ψdΓ

]
qj +

Ne∑
j=1

[∫
Γj

�∗ψdΓ

]
pj. (75)

which also can be written as

Ciqi =−
Ne∑
j=1

Ĥijqj +
Ne∑
j=1

Ĝijpj. (76)

By applying the following definition

Hij =
{

Ĥij if i �= j

Ĥij+Ci if i= j
(77)

Thus, by using (77), we can write (76) as follows

Ne∑
j=1

Hijqj =
Ne∑
j=1

Ĝijpj. (78)

Hence, the global matrix system can be expressed as

HQ=GP. (79)

Now, by using the initial and boundary conditions, we can write (79) as follows

MX=D. (80)

in which M represents unknown matrix while X and D represent known matrices. An explicit
staggered predictor-corrector algorithm which is based on the generalized modified shift-splitting
(GMSS) iteration method [65] is implemented in order to solve (48) and (80) for obtaining the
nonlinear three-temperature and nonlinear displacement fields.

5 Computational Performance of the Problem

Nowadays, modern CPUs are very powerful, versatile and can perform very complex problems
much faster than previous ones [65,66]. We used GMSS method for the iterative solution of the
resulted linear systems of equations Au= q, where A is nonsingular, dense and nonsymmetric. We
demonstrated the efficiency of our implemented GMSS method which results in fast convergence
to the actual solution and does not need to complicated calculations.

The main objective of this section is to implement an accurate and robust iteration technique
for solving the dense nonsymmetric algebraic system of linear equations arising from the BEM.
So, GMSS of Huang et al. [67] has been implemented for solving the resulting linear systems in
order to reduce the number of iterations and the CPU time. The BEM discretization is employed
1280 quadrilateral elements, with 3964 degrees of freedom (DOF). The generalized modified shift-
splitting (GMSS) iteration method of Huang et al. [67], Uzawa-HSS iteration method of Yang
et al. [68] and regularized iteration method of Badahmane [69] were compared with each other in
Tab. 1. From this table, one can see that GMSS efficiency is superior to other iteration methods.
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Table 1: Numerical results for the tested iteration methods

Δτ Method Parameters IT CPU RES ERR

0.003 GMSS (28, 2.82) 40 0.0513 6.36e-07 4.92e-08
Regularized 10 70 0.0948 9.25e-07 5.48e-07
Uzawa-HSS (82, 0.29) 80 0.1120 9.82e-07 5.98e-06

0.03 GMSS (35, 2.15) 45 0.0942 2.46e-06 3.24e-07
Regularized 10 110 0.4231 3.25e-05 5.89e-06
Uzawa-HSS (142, 0.24) 120 0.5102 7.32e-05 3.46e-05

0.3 GMSS (43, 1.95) 49 0.1046 5.23e-05 2.45e-06
Regularized 10 250 0.8973 4.89e-04 4.87e-05
Uzawa-HSS (200, 0.19) 300 0.9782 1.09e-03 7.84e-04

5.1 Uzawa-HSS Iteration Method
Now, the resulted linear system Au = q in Eqs. (48) and (80) can be considered in the

following form

Mx=
(
A B

B∗ 0

)(
u

v

)
=
(

F

G

)
=D. (81)

where A ∈Cn×n is a non-Hermitian positive definite coefficient matrix, B ∈Cn×m is a full-column-
rank matrix such that m≤ n, D ∈Cn+m is a known vector with F ∈Cn and G∈ Cm.

The iteration scheme of Uzawa method can be defined as{
u(k+1)=A−1 (F−Bv(k)

)
v(k+1)= v(k)+ t

(
B∗u(k+1)−G

) . (82)

Due to the effectiveness of Uzawa method, several generalized techniques of Uzawa method,
such as parameterized Uzawa methods, preconditioned Uzawa methods, inexact Uzawa methods
and parameterized inexact Uzawa methods, have been developed to solve (81).

In order to solve the linear system Au = q, where, A is Hermitian positive definite matrix.
Yun [70] developed three Uzawa methods based on one-step successive over relaxation (SOR)
iteration method due to its high efficiency to approximate u(k+1) in each step of Uzawa method.
Yang et al. [68] proposed the Uzawa-HSS iteration method based on one-step HSS iteration
instead of one-step SOR. Bai et al. [71] proposed the Hermitian and skew-Hermitian splitting
(HSS) iteration method to solve the non-Hermitian linear systems taking into consideration that
A = H + S where H and S are the Hermitian and skew-Hermitian matrices of A which can be
written as

H= 1
2

(
A+A∗) and S= 1

2

(
A−A∗) . (83)



CMES, 2021, vol.126, no.1 187

In order to describe the Uzawa-HSS, we consider the iteration scheme of HSS iteration
method which is used for solving linear equations system Au= q as follows{
(sI +H)u(k+1/2)= (sI −S)u(k)+ q,

(sI +S)u(k+1) = (sI −H)u(k+1/2)+ q.
(84)

which equals to

u(k+1)=T (s)u(k+1)+N (s)q. (85)

where

T (s)= (sI +S)−1 (sI −H) (sI +H)−1 (sI −S)= (sI +S)−1 ((sI +H))−1 (sI −H) (sI −S) , (86)

N (s)= (sI +S)−1
[
I + (sI −H) (sI +H)−1

]
= 2s (sI +S)−1 (sI +H)−1 . (87)

Now, we can define the Uzawa–HSS iteration scheme as follows:

First, compute u(k+1) from the following iteration scheme

u(k+1)=T (s)u(k)+N (s)
(
F−Bv(k)

)
. (88)

Second, compute v(k+1) from the following iteration scheme

v(k+1)= v(k)+ tQ−1
(
B∗u(k+1)−G

)
. (89)

where Q is a Hermitian positive definite preconditioning matrix.

For u(0) ∈Rn and v(0) ∈Rm, k= 0, 1, 2, . . . until u(k) and v(k) converges, compute(
u(k+1)

v(k+1)

)
= J (s, t)

(
u(k)

v(k)

)
+M (s, t)−1

(
2sF

−tG

)
. (90)

where

J (s, t)=
(

T (s) −N (s)B

tQ−1B∗T (s) I − tQ−1B∗N (s)B

)
, (91)

M (s, t)=
(
(sI +H) (sI +S) 0

−tB∗ Q

)
. (92)

5.2 Generalized Modified Shift-Splitting (GMSS) Iteration Method
Now, the resulted linear system (48) or (80) can be considered in the following form

Mx=
(
A B

−BT 0

)(
u

v

)
=
(

F

−G

)
=D. (93)

where A ∈Rm×m and B ∈Rm×n, n≤m.



188 CMES, 2021, vol.126, no.1

According to Cao et al. [72] and Zhou et al. [73] and based on the well-known Hermitian
and skew-Hermitian splitting (HSS) of the matrix A (A=H+S), of Bai et al. [71], the matrix M

can be written as

M= 1
2

(
sI + 2H B

−BT sI

)
− 1

2

(
sI − 2S −B
BT sI

)
. (94)

Now, the iteration scheme of the modified shift-splitting (MSS) can be described for solving
linear equations system Au= q, as

1
2

(
sI + 2H B

−BT sI

)(
u(k+1)

v(k+1)

)
= 1

2

(
sI − 2S −B
BT sI

)(
u(k)

v(k)

)
+
(

F

−G

)
. (95)

Based on the MSS iteration method, the generalized modified shift-splitting (GMSS) for the
nonsymmetric matrix M is derived as follows

M= 1
2

(
sI + 2H B

−BT βI

)
− 1

2

(
sI − 2S −B
BT βI

)
. (96)

For
(
u(0)

T
, v(0)

T
)T

, k = 0, 1, 2, . . . ,u(0) ∈ Rm and v(0) ∈ Rn until
(
u(k)

T
, v(k)

T
)T

converges, compute

1
2

(
sI + 2H B

−BT βI

)(
u(k+1)

v(k+1)

)
= 1

2

(
sI − 2S −B
BT βI

)(
u(k)

v(k)

)
+
(

F

−G

)
. (97)

where s≥0, β >0 is, another given positive constant, and I is a unit matrix.

The GMSS iteration method can be expressed as(
u(k+1)

v(k+1)

)
=Ms,β

(
u(k)

v(k)

)
+ l. (98)

where

Ms,β =
(

sI + 2H B

−BT βI

)−1(
sI − 2S −B
BT βI

)
. (99)

and

c= 2

(
sI + 2H B

−BT βI

)−1(
F

−G

)
. (100)

According to Huang et al. [67], who proposed the GMSS, we can write(
z1

z2

)
=
(
I 0
1
β
BT I

)(
sI + 2H+ 1

β
BBT 0

0 βI

)−1(
I − 1

β
B

0 I

)(
r1

r2

)
. (101)
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Let r= (
rT1 ,r

T
2

)T
and z= (

zT1 , z
T
2

)T
, where, r1, z1 ∈Rn and r2, z2 ∈Rm

Now, the GMSS iteration method can be derived using the following algorithm:

For a given vector r= (
rT1 ,r

T
2

)T
, the vector z= (

zT1 , z
T
2

)T
can be computed from the following

steps

Step 1. Compute t1 = 2r1− 2
β
Br2,

Step 2. Solve
(

sI + 2H + 1
β
BBT

)
z1 = t1,

Step 3. Compute z2 = 1
β

(
BTz1+ 2r2

)
.

It can be seen from algorithm 1 that a linear system with the coefficient matrix sI + 2H +
1
β
BBT should be solved at each iteration, where the incomplete Cholesky factorization has been

used as a preconditioner for Preconditioned Conjugate Gradient (PCG) Method for solving the

sub-linear systems with the coefficient matrix sI + 2H + 1
β
BBT .

5.3 Regularized Iteration Method
Badahmane [69] proposed a regularized iteration method for solving the following system

Mx=
(

A B

−BT 0

)(
u

v

)
=
(

F

−G

)
=D. (102)

where A ∈Rm×m and B ∈Rm×n, n≤m.

According to Badahmane [69], the non-symmetric matrix M can be written as follows

M=
(

A 2B

−BT sQ

)
−
(
0 B

0 sQ

)
. (103)

For
(
u(0)

T
, v(0)

T
)T

, k= 0, 1, 2, . . . until
(
u(k)

T
, v(k)

T
)T

converges, compute(
A 2B

−BT ∼Q

)(
u(k+1)

v(k+1)

)
= 1

2

(
0 B

0 sQ

)(
u(k)

v(k)

)
+
(

F

−G

)
. (104)

The GMSS iteration method can be expressed as(
u(k+1)

v(k+1)

)
=Ms

(
u(k)

v(k)

)
+
(

A 2B

−BT sQ

)−1(
F

−G

)
. (105)

where

Ms, =
(
A 2B

−BT sQ

)−1(
0 B

0 sQ

)
. (106)



190 CMES, 2021, vol.126, no.1

where the regularized preconditioner of the matrix M is

Pr=
(
A 2B

−BT sQ

)
. (107)

From (104), the regularized iteration method computes the approximate solutions of (102) by(
A 2B

−BT sQ

)
x̃(k+1)=

(
0 B

0 sQ

)
x̃(k)+ d. (108)

which equals to

Przk = rk. (109)

where x̃(k)=
(

u(k)

v(k)

)
∈Rn+m, rk = d−Mx̃(k) and zk = x̃(k+1)− x̃(k)

At each iteration step of regularized iteration (108), (109) should be solved using the following
algorithm

1. Solve Aαz1 = c where Aα =A+ 2
s
BQ−1BT and c= r1− 2

s
BQ−1r2

2. Compute z2 = 1
s
Q−1

(
r2 +BTz1

)
where Q is a diagonal matrix, RES =

∥∥∥d−Mx̃
∥∥∥
2
,

s= ‖B‖22 /‖A‖2> 0, ERR= ∥∥x̃− x̃∗
∥∥ and x̃∗ is the exact solution.

6 Numerical Results and Discussion

The technique proposed in the current study may be applicable to a wide variety of three-
temperature micropolar-thermoelastic problems relating to the suggested theory. During the sim-
ulation process the effects of time-delay and kernel function play a very important role. The
proposed technique has been proven to be successful and efficient.

In the considered boundary element model, the boundary has been discretized using 42
linear boundary elements and 68 internal points as shown in Fig. 2. Also, the FDM and FEM
discretization of the domain has been performed using 1896 second order quadrilateral elements
and 5986 nodes.

Fig. 3 shows the variations of the nonlinear three-temperature (3T = Te + Ti + Tp) along
x-axis for different values of time-delay ω and kernel function K (τ − ξ) = [1− ((τ − ξ) /ω)].
It can be seen from this figure that the time-delay has a significant effect on the nonlinear
three-temperature distribution.

Figs. 4 and 5 show the variation of the nonlinear displacements u1 and u2 along x-axis for
different values of time-delay ω and kernel function K (τ − ξ)= [1− ((τ − ξ) /ω)]. It is clear from
these figures that the time delay greatly affects the displacement components.
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Figure 2: Boundary element model of the considered problem

Figure 3: Variation of the 3T (T0 = 0.1) along x-axis for different values of time-delay ω and
kernel function K (τ − ξ)= [1− ((τ − ξ) /ω)].

Fig. 6 shows the variation of the nonlinear three-temperature along x-axis for different forms
of kernel function and time-delay ω = 0.01. It is shown from this figure that the kernel function
form has a significant influence on the nonlinear three-temperature distribution.

Figs. 7 and 8 show the variation of the nonlinear displacements u1 and u2 along x-axis for
different forms of kernel function and time-delay ω= 0.01. It can be seen from these figures that
the kernel function form has a significant influence on the nonlinear displacement components.
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Figure 4: Variation of the displacement u1 along x-axis for different values of time-delay ω and
kernel function K (τ − ξ)= [1− ((τ − ξ) /ω)]

Figure 5: Variation of the displacement u2 along x-axis for different values of time-delay ω and
kernel function K(τ − ξ)= [1− ((τ − ξ)/ω)]

As there are no findings available for the problem under consideration. So, some literatures
may be regarded as special cases from our general BEM problem. For comparison purposes with
other approaches special cases addressed by other authors, we considered only one-dimensional
problem. In the special case under consideration, the results are plotted in Figs. 9–11 to illustrate
the total three-temperature and displacements distributions with the time τ . The validity and
exactness of our suggested technique have been demonstrated by a graphical comparison of the
BEM special case results for the considered problem with those obtained using the FDM results
of Pazera et al. [74] and FEM results of Xiong et al. [75] based on the substitution of three-
temperature heat conduction with one-temperature heat conduction, it should be noted that the
BEM results have been found to be in excellent agreement with the FDM and FEM results.
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Figure 6: Variation of the temperature 3T (T0 = 0.1) along x-axis for different forms of kernel
function and time-delay ω= 0.01

Figure 7: Variation of the displacement u1 along x-axis for different forms of kernel function and
time-delay ω= 0.01

Figure 8: Variation of the displacement u2 along x-axis for different forms of kernel function and
time-delay ω= 0.01
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Figure 9: Variation of the nonlinear total temperature with time τ

Figure 10: Variation of the nonlinear displacement u1 with time τ

The performance of GMSS iteration method is compared against Uzawa-HSS iteration
method and regularized iteration method. In actual computation, the parameters, (s, t) for Uzawa-
HSS iteration method, (s,β) for GMSS iteration method and s for regularized iteration method
have been chosen to be the experimentally found optimal ones that minimize the total number
of iterative steps of these methods. Tab. 1 reports the iteration number (IT), CPU time, relative
residual (RES) and error (ERR) of the tested iteration methods with respect to different val-
ues of time-step size Δτ . From Tab. 1, it can be observed that the GMSS requires lowest IT
and CPU times, which implies that the GMSS is superior to the other methods in terms of
computing efficiency.
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Figure 11: Variation of the nonlinear displacement u2 with time τ

7 Conclusion

The main purpose of the current paper is to propose a new MDD theory called three-
temperature nonlinear generalized anisotropic micropolar-thermoelasticity. This theory forms a
new and good research point in thermoelasticity, and the scientific community will be interested in
studying this research point in the following years due to its numerous low-temperature and high-
temperature applications. The problems related to the proposed theory are very difficult to solve
analytically. Therefore, we propose a new boundary element technique for solving such problems.
For comparison purposes with other researchers in the literature, we only considered the one-
dimensional one-temperature heat conduction model as a special case of our three-temperature
heat conduction model. The numerical results confirm the validity and exactness of our suggested
technique, where the BEM results are in excellent agreement with the results of FDM and FEM.

The GMSS iteration method has been implemented for solving the resulting linear systems in
order to reduce the iterations number and CPU time. The implemented GMSS iteration method
is quickly convergent without needing complicated calculations and. On the other hand, it is
anticipated that the GMSS iteration method with the optimal parameters (s,β) would be much
better and superior than Uzawa-HSS and regularized iteration methods for solving the resulting
linear system from BEM. How to select the optimal parameters (s,β) for GMSS iteration method
is a very practical and interesting problem that still needs further research and can be suggested
as a future work through the current study.

The numerical results of our considered study can provide data references for mechanical
engineers, computer engineers, geotechnical engineers, geothermal engineers, technologists, new
materials designers, physicists, material science researchers and those who are interested in novel
technologies in the area of three-temperature micropolar generalized thermoelastic materials.
Application of three-temperature theories in advanced manufacturing technologies, with the devel-
opment of soft machines and robotics in biomedical engineering and advanced manufacturing,
thermoelastic response will be encountered more often where three-temperature radiative heat
conduction will turn out to be the best choice for thermomechanical analysis in the design and
analysis of micropolar generalized thermoelastic materials and structures.
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