
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2021.012111

ARTICLE

Essential Features Preserving Dynamics of Stochastic
Dengue Model

Wasfi Shatanawi1,2,3, Ali Raza4,5,*, Muhammad Shoaib Arif4, Muhammad Rafiq6,
Mairaj Bibi7 andMuhammadMohsin8

1Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia
2Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung, 40402, Taiwan
3Department of Mathematics, Hashemite University, Zarqa, Jordan
4Stochastic Analysis & Optimization Research Group, Department of Mathematics, Air University,

Islamabad, 44000, Pakistan
5Department of Mathematics, National College of Business Administration and Economics, Lahore, Pakistan
6Department of Mathematics, Faculty of Sciences, University of Central Punjab, Lahore, 54500, Pakistan
7Department of Mathematics, Comsats University Islamabad, Islamabad, Pakistan
8Department of Mathematics, Uppsala University, Uppsala, Sweden
*Corresponding Author: Ali Raza. Email: Alimustasamcheema@gmail.com

Received: 15 June 2020 Accepted: 15 September 2020

ABSTRACT

Nonlinear stochastic modelling plays an important character in the different fields of sciences such as environmen-
tal, material, engineering, chemistry, physics, biomedical engineering, and many more. In the current study, we
studied the computational dynamics of the stochastic dengue model with the real material of the model. Positivity,
boundedness, and dynamical consistency are essential features of stochastic modelling. Our focus is to design
the computational method which preserves essential features of the model. The stochastic non-standard finite
difference technique is most efficient as compared to other techniques used in literature. Analysis and comparison
were explored in favour of convergence. Also, we address the comparison between the stochastic and deterministic
models.
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1 Introduction

Dengue disease was first described in 1780 when dengue cases are observed in the Philadelphia
epidemic (Rush 1789). In 1906, dengue transmission was established by the Aedes mosquito. In
1953, dengue hemorrhagic was first apprehend in the Philippines and 1955 it was recognized in
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Thailand. Dengue virus is one of the most common viruses. Four dengue (DENV-1 to DENV-4)
serotypes viruses that can spread to feminine mosquitoes causes dengue fever (DF). A DENV
serotype induces permanent immunity to serotypes but only partial temporary immunity to three
different serotypes. Annually there are about 390 million dengue infections, of which 96 million
are registered on a clinical basis (any severity of the disease). DENV infection is at risk for 128
countries. This is because of a mosquito-borne virus. A mosquito bites a human and repeats this
process to another human, and this cycle continues. The rainy season is a suitable season for
this virus [1]. Virus serotypes cause the disease (DENV 1 to 4) not all of these were exposed
at the same time. DENV 1 and 2 were exposed in 1960 [2]. The DENV-3 strain of dengue was
exposed in 1961, while DENV-4 was discovered in 1963. The disease was restricted in the middle
of the 20th century. The fifty million dengue infections have been reported globally by the world
health organization and 2.5 million people face the illness. Dengue virus can change into (DHF)
and (DSS). The patient suffers from bleeding and plasma leakage in DHF. Whereas, in (DSS)
the patient suffers from low blood pressure at a dangerous level. The dengue virus is incurable.
No medicine is discovered to cure this disease permanently. It is the only way to overcome its
spreading sources, namely water storage in car pipes used in containers and other sources that
can store rainwater. Aedes virus bites its prey two times a day in the morning and also in the
evening. It is an old virus which was at first found in china in 610 AD and then in 922 AD. It
was multiplied in the 18th and 19th centuries. It was first isolated in Japan in 1943 and 1944 in
Calcutta, an Indian city. Before 1980, Africa was the only region that was unknown from this
virus, but in 1997 the virus disturbed the tropical and subtropical areas of the world [3]. For the
past couple of years, many authors have contributed to the development of mathematical dengue
disease modelling. In order to model dynamics and to determine the efficacy or cost efficiency
of behaviour, mathematical simulations were used. Some models were compartmental, usually
suggesting that the mosquito bites of humans are universally mixed, i.e., every mosquito can bite
every host with the same probability. However, this concept contrasts with actual epidemics that
are heterogeneous at multiple levels: Geographic heterogeneity and heterogeneity in individuals.
In particular, environmental and ecological change has influenced spatial heterogeneity leading to
poorly coupled host mosquito encounters. In particular, the contact to mosquito bites was due
to the heterogeneous nature of hosts, such as their proximity to aquatically immature mosquito
habitats, their house type, their use of insecticides, human movement, and so on. Heterogeneous
heterogeneity was characterized by some mosquitoes to have more muzzle than other mosquitoes,
correlated with, among others, sex, age, height, pregnancy, protective behaviour, type of blood
and human odour variability. The effects of heterogeneity on transmission dynamics have already
been discussed with metapopulation models and agent-based models. This subject, however, is
still more important. Nevai et al. have used a negative binomial distribution (NBD) approach in
order to investigate the heterogeneity rates of Middle East respiratory coronavirus transmission
in South Korea by 2015 and have found considerable potential for over-spreading. The NBD
was widely used for representing count data, particularly for data with excessive dispersion. In
biology literature, NBD was used to investigate the effect of transmission heterogeneity, including
heterogeneity, in various transmission dynamic models [4]. It was beneficial to forecast dengue,
malaria, and chikungunya spatial time dynamics as a result of this integrated approach [5].
A multi-strain dengue model involving four equilibrium points was proposed by authors. The
effects of reinfection with the same serotype on transmission dynamics of dengue were discussed
in that mathematical model [6]. Tay constructed a secondary dengue infection model involving two
human populations named as seropositive and seronegative [7,8]. The ratio of these two serotypes
was calculated. This ratio could be used as a helping tool in vaccination programs. In 2018 a
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human and vector population-based SIR dengue model was proposed by the authors [9,10].
The impacts of vaccination on transmission of dengue were taken into account. Routh–Hurwitz
criteria were utilized to explore the stability of the system. Three strategies named mechanical
control, chemical control and vaccination were suggested to eradicate the dengue disease. However,
only vaccination was found to be a more authentic tool for elimination presented in [11–14]. In
recent years, many studies have been conducted for essential features preserving analysis of well-
known stochastic epidemic models. Raza et al. [15] investigated the structure preserving analysis
of the stochastic meme epidemic model. In which, analyzed the randomness of the rumours in
social life. Abodayeh et al. [16] studied the dynamics of the stochastic vector borne plant disease,
in which how the plant population may infect insects. Secondly, the numerical analysis of the
effect of alcohol with gonorrhea disease in the human population [17]. Thirdly, the stochastic
analysis of foot and mouth disease dynamics is investigated in the animal population [18]. The
authors discussed a dengue transmission model derived from nonlinear fractional-order differential
equations. Mathematically modelling has come forward as an efficient tool to extract in the right
about diseases. Usually, the determination of the stochastic differential equation is difficult and
does not have closed-form solutions. We used different numerical techniques for this purpose. A
natural question about these: Does any numerical scheme reserve the system’s dynamic properties?
Our emphasis is on proposing a stochastic non-standard SNSFD (finite difference technique) for
this model, and this paper’s game plan is as follows. In Section 2, we discussed the deterministic
model and its equilibrium points. In Section 3, we explore the stochastic dengue model and
introduce different techniques and also compare their results which deterministic solutions. In the
final section, we come to a conclusion and suggest future guidelines.

2 Preliminaries

A GBM or (otherwise called exponential Brownian motion) is a ceaseless time stochas-
tic procedure wherein the logarithm of the haphazardly fluctuating amount pursues a Brownian
movement (additionally known as Wiener procedure) with the float. It is a significant cause
of stochastic procedures fulfilling a stochastic differential condition (SDE). Specifically, it is
utilized in the scientific fund to show stock costs operating at a profit Scholes model [19].
A Geometric Brownian movement X(t) is the arrangement of an SDE with straight float and
dispersion coefficients.

dX (t)= μX (t)dt+σX (t)dW (t) . (1)

with initial values X (0)= x0.

3 Deterministic Material

In this section, we considered the dynamics of the deterministic model, as presented in [20].
For any time t, the susceptible humans are detailed as SH(t), the asymptomatic infected humans
are detailed as AH(t), the symptomatic infected humans are detailed as IH(t), TH (t) individual
treated humans, FH(t) represent the humans who fail treatment, SV(t) shows the amount of
disposed of mosquitoes, EV(t) represent visible mosquitoes and IV(t) shows the quantity of
quick-spreading mosquitoes. The transmission flow is modelled in Fig. 1.

The transmission rates are explained as λH (denotes the rate at which the person infected),
λV (the rate at which mosquitoes infected), μV (denotes natural death rate of mosquitoes), μH
(denotes the natural death rate of persons), λV (represented the rate of infection of mosquitoes),
ΠH (represented the new recruitment of the humans), ΠV (represented the new recruitment of the
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mosquitoes), σH (probability of transmission AH to IH classes), σV (probability of transmission
IV to EV classes), δH (represented the mortality rate of humans), δV (represented the mortality
rate of the mosquitoes), τH (represented the rate of vaccination of the humans), γH (represented
the rate of unsuccessful vaccination). The nonlinear equations of the model as follows:

S′H =ΠH−λHSHIV−μHSH, (2)

A′
H = λHSHIV−σHAHIH−μHAH. (3)

I ′H = σHAHIH− τHIHTH−μHIH, (4)

T ′
H = τHIHTH−γHFHTH−μHTH, (5)

F ′
H = γHFHTH− (μH+ δH)FH, (6)

S′V =ΠV−λVSVIH−μVSV, (7)

E′
V = λVSVIH−σVEVIV−μVEV, (8)

Figure 1: Flow of material from the vector population to the human population
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I ′V = σVEVIV −μVIV. (9)

where NH(t)= SH(t)+AH(t)+ IH(t)+TH(t)+FH(t). (10)

Nv(t)= SV(t)+EV(t)+ IV(t). (11)

therefore, dNT
dt = 0, dNv

dt = 0.

The stabilized form of model (2)–(9) is as follows:

S′H =ΠH−λHSHIV −μHSH, (12)

A′
H = λHSHIV−σHAHIH−μHAH, (13)

I ′H = σHAHIH−μHIH, (14)

S′V =ΠV−λVSVIH−μVSV, (15)

E′
V = λVSVIH−σVEVIV −μVEV, (16)

I ′V = σVEVIV −μVIV. (17)

There are two regions for the system (12)–(17) like humans population and vec-

tor population are Γ1 =
{
(SH,AH, IH)εR3+ : SH+AH+ IH ≤ ΠH

μH
, SH ≥ 0,AH ≥ 0, IH ≥ 0

}
and

Γ2 =
{
(SV,EV, IV)εR3+ : SV+EV + IV ≤ ΠV

μV
, SV ≥ 0,EV ≥ 0, IV ≥ 0

}
respectively. These given regions

are bounded and closed. The solution of system (12)–(17) lie in the same regions. So, these given
regions are also called the non-negative invariant region.

3.1 Equilibria of the Material
The equilibria of system (12)–(17) can be classified into two ways under as Disease-free

equilibrium is

D1 =
(

ΠH

μH
, 0, 0,

ΠV

μV
, 0, 0

)
.

Endemic equilibrium is

E1 = (SH,AH, IH, SV,EV, IV)

SH = �HσH− σHIH− (μH)2

μHσH
, AH = μH

σH
, IH = λHSHIV −μ2

HAH

σHAH
, EV = μV

σV
,

SV = �VσV− σVIV− (μV)2

μVσV
, IV = λVSVIH−μ2

VAV

σVAV

and R2 = ρ
(
F2V

−1
2

)
=

√
λV (μH+ σH) (μV+ σV)

�HμV
2T1T2

where T1 = (σH+μH) , T2 = (σV+μV). Note that R2 is the threshold number of the
model (12)–(17).
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4 Stochastic Material

The construction of a stochastic material of the model from the deterministic model has
presented in [21]. For this, we shall substitute in the model (12)–(17) as follows:

Put λHdt= λHdt+ σdB and λVdt= λVdt+ σ1dB.

dSH = (�H−λHSHIV−μHSH)dt− σSHIVdB, (18)

dAH = (λHSHIV −σHAHIH−μHAH)dt+σSHIVdB, (19)

dIH = (σHAHIH−μHIH)dt, (20)

dSV = (ΠV −λVSVIH−μVSV)dt−σ1SVIHdB, (21)

dEV = (λVSVIH−σVEVIV −μVEV)dt+σ1SVIHdB, (22)

dIV = (σVEVIV−μVIV)dt. (23)

where “B” is the geometric Brownian motion.

4.1 Stochastic Euler Method
This scheme is constructed for the model (18)–(23) as follows:

Sn+1
H = SnH+h

(
ΠH−λHSnHI

n
V−μHSnH−σSnHI

n
VΔBn

)
, (24)

An+1
H =An

H+h
(
λHS

n
HI

n
V−σHA

n
HI

n
H−μHA

n
H+σSnHI

n
VΔBn

)
, (25)

In+1
H = InH+h

(
σHA

n
HI

n
H−μHI

n
H

)
, (26)

Sn+1
V = SnV +h

(
ΠV−λVSnVI

n
H−μVSnV −σ1SnVI

n
HΔBn

)
, (27)

En+1
V =En

V+h
(
λVS

n
VI

n
H−σVE

n
VI

n
V−μVE

n
V+σ1S

n
VI

n
HΔBn

)
, (28)

In+1
V = InV+h(σVE

n
VI

n
V−μVI

n
V). (29)

where ‘h’ is the time parameter. The solution of the deterministic model for the DFE, i.e., D1 =(
ΠH
μH

, 0, 0, ΠV
μV

, 0, 0
)
and the reproduction number R2 = 0.8944 <1 means help us these procedures

to switch the dengue virus. The EE, i.e., E1 = (0.07339, 0.625, 0.3016, 0.08108, 0.5556, 0.3640) and
the reproduction number R2 = 6.3875>1 means dengue is endemic. We are simulating the solution
of this technique by using parameters values prearranged in [20] and see Tab. 1.

4.2 Stochastic Runge–Kutta Method
The pseudo-code for stochastic Runge Kutta for the system (18)–(23) is as follows:

Begin:
Declare all constants
Set the step size ‘h’
Declare arrays for SH,AH, IH,, SV,EV, IV. The arrays should be able to store 2000 values.
Put initial values for SH,AH, IH,, SV,EV, IV at index 1 of the corresponding arrays.
Index= 2
For t from 0.1 till t< 200
Calculate stage 1 equations
Calculate stage 2 equations
Calculate stage 3 equations
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Calculate stage 4 equations
Calculate final stage equations
Index= Index+ 1
t= t+ 0.1
End For
Plot required data
end program

Table 1: Rates of the material of the model

Rates DFE EE

μH 0.5 0.5
λH 0.1 10.1
μV 0.5 0.5
λV 0.2 10.2
σV 0.9 0.9
σH 0.8 0.8
�V 0.5 0.5
�H 0.5 0.5
σ1 0.1 0.1
σ 0.5 0.5

We make the simulation of discussed technique by using parameters values prearranged in [20]
and see Tab. 1.

Table 2: Covariance coefficient

Sub-populations Correlation coefficient (ρ) Relationship

(SH , IH) −0.3595 Inverse
(IH ,AH) −0.7083 Inverse
(SH ,AH) −0.3930 Inverse
(SV , IV) −0.2906 Inverse
(IV ,EV) −0.8331 Inverse
(SV ,EV) −0.2824 Inverse

4.3 Stochastic NSFD Method
This scheme is constructed for the model (18)–(23) as follows:

Sn+1
H = (SnH+hΠH)/(1+h(λHInV +μH+σInVΔBn)), (30)

An+1
H = (An

H+hλHS
n
HI

n
V+ hσSnHI

n
VΔBn)/(1+hσHI

n
H+hμH), (31)

In+1
H = (InH+hσHA

n
HI

n
H)/(1+hμH), (32)

Sn+1
V = (SnV +hΠV)/(1+h

(
λVI

n
H+μV +σ1I

n
HΔBn

)
), (33)
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En+1
V = (En

V+hλVS
n
VI

n
H+hσ1S

n
VI

n
HΔBn)/(1+h

(
σVI

n
V +μV

)
), (34)

In+1
V = (InV+hσVEn

VI
n
V)/(1+hμV). (35)

We make the simulation of the above-discussed technique by using parameters values prear-
ranged in [20] and see Tab. 1.
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Figure 2: (a) Symptomatic humans at h = 0.1 (b) symptomatic humans at h = 1 (c) infected
mosquitoes’ section at h= 0.1 (d) infected mosquitoes’ section at h= 1

4.4 Convergence Analysis
For this, we shall satisfy the following theorems as follows:

Theorem 1: Forgiven initial values (S0H ,A
0
H , I

0
H) ∈ R3+ and (S0V ,E

0
V , I

0
V ) ∈ R.3+ for the system

(30)–(35) has a unique positive solutions (SnH ,A
n
H , I

n
H) ∈ R3+ and (SnV ,E

n
V , I

n
V ) ∈ R.3+, respectively

for all n ≥ 0.

Proof: Since all rates and state variables of the system are non-negative. So, the proof
is straightforward.
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Figure 3: (a) Symptomatic humans section at h= 0.1 (b) symptomatic humans section at h= 2 (c)
infected mosquitoes section at h= 0.1 (d) infected mosquitoes section at h= 2

Theorem 2: These regions Γ1 =
{
(SH,AH, IH)εR3+ : SnH +AnH + InH ≤ ΠH

μH
, SH ≥ 0,AH ≥ 0, IH ≥ 0

}
and Γ2 =

{
(SV,EV, IV)εR3+ : SnV +EnV + InV ≤ ΠV

μV
, SV ≥ 0,EV ≥ 0, IV ≥ 0

}
for all n ≥0 are the posi-

tive invariant set for the system (31)–(35).

Proof: Now, we rewrite the system (30)–(32) as follows:

Sn+1
H −SnH

h
=�H −λHSnHI

n
V −μHSnH − σSnHI

n
VΔBn.

An+1
H −AnH

h
= λHSnHI

n
V − σHAnHI

n
H −μHAnH + σSnHI

n
VΔBn.

In+1
H − InH

h
= σHAnHI

n
H −μHInH .
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So, Sn+1
H +An+1

H + In+1
H ≤ �H

μH
.

Also, we rewrite the system (33)–(35) as follows:

Sn+1
V −SnV

h
=�V −λVSnV I

n
H−μVSnV − σSnV I

n
HΔBn.

En+1
V −EnV

h
= λVSnV I

n
H− σVEnVI

n
V −μVEnV + σSnV I

n
HΔBn.

In+1
V − InV

h
= σVEnVI

n
V −μVInV .

More precisely,

Ev(n+ 1)+Sn+1
V + In+1

V ≤ �V

μV
.

Theorem 3: For given n≥ 0, the eigenvalue of the system (30)–(35) lies in the semi-circle.

Proof: Considering the functions F, G, H, I, J and K from the system (30)–(35) as follows:

F = SH + h�H

1+ hλHIV +hμH + hσ IVΔBn
, G= AH + hλHSHIV + hσSHIVΔBn

1+ h (σHIH +μH)
, H = IH + hσHAHIH

1+ hμH
,

I = SV + h�V

1+ h (λVIH +μV + σ1IHΔBn)
, J = EV + hλVSVIH + hσ1SVIHΔBn

1+ h(σVIV +μV )
and

K = IV + hσVEVIV
1+ hμV

The Jacobi matrix J as

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F
∂SH

∂F
∂AH

∂F
∂IH

∂F
∂SV

∂F
∂EV

∂F
∂IV

∂G
∂SH

∂G
∂AH

∂G
∂IH

∂G
∂SV

∂G
∂EV

∂G
∂IV

∂H
∂SH

∂H
∂AH

∂H
∂IH

∂H
∂SV

∂H
∂EV

∂H
∂IV

∂I
∂SH

∂I
∂AH

∂I
∂IH

∂I
∂SV

∂I
∂EV

∂I
∂IV

∂J
∂SH

∂J
∂AH

∂J
∂IH

∂J
∂SV

∂J
∂EV

∂J
∂IV

∂K
∂SH

∂K
∂AH

∂K
∂IH

∂K
∂SV

∂K
∂EV

∂K
∂IV

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 4: (a) Susceptible humans at h = 0.1 (b) susceptible humans at h = 100 (c) symptomatic
humans at h = 0.1 (d) symptomatic humans at h = 100 (e) infected mosquitoes at h = 0.1
(f) infected mosquitoes at h= 100
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Endemic Equilibrium-EE Endemic Equilibrium-EE

Endemic Equilibrium-EEEndemic Equilibrium-EE

(a) (b)

(c) (d)

Time(days), h = 0.1 Time(days), h = 0.4

Time(days), h = 0.1 Time(days), h = 0.5

Figure 5: (a) Symptomatic infected individuals’ section at h = 0.1 (b) symptomatic infected indi-
viduals’ section at h= 0.4 (c) symptomatic infected individuals’ section at h= 0.1 (d) symptomatic
infected individuals’ section at h= 0.5

By simplify, we get the following eigenvalues as follows:

λ1 = 1
1+ hμH

< 1, λ2 = λH + σΔBn
μH

< 1, if R2 < 1, λ3 = λH

μH
< 1, λ4 = 1

1+ hμV
< 1,

λ5 = (λV + σ1ΔBn)
1+ hμV

< 1 if R2 < 1,λ6 = λV

μV
< 1.

Thus, the system is stable at the rates of the material of the model.

4.5 Comparison Section
In this part, we are going to discuss the comparison of existing stochastic techniques and

proposed technique as follows:

4.6 Covariance of the Model
The correlation coefficient has obtained among the compartments of the model, and results

are described in Tab. 2.
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Figure 6: 3D phase plots using stochastic NSFD scheme in comparison with stochastic Euler and
stochastic Runge–Kutta methods

Tab. 2 exhibits that susceptible humans have an inverse relation with other components of
the model. It is concluded that the decreases in the other components of the model prove the
disease-free state for both populations of the model.

5 Results and Discussion

Fig. 2, exhibits the solution of the stochastic Euler method for different discretization values
of the parameters, and lose the essential features for h= 1, as desired. In Fig. 3, we can observe
that the stochastic Runge–Kutta method meets equilibria for step size h= 0.1 and lose the essential
features. In Fig. 4, we can observe that the stochastic NSFD technique meets for both equilibria
for any value of the parameters. In a stochastic context, we have concluded that this method
preserves all the essential features presented in [22]. In Fig. 5, we have presented a comparative
analysis of both types of modelling. In Fig. 6, the 3D phase plots have presented with the
comparison of the computational methods.
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6 Conclusion and Future Directions

In this study, we must claim the most effective and real stochastic analysis in comparison
with the deterministic analysis of the model. Also, the construction of the stochastic model
has presented with the rates of the material of the model. Unfortunately, numerical research
is presented in all disciplines of science because of the non-differentiability of Brown’s motion.
The standard stochastic methods employed here were the usual stochastic Euler method and the
fourth-order stochastic Runge–Kutta method. Numerical properties of those methods are well
known like positivity, boundedness and dynamical consistency. Various simulations were produced
using different step sizes, and comparisons were shown graphically. The results showed that the
methodology proposed in this work is capable of preserving the essential features of the relevant
solutions of the mathematical model, as expected. On the other hand, the graphical results showed
that the standard methods were not able to guarantee the preservation of some of those essential
features. In particular, we proved computationally that those standard stochastic methods are
incapable of preserving the essential features of the model, as desired. In that sense, the stochastic
NSFD method designed in this work is a more reliable technique. Moreover, we shall extend our
work in all discipline as bio-economics, biophysics, biochemistry, and many more sub-branches of
material sciences. Also, the given essential features preserving analysis could be extended in the
fractional-order models [23,24].
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