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ABSTRACT

In structural reliability analysis, simulation methods are widely used. The statistical characteristics of failure prob-
ability estimate of these methods have been well investigated. In this study, the sensitivities of the failure probability
estimate and its statistical characteristics with regard to sample, called ‘contribution indexes’, are proposed to
measure the contribution of sample. The contribution indexes in four widely simulation methods, i.e., Monte
Carlo simulation (MCS), importance sampling (IS), line sampling (LS) and subset simulation (SS) are derived
and analyzed. The proposed contribution indexes of sample can provide valuable information understanding the
methods deeply, and enlighten potential improvement of methods. It is found that the main differences between
these investigated methods lie in the contribution indexes of the safety samples, which are the main factors to the
efficiency of the methods. Moreover, numerical examples are used to validate these findings.
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1 Introduction

Reliability analysis plays an important role in the structural design. In reliability analy-
sis, the evaluation of the failure probability is a basic problem. In the past decades many
methods have been presented to address this issue. There are analytical methods, e.g., first-
order reliability method (FORM) [1,2] and second-order reliability method (SORM) [3]; sampling
methods, e.g., Monte Carlo simulation (MCS) [4,5], importance sampling (IS) [6–8], line sampling
(LS) [9,10] and subset simulation (SS) [11,12]; and the surrogate model methods, such as tradi-
tional response surface method [13], Kriging method [14], Artificial Neural Networks [15], and
support vector machine [16].

Though FORM and SORM are two elementary approaches and often very efficient, neither
of them is robust in handling the case with a complex limit state function, such as a highly
non-linear limit state function, or multiple failure states. Due to their inherent assumptions, both
of them may not produce accurate estimates. MCS is a universal method, and is robust to the
type and dimension of the problem. But it is inefficient when handing problem with small failure
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probability. Lots of variance reduction methods have been proposed, i.e., IS, LS and SS. IS is
one of the most effective variance reduction method, and it generates samples according to an
auxiliary distribution instead of the original distribution. LS employs lines instead of random
points to explore the failure region of the problem. SS expresses the small failure probability
as a product of large conditional failure probabilities, thus the small failure probability can
be obtained by computing a series of big conditional failure probabilities with smaller sample
size. On the other hand, MCS, IS, LS and SS are very inefficient compared with FORM or
SORM, and the convergence to the exact solution is guaranteed for an increasing number of
simulations, and confidence bounds on the solution are available in the case of a finite number of
simulations. Furthermore, these methods are very robust in the sense that they can handle complex
limit states. The surrogate model method is an important approach which owns highly efficient,
however, the design of experiment (DoE) is the key of the accuracy of methods. Recently, the
joint use of simulation methods and surrogate model methods, which is called ‘active learning
method’, has been proposed, i.e., Kriging model with MCS [16], Kriging with IS [17] and Kriging
with SS [18,19].

Also, the sensitivity analysis for variables has been attracted more and more
attentions [20–28]. Sensitivity analysis can help researchers to identify the main factors affecting
the uncertainty of the output response of a model [21,22] . There are many commonly used local
and global sensitivity indexes, and also the corresponding analysis methods for these sensitivity
measures are developed. For example, widely used measures are the difference-based sensitivity
measures [23,24], the moment-independent importance measure [25–27], and the variance-based
sensitivity measures [28]. Note that these mathematical techniques are commonly developed for
measuring the importance of input variables of computational models.

It can be seen from above, the simulation-based reliability analysis and sensitivity analysis
have been extensively studied [29,30] and applied [31,32], the estimate as well as the statistical
characteristics are usually computed at the same time. However, the samples contribution to
the results have not yet been carefully examined. Issues regarding how the generated samples
(including the failure samples and the safety samples) make up the estimate and in what way the
samples affect the variance and c.o.v. of the estimate are seldom addressed.

In this work, three sample contribution indexes are proposed to quantify the effect of the
samples in reliability analysis and four widely used reliability analysis methods are investigated
by the proposed indexes. This work is motivated by empirical observations on the calculation of
failure probability by using simulation method. Three contribution indexes have been proposed,
which are associated with the sensitivity of the failure probability estimate with respect to sample,
i.e., the contribution (sensitivity) of sample to the estimate of failure probability and its statistical
characteristics in simulation-based method. And these indexes in four widely used simulation-based
methods are derived and examined, i.e., Monte Carlo simulation (MCS), importance sampling
(IS), line sampling (LS) and subset simulation (SS). It is of practical interest to ascertain the
effectiveness and the role of the samples in different methods. Analysis of the contribution of
each sample can show the tendency of the estimate and statistical characteristics as samples
are generated, and also can compare the efficiency of each method for the reliability analysis.
Meanwhile, it can be properly used in the active learning method in improving the efficiency of
the method.

The paper is outlined as follows. First, in Section 2 the definitions of three sample contribu-
tion indexes are given which will be investigated through the paper. In the following section, the
contribution indexes are derived for three different methods, i.e., MCS, IS, LS, and SS. Then in
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Section 4, some numerical examples are given to illustrate the contribution indexes. At last, some
conclusions are drawn.

2 Definition of the Contribution of Sample

In order to study the contribution of sample, three indexes are proposed here to quantify and
assess the contribution of the samples.

Suppose in a simulation-based reliability analysis, the j-th sample is denoted as x(j), then its
contribution to the estimate of failure probability is defined as

Cj =
P̂f − P̂f ,−j

P̂f
(1)

where P̂f is the estimate of failure probability while x(j) is included; P̂f ,−j is the one without x(j);
Cj is called the failure probability estimate contribution index in this work. There are two ways to
interpret the meaning of Cj. Firstly, one can tell that it reflects the amount of contribution of the
samples to the estimate of the failure probability, if this sample is excluded, it will result in the
change (increase or decrease) of the estimate by 100Cj%; secondly, in the opposite way, one also

can say, once a new sample (here is x(j)) is generated, it can result in about 100Cj% change in
the estimate.

Similarly, the contribution of the sample to the variance and the coefficient of variation
(c.o.v.) of the estimate can be also defined as:

CDj =
D(P̂f )−D(P̂f ,−j)

D(P̂f )
(2)

Cδj =
δ(P̂f )− δ(P̂f ,−j)

δ(P̂f )
(3)

where D(P̂f ) and δ(P̂f ) are the variance and c.o.v. of the failure probability estimate while x(j) is

included, respectively; D(P̂f ,−j) and δ(P̂f ,−j) are the ones without x(j), respectively. Similarly, it is
easy to understand the meanings of CDj and Cδj. They represent the extent of the contribution
of sample to the statistical characteristics of estimate.

3 Analysis of the Contribution of Sample

In this section, the contribution of sample in four simulation-based methods are analyzed
here. The four methods are widely used in the present practice engineering, which are MCS, IS,
LS and SS, respectively.

3.1 Monte Carlo Simulation
3.1.1 The Contribution of Sample to the Estimate of Failure Probability

Suppose that a set of samples
{
x(j) : j= 1, 2, . . .N

}
are generated in MCS, then the estimate

of failure probability, P̂f , can be given by

P̂f =
1
N

N∑
j=1

I(x(j)) (4)
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where I(·) is the indicator function of failure region Df , if x(j) ∈Df , I
(
x(j)

)= 1, and if x(j) ∈Ds

(Ds is the safety region), I
(
x(j)

)= 0.

For the given set of samples, the contribution index of a certain sample, say x(j), can
be calculated

Cj =
P̂f − P̂f ,−j

P̂f
=

⎛⎝ 1
N

N∑
i=1

I(x(i))− 1
N− 1

N∑
i=1,i �=j

I(x(i))

⎞⎠/
1
N

N∑
i=1

I(x(i)) (5)

There are two kinds of samples in the variable space, the failure samples and the safety
samples, respectively. Then the contribution index can be also simplified according to these
two cases.� When x(j) is the failure sample, i.e., x(j) ∈Df , the contribution index becomes

Cj,f =
P̂f − P̂f ,−j

P̂f
=

(
Nf

N
− Nf − 1

N − 1

)/
(Nf /N)= N−Nf

Nf (N − 1)
(6)

where Nf = ∑N
i=1 I(x

(i)) is the total number of failure samples, and in this context P̂f ,−j =
(Nf −1)/(N−1). It seems that all failure samples are equally contributed to the failure probability
estimate. And further, when small failure probability problem is encountered,

Cj,f =
N−Nf

Nf (N− 1)
≈ 1
Nf

or
1

NP̂f
when N�Nf (7)

In the context of small failure probability, the contribution of a failure sample is approxi-
mately reciprocal of the number of failure samples. The meaning of the index can be interpreted
as that excluding this point will result in 100/Nf% decreasing in the estimate of failure probability.
It also means that when a failure point is obtained, it will result in the increasing of the failure
probability estimate by approximately 100/Nf%.

The total contribution of all the failure samples can also be obtained

Cj,fAll =
N −Nf

Nf (N− 1)
Nf =

N −Nf

N − 1
(8)

� For another case which the sample falls in the safety region, that is x(j) ∈ DS, the
index becomes

Cj,s=
(
Nf

N
− Nf

N − 1

)/
(Nf /N)=− 1

(N− 1)
(9)

It can be seen that all the samples in the safety region are equally contributed to the failure
probability estimate, which is approximately reciprocal of the number of safety samples.

The total contribution of all the safety samples can also be obtained

CsAll =−N −Nf

N − 1
(10)
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Based on Eqs. (8) and (10), it can be concluded that

CfAll+CsAll = 0 (11)

Comparing case � and �, we can obtain that∣∣Cj,f ∣∣≈ 1
Pf

∣∣Cj,s∣∣ , when N�Nf (12)

Eqs. (11) and (12) show the relationship of the contribution indexes for the failure samples
and the safety ones. First, they add up to 0, as one of them is positive effect and the other is
negative. Second, the contribution of failure sample is nearly 1/Pf times of the one of safety
sample in absolute value when small failure probability is encountered. This provides a formal
expression and evidence which is consistent with our intuition that failure point should make
bigger contribution than safety sample in the estimation of failure probability.

3.1.2 The Contribution of Sample to the Statistical Characteristics of the Estimate of
Failure Probability

As it is well-known that, the estimate of failure probability in MCS is unbiased, that is
EP̂f =Pf . The variance and c.o.v. of the estimate can be given by

D(P̂f )=
1
N

(
E(P̂f )−E(P̂2

f )
)
= 1
N

(
Pf −P2

f

)
(13)

δ(P̂f )=
√
1−E(P̂f )

NE(P̂f )
=

√
1−Pf
NPf

(14)

where E(P̂f ) is the expectation of failure probability estimate.

Substitute (13) into (2) and (14) into (3), then the contribution indexes of sample, e.g., x(j),
to the variance and c.o.v. can be derived

CDj =
D(P̂f )−D(P̂f ,−j)

D(P̂f )
= 1−

1
N − 1

(
Pf −P2

f

)
1
N

(
Pf −P2

f

) =− 1
N − 1

(15)

Cδj =
δ(P̂f )− δ(P̂f ,−j)

δ(P̂f )
= 1−

√
N

(N− 1)
(16)

Note that Eqs. (15) and (16) are derived under the condition E(P̂f ,−j)=E(P̂f )=Pf . It seems
that for the variance and c.o.v. of the estimate, all the samples have the same contribution value
in a theoretical point of views. This means they contribute equally to the variance or c.o.v. As it
is easy to draw that CDj < 0 and Cδj < 0, it means that, in theory, adding a new point (no matter
what kind the sample is, failure or safety), will result in the improvement of the estimate, e.g.,
reducing the variance of the estimate by approximate 100/(N−1)% or reducing the c.o.v. by about

100
(
1− sqrt

(
N

N− 1

))
%.
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However, in the calculation process, the item E(P̂f ) in the expression of the estimate is usually
substituted by the estimate value which is computed by the samples. It is also of practical interest
to know how these values actually change. Thus, the practical computed contribution index values
are also derived here. First, the variance and c.o.v. are estimated as follows in practical analysis.

D̂
(
P̂f

)= 1
N

(
P̂f − P̂2

f

)
= Nf

N3
(N−Nf ) (17)

δ̂
(
P̂f

)=√
1− P̂f
NP̂f

=
√
N −Nf

NNf
(18)

In this context, suppose x(j) is a failure sample and if it is taken out, the number of total
samples is changed from N to (N−1), and the number of failure samples is changed from Nf to
Nf − 1, so

ĈDj,f =
D̂(P̂f )− D̂(P̂f ,−j)

D̂(P̂f )
= 1− N3

(N − 1)3
(Nf − 1)

(
N−Nf

)
Nf

(
N −Nf

) = 1− N3

(N− 1)3

(
Nf − 1

)
Nf

(19)

Ĉδj,f =
δ̂(P̂f )− δ̂(P̂f ,−j)

δ̂(P̂f )
= 1−

√
N

N − 1

Nf

Nf − 1
(20)

In the other case that x(j) is safety sample, the number of samples is changed from N to
(N− 1), and Pf ,−j =Nf /(N − 1), then the contribution indexes are

ĈDj,s=
D̂(P̂f )− D̂(P̂f ,−j)

D̂(P̂f )
= 1− N3

(N− 1)3

(
N− 1−Nf

)(
N −Nf

) (21)

Ĉδj,s=
δ̂(P̂f )− δ̂(P̂f ,−j)

δ̂(P̂f )
= 1−

√
N

N − 1

(N− 1−Nf )

(N −Nf )
(22)

It is seen from Eqs. (19) and (21), the computed contribution index values are different for
different kinds of samples (safety or failure). However, the corresponding theoretical result in
Eq. (15) shows that they are the same for the same kind of sample. The same thing happens to
the contribution indexes for the c.o.v.

3.2 Importance Sampling
3.2.1 The Contribution of Sample to the Estimate of Failure Probability

In importance sampling method [6,7], the importance sampling function, H(x), is introduced
to compute the failure probability. Suppose a set of samples

{
x(j) : j= 1, 2, . . .N

}
are generated

from H(x), the estimate can be given by:

P̂f =
1
N

N∑
j=1

I
(
x(j)

) f
(
x(j)

)
H

(
x(j)

) = 1
N

N∑
j=1

I
(
x(j)

)
w

(
x(j)

)
(23)

where w (x)= f (x)/H(x) is the weighted function used here for simplicity.
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In this context, the contribution of a certain sample, x(j), to the failure probability estimate
can be derived as:

Cj =
P̂f − P̂f ,−j

P̂f
=

⎛⎝ 1
N

N∑
i=1

I(x(i))w(x(i))− 1
N− 1

N−1∑
i=1,i �=j

I(x(i))w(x(i))

⎞⎠/
1
N

N∑
i=1

I(x(i))w(x(i)) (24)

Similarly, we discuss the calculation of Cj in two different cases as follows.

� When x(j) ∈Df , it becomes

Cj,f ≈
⎛⎝ 1
N

Nf∑
i=1

w
(
x(i)

)
− 1
N

Nf∑
i=1i �=j

w
(
x(i)

)⎞⎠/
1
N

Nf∑
i=1

w
(
x(i)

)
=w

(
x(j)

)/ Nf∑
i=1

w
(
x(i)

)
, when N�1

(25)

It seems that the failure samples in importance sampling method are not equally contributed
to the failure probability estimate comparing to MCS. The contribution of the failure sample is
nearly proportional to its weighted function value w (x).

And all the contribution of the failure samples nearly adds up to 1, that is

CfALL =
Nf∑
j=1

Cj,f ≈ 1 (26)

Especially, for problem with only normal variables, some properties can be obtained. As nor-
mal variables can be easily transformed to standard normal ones, we discuss in standard normal
space for simplicity. In the standard normal space, the basic random variables u is distributed as
φ (u)∼N(0,1), the importance sampling density based on the design point u∗ = [u∗1,u

∗
2, . . . ,u

∗
n] can

be given by h(u)∼N(u∗,1). Suppose a certain number of samples are generated from h(u), the
contribution index of sample u(j) = [uj1,uj2, . . . ,ujn] can be calculated as

Cj,f ≈w
(
u(j)

)/ Nf∑
k=1

w
(
u(k)

)
= 1
K

h
(
u(j)

)
φ
(
u(j)

) = 1
K

exp

(
1
2

n∑
i=1

(u∗2i − 2u∗i uji)

)
(27)

where K =∑Nf
k=1w

(
u(k)

)
is a constant for a given number of samples. It shows that in this special

case, the contribution index is a linear exponent function of the sample value.

In order to see the characteristic of contour line of contribution index, let Cj,f = Rconst
(a constant value), then according to Eq. (27), we have

n∑
i=1

ujiu∗i =RjConst (28)

where RjConst is also a constant value corresponding to u(j). This means that the contour line of
the contribution index is linear in two-dimension problem and it is vertical to the design point
vector. And in more than 2 dimensions, it is a hyper-plane. It is somehow different from our
roughly thought that it may be a circle or hyper-sphere just as the Normal PDF is. In order to
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illustrate it more clearly, the contour line of the contribution index in the case of two-dimension
is shown in Fig. 1.
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Figure 1: The contour line of the contribution index in the case of two-dimensions

Meanwhile, for points in different contour lines, the values of contribution indexes are
exponentially decreasing/increasing, which are shown as

Cj,f
Ck,f

= exp

(
−

n∑
i=1

(uji− uki)u
∗
i

)
= exp

(−Δuu∗)= exp(RkConst−RjConst) (29)

� For another case that x(j) ∈DS, it becomes

Cj,s=
⎛⎝ 1
N

Nf∑
i=1

w
(
x(i)

)
− 1
N− 1

Nf∑
i=1

w
(
x(i)

)⎞⎠/
1
N

Nf∑
i=1

w
(
x(i)

)
=− 1

(N − 1)
(30)

It can be seen that the expression for contribution index of safety sample is exactly the same
as the one in MCS as shown in Eq. (9). However, the values of the number, N, are different when
these two methods are applied. This demonstrates the contribution of safety sample in importance
sampling is higher than that in MCS as the value of N is usually smaller than that of MCS.

And all the contribution of the safety sample is given by

CsALL=
Nf∑
j=1

Cj,s =−N −Nf

(N− 1)
(31)

Thus it seems that

CfAll+CsAll ≈ 1− N−Nf

(N− 1)
�= 0 (32)
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3.2.2 The Contribution of Sample to the Statistical Characteristics of the Estimate of
Failure Probability

As well-known that, the estimate of failure probability in importance sampling method is
unbiased. The variance and c.o.v. of the estimate can be given by

D(P̂f )=
1
N

{
E

[
I (x)w (x)2

]
− (E(P̂f ))

2
}

(33)

δ(P̂f )=
√
D(P̂f )

EPf
=

√√√√ 1
N

E
[
I (x)w (x)2

]− (E(P̂f ))2

E(P̂f )
(34)

Similarly, the theoretical contribution indexes of the sample, x(j), to the variance and c.o.v.
can be derived

CDj =
D(P̂f )−D(P̂f ,−j)

D(P̂f )
= 1−

1
N−1

{
E

[
I (x)w (x)2

]− (
E(P̂f )

)2}
1
N

{
E

[
I (x)w (x)2

]− (
E(P̂f )

)2} =− 1
N − 1

(35)

Cδj =
δ(P̂f )− δ(P̂f ,−j)

δ(P̂f )
= 1−

√
N

(N− 1)
(36)

Surprisingly, the expression is exactly the same as those of MCS given in Eqs. (15) and (16).
However, as the value of N here is usually smaller than that of MCS, it seems that, generating
one more sample in importance sampling method is more effective than MCS in reducing the
variance of estimate. This is also consistent with our intuition.

Similarly, in the computational process, all the expectation items in the variance and c.o.v. of
the estimate are usually calculated by the samples, i.e.,

D̂(P̂f )=
1
N

⎧⎨⎩ 1
N

Nf∑
i=1

w2
(
x(i)

)
− P̂2

f

⎫⎬⎭ (37)

δ̂(P̂f )=

√√√√ 1
N

E
[
I (x)w (x)2

]− P̂2
f

P̂f
=

√√√√√ 1
Nf

⎡⎣ 1
N

Nf∑
i=1

w2
(
x(i)

)− P̂2
f

⎤⎦ (38)

Thus, when x(j) ∈Ds is a safety sample, the contribution indexes are

D̂(P̂f ,−j)=
1

N− 1

⎧⎨⎩ 1
N− 1

Nf∑
i=1

w2
(
x(i)

)
− P̂2

f ,−j

⎫⎬⎭ (39)

δ̂(P̂f ,−j)=

√√√√√ 1
Nf

⎡⎣ 1
N − 1

Nf∑
i=1

w2
(
x(i)

)− P̂2
f ,−j

⎤⎦ (40)
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And when x(j) ∈Df ,

D̂(P̂f ,−j)=
1

N− 1

⎧⎨⎩ 1
N − 1

Nf−1∑
i=1

w2
(
x(i)

)
− P̂2

f ,−j

⎫⎬⎭ (41)

δ̂(P̂f ,−j)=

√√√√√ 1
Nf − 1

⎡⎣ 1
N − 1

Nf−1∑
i=1

w2
(
x(i)

)− P̂2
f ,−j

⎤⎦ (42)

Finally, the contribution indexes to the variance and c.o.v. can be computed by

ĈDj =
D̂(P̂f )− D̂(P̂f ,−j)

D̂(P̂f )
(43)

Ĉδj =
δ̂(P̂f )− δ̂(P̂f ,−j)

δ̂(P̂f )
(44)

3.3 Line Sampling
3.3.1 The Contribution of Sample to the Estimate of Failure Probability

In line sampling simulation [8,9], the failure probability Pf can estimated by:

P̂f =
1
N

N∑
j=1

P(j)
f (45)

with the conditional failure probabilities [9,19]

P(j)
f =Φ

(
β

(j)
1

)
+Φ

(
−β

(j)
x

)
(46)

where Φ(·) is the cumulative standard normal distribution function; the limit state func-

tion g
(
ca+x(j)

)
< 0 for c ≤ β

(j)
1 and c ≥ β

(j)
x ; a is the normalized importance direction;{

x(j) : j= 1, 2, . . .N
}
is the generated sample set.

The contribution of a certain sample, x(j), on the failure probability estimate can be
defined as

Cj =
P̂f − P̂f ,−j

P̂f
=

⎛⎝ 1
N

N∑
i=1

P(i)
f − 1

N− 1

N∑
i=1,i �=j

P(i)
f

⎞⎠/
P̂f (47)

Approximately, it can be rewritten as:

Cj ≈
P(j)
f

NP̂f
(48)

It seems that the contribution of sample is proportional to its corresponding failure
probability component.
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3.3.2 The Contribution of Sample to the Statistical Characteristics of the Estimate of
Failure Probability

In line sampling, the estimate of failure probability is also unbiased, and the variance and
c.o.v. of the failure probability estimate can be given by

D(P̂f )=
1
N
Var(P(j)

f )= 1
N2

N∑
i=1

(
P(i)
f −E(P̂f )

)2
(49)

δ(P̂f )=
1
N

√√√√√ N∑
i=1

⎛⎝P(i)
f −Pf

Pf

⎞⎠2

(50)

Theoretically,

CDj =
D(P̂f )−D(P̂f ,−j)

D(P̂f )
≈

(
P(j)
f −Pf

)2
N2D(P̂f )

(51)

Cδj =
δ(P̂f )− δ(P̂f ,−j)

δ(P̂f )
= 1− N

N − 1

√√√√√√
∑N

i=1,i �=j
(
P(i)
f −Pf

)2
∑N

i=1

(
P(i)
f −Pf

)2 (52)

Similarly, in computational process, Pf is estimated by P̂f , and the estimated contribution

indexes, ĈDj and Ĉδj can be easily obtained by using Eqs. (43) and (44).

3.4 Subset Simulation
3.4.1 The Contribution of Sample to the Estimate of Failure Probability

In subset simulation [10], the target failure probability Pf can be estimated by:

P̂f =
m−1∏
i=0

P̂i+1 =
m−1∏
i=0

⎛⎝ 1
Ni

Ni∑
j=1

IFi+1(x
(j))

⎞⎠ (53)

where
{
x(j) : j= 1, 2, . . . ,Nk

}
is the generated samples in the i-th (i= 0, 1, 2, . . . ,m−1) level (here i=

0 is corresponding to the whole variable space where Monte Carlo simulation is used); IFi+1(x
(j))

is the indicator function of the (i+1)-th level; P̂i+1 is the estimate of the conditional probability.

For a given set of samples generated in certain level, namely i-th (i = 0, 1, 2, . . . ,m− 1), the
contribution of a certain sample, x(j), to the failure probability estimate can be defined as:

Cj =
P̂f − P̂f ,−j

P̂f
=

∏m−1
k=0 P̂k+1− P̂i,−j

∏m−1
k=0,k �=i P̂k+1∏m−1

k=0 P̂k+1
= P̂i− P̂i,−j

P̂i
(54)

Similarly, we still discuss it in two cases, safety sample and failure sample, respectively.� Clearly, the samples in the 1th to m−1 th level are all safety samples. In each level, there
are conditional failure samples and safety samples.
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When x(j) ∈ Fi and x(j) /∈ Fi+1, it represents the case that this sample is generated in i-th level
but it does not fall in the (i+ 1) level, it is the conditional ‘safety’ sample in i-th level. In this
context, the contribution index becomes

Cj,ss=− 1
(Ni− 1)

(55)

When x(j) ∈ Fi and x(j) ∈ Fi+1, it is the conditional failure sample in the (i+ 1)-th level, the
corresponding contribution index can be

Cj,sf =
Ni−Nf ,i

Nf ,i(Ni− 1)
or

1−Pi
Pi(Ni− 1)

(56)

From Eq. (56), it can be seen that the contribution index is not dependent on the target failure
probability but the conditional probability and the number of samples used in every conditional
level. In practice, the numbers of samples are usually set as the same for the 1-th to (m− 1)-th
conditional levels, as well as the conditional failure probabilities, that is, Ni =N and P̂i =P0 (i=
1, 2, . . . ,m− 1). In this context it can be drawn that the contribution indexes of the conditional
failure samples for 1-th to the (m− 1)-th levels are all the same.� when x(j) ∈ Fm, it is the real failure sample, in this case

Cj,f =
Nm−Nf ,m

Nf ,m(Nm− 1)
or

1−Pm
Pm(Nm− 1)

(57)

For the final m-th level, when Nm = N, hence, either Pm > P0 or Pm ≤ P0 may happened,
which results in Cm

j,f >Ci
j,f or Cm

j,f ≤Ci
j,f . This means the contribution indexes of failure samples

in final level, which are the real failure samples in target failure region, may be smaller than those
in the former levels (1-th to (m− 1)-th levels) which is actually the safety samples.

3.4.2 The Contribution of Sample to the Statistical Characteristics of the Estimate of
Failure Probability

The statistical properties of the P̂f estimator obtained by Subset Simulation have been dis-

cussed in detail in [20]. These results show that the P̂f is asymptotically unbiased, and its c.o.v.
can be estimated from the Markov chain samples as follows.

First, the variance and c.o.v. of P̂i+1 are given by

D
(
P̂i+1

)=E
[
P̂i+1−Pi+1

]2 = Pi+1(1−Pi+1)

Ni
(1+ γi) (58)

δi =
√
1−Pi+1

Pi+1

(
1+ γi

Ni

)
(59)

where

γi = 2
Ni/Nc

i −1∑
l=1

(
1− lNc

i

Ni

)
Ri (l)
Ri (0)

(60)
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where Ni is the number of samples in the i-th level; Nc
i is the number of Markov chains in i-th

level, and N/Nc
i samples have been simulated from each of these chains; Ri(k) is the covariance

between IFi+1(x
(j)) and IFi+1(x

(j+k)), for any k= 1, 2, . . . ,Ni/Nc
i , which is given by

Ri (k)=E
[
IFi+1(x

(j))IFi+1(x
(j+k))

]
−P2

i+1 (61)

It should be noted that although the P̂i+1’s are generally correlated, and practical simulation
shows that the actual c.o.v. may be well approximated [10] by

δ(P̂f )=
√√√√m−1∑

i=0

δ2i (62)

And hence the variance can be approximated by

D
(
P̂f

)=P2
f δ

2 (P̂f ) (63)

In theory, the contribution indexes can be given by

CDj =
P2
f δ

2 (P̂f )−P2
f δ

2
−j

(
P̂f

)
P2
f δ

2
(
P̂f

) =
δ2

(
P̂f

)− δ2−j
(
P̂f

)
δ2

(
P̂f

) =
δ2i,− δ2i,−j
δ2

(
P̂f

) (64)

Cδj =
δ(P̂f )− δ(P̂f ,−j)

δ(P̂f )
= 1−

√√√√1−
δ2i, − δ2i,−j
δ2

(
P̂f

) (65)

In computational process, Pi+1 is estimated by P̂i+1 and Ri (j) is calculated using the Markov
chain samples

R̂i (k)= 1
Ni− kNc

i

Nc
i∑

p=1

Ni/Nc
i−k∑

l=1

IFi+1(x
(l)
p )IFi+1(x

(l+k)
p )− P̂2

i+1 (66)

In order to compute the actual contribution index, suppose the sample, x(j), in the i-th level
is taken out of the computation of reliability analysis, then we have

D
(
P̂i+1,−j

)= 1

(Ni− 1)2

{(
Nc
i − 1

) Ni

Nc
i

[
Pi+1,−j

(
1−Pi+1,−j

)
(1+ γi)

]
+

(
Ni

Nc
i
− 1

)[
Pi+1,−j

(
1−Pi+1,−j

) (
1+ γi,−j

)]}
(67)

where

γi = 2
Ni/Nc

i−1∑
l=1

(
1− l

Ni/Nc
i

)
R̂i,−j(l)
R̂i,−j(0)

(68)
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γi,−j = 2
Ni/Nc

i −2∑
l=1

(
1− l

Ni/Nc
i − 1

)
R̂i,−j(l)
R̂i,−j(0)

(69)

R̂i,−j (k)= 1
Ni−kNc

i −1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Nc
i −1∑
p=1

Ni/Nc
i −k∑

l=1

IFi+1(x
(l)
p )IFi+1(x

(l+k)
p )+

Ni
Nci

−k∑
l=1
l �= j

IFi+1(x
(l)
p )IFi+1(x

(l+k)
p )

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
−P̂2

i+1,−j

(70)

P̂i+1,−j =
⎧⎨⎩Nf ,i/(Ni− 1), when x(j) ∈ Fi and x(j) /∈ Fi+1

(Nf ,i− 1)/(Ni− 1), when x(j) ∈ Fi and x(j) ∈ Fi+1

(71)

Thus the estimated contribution indexes ĈDj and Ĉδj can be calculated by using Eqs. (43)
and (44).

Table 1: Summary of the contribution indexes for different methods

MCS IS LS SS

Pf
1
N

N∑
j=1

I
(
x(j)

) 1
N

N∑
j=1

I
(
x(j)

)
w

(
x(j)

) 1
N

N∑
j=1

P(j)
f

m−1∏
i=0

⎛⎝ 1
Ni

Ni∑
j=1

IFi+1

(
x(j)

)⎞⎠

δ
(
P̂f

) √
1−Pf
NPf

√√√√√ 1
Nf

⎡⎣ 1
N

Nf∑
i=1

w2
(
x(i)

)
− P̂2f

⎤⎦
√√√√√ 1
N (N− 1)

N∑
i=1

⎛⎝P(i)
f −Pf

Pf

⎞⎠2 √√√√m−1∑
i=0

δi

Cj,s − 1
(N− 1)

− 1
(N− 1)

P(j)
f

NP̂f
− 1

(Ni − 1)
or

Ni −Nf ,i
Nf ,i(Ni − 1)

Cj,f
N−Nf

Nf (N− 1)
w

(
x(j)

)/ Nf∑
i=1

w
(
x(i)

) P(j)
f

NP̂f

Nm−Nf ,m
Nf ,m (Nm− 1)

CDj − 1
N− 1

− 1
N− 1

(
P(j)
f −Pf

)2
N2D

(
P̂f

) δ2i,− δ2i,−j
δ2

(
P̂f

)

Cδj 1−
√

N
(N− 1)

1−
√

N
(N− 1)

1− N
N− 1

√√√√√√
∑N

i=1,i �=j
(
P(i)
f −Pf

)2
∑N

i=1

(
P(i)
f −Pf

)2 1−

√√√√√1−
δ2i,− δ2i,−j
δ2

(
P̂f

)
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3.5 Summary and Comparison
Tab. 1 summarizes in a simplified manner the comparison among the discussed simulation-

based reliability methods. As shown in the table, four widely used reliability analysis methods
are investigated by using the proposed sample contribution indexes, i.e., Cj,s, Cj,s, CDj and Cδj.
Among them, Cj,s, and Cj,s quantify the contribution of samples to the failure probability estimate
in reliability analysis simulation from two aspect, failure event (sample) and safety event (sample),
respectively; while CDj and Cδj quantify the contribution of simulated samples to the variance
and c.o.v. of the failure probability estimate.

4 Illustrate Examples

Numerical examples are given here to calculate the contribution indexes of the four methods
given above. Note that these examples are quite simple reliability problems by themselves, as they
are selected to illustrate the findings given above with figures, and the simulation-based method
is dependent of the number of dimensions and less affected by the complication of the problem.
The first example is a normal linear case that the failure probability is varied from 10−3 to 10−5.
The second example is a highly nonlinear case.

4.1 Example 1: Linear Example
The limit state function for the first example, which was also studied in [6], is a n-dimensional

hyperplane.

g(u)= βS1/2−
s∑
i=1

ui (72)

where ui, i = 1, 2, . . . , s are independent standard normal distributed variables. The example was
calculated for β = 2.0, β = 3.0 and β = 5.0 corresponding to s= 2, s= 5 and s= 15, respectively.

The purpose is to investigate the performance of the contribution indexes for different
probability levels and different methods.

Tab. 2 shows the computed results for case β = 2.0 and s = 2.0 regards the contribution
of samples in different methods, i.e., MCS, IS, and SS. As the LS method theoretically only
need one sample to compute the failure probability for this linear example, it is not applied in
this example.

It can be seen from Tab. 2 that in MCS, (1) the contribution index of failure sample is
approximately 1/Pf times the one of safety sample; (2) although the theoretical contribution
index values of samples to the statistical characteristics are all negative, the computed ones are
quite different. For example, ĈDj,f > 0 and Ĉδj,f < 0, this means that even the same sample, its
contribution to the variance are different from that of c.o.v. According to the result, it shows that
missing a failure point will result in the increasing of computed variance but at the same time
the decreasing of the computed c.o.v.

For IS method, some findings can also be seen from Tab. 2: (1) The contribution of sample
to the failure probability estimate is negative for each safety sample. For failure sample, it varies
as the values of sample, for example, within [−9.93× 10−4, 4.9× 10−3] in this example; (2) for
both safety and failure samples, the theoretical contribution indexes values to the statistical
characteristics are the same with each other, and they are all negative, this means that they are
in theory equally contributed to the statistical characteristics; (3) for safety samples the computed
contribution indexes to the statistical characteristics ĈDj,s < 0 and Ĉδj,s > 0. This means missing
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a safety point will result in the decreasing of variance but the increasing of the c.o.v.; (4) for
failure sample, the computed contribution values to the statistical characteristics are varied as the
values of sample, i.e., Ĉδj,f ∈ [−2.2× 10−3, 2.07× 10−4]. Fig. 2 shows the results of contribution
computed by IS method for case 1. Only the contribution values of failure samples to the estimate
and c.o.v. are shown in the figure. It can be seen from the figure that the contribution index Cj,f is
approximately an exponent function from a certain viewpoint in the three-dimension plot, this is
also pointed out in Section 3. And it is can be seen that the computed contribution index Ĉδj,f is
not monotonous and has a minimum. This means that different location of samples has different
contribution to the c.o.v. of failure probability estimate, even they are all failure samples.

Table 2: Results of the contribution indexes of different methods for case β = 2.0 in example 1

MCS IS SS

N 104 103 1000× 2
Nf 228 501 215
Pf 2.28× 10−2 2.30× 10−2 2.15× 10−2

D
(
P̂f

)
2.2280× 10−6 1.2221× 10−4 8.987× 10−6

δ
(
P̂f

)
6.55× 10−2 4.80× 10−2 1.394× 10−1

Cj,s −1.0001× 10−4 −1× 10−3 [−1.001× 10−3, 9.009× 10−3]
Cj,f 4.3× 10−3 [−9.93× 10−4, 4.9× 10−3] 3.655× 10−3

CDj −1.0001× 10−4 −1× 10−3 –
Cδj −5.0004× 10−5 −5.0038× 10−4 –
ĈDj,s −1.9770× 10−4 −1.6× 10−3 [−1.259× 10−2, 1.288× 10−2]
ĈDj,f 4.1× 10−3 [−2.0× 10−3, 8.3× 10−3] [−1.546× 10−2, 6.507× 10−3]
Ĉδj,s 1.6667× 10−6 2.1734× 10−4 [−1.109× 10−2, 2.574× 10−5]
Ĉδj,f −2.3× 10−3 [−2.2× 10−3, 2.07× 10−4] [−6.696× 10−3, 4.256× 10−3]

For SS method, the following findings can be addressed from Tab. 2: (1) The contribution
indexes for all failure samples to the failure probability estimate are positive and equal. For safety
sample, it varied as the position of sample in different levels, i.e., within [−1.001× 10−3, 9.009×
10−3] in this example; (2) though the theoretical values of contribution to the statistical char-
acteristics are unavailable, it should be negative form the first principle, as more samples result
in more accurate estimate. The performances are some like those of IS method. Note that the
values of these indexes are bigger than those of MCS and IS, it means that the samples in SS
are more effective in the computation of failure probability. Fig. 3 shows the scatter plot of the
contribution results computed by SS method for case 1. It can be seen from the figure that the
computed contribution indexes to c.o.v. Ĉδj,f of the samples in first level are nearly the same, but
those of the samples in the second level vary a lot.

In order to investigate the performance of indexes for different levels of failure probability,
Tabs. 2 and 3 show the results for case β = 3.0 and β = 5.0, respectively. It seems that the main
difference of these methods is the contribution of safety sample. In Tab. 2, when a similar number
of failure samples are obtained, the contribution Cj,f values of different methods are approxi-
mately in the same order of magnitude, however, the contribution Cj,s values are different from
each other considerably. In comparison, the contribution of safety sample of SS method is the
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biggest in the absolute value among the three methods, and that of MCS method is the smallest.
Similar conclusions can be also drawn for the contribution to the statistical characteristics of
estimate. This demonstrates that the high efficiency of reliability method is gained from the high
contribution of safety sample. For the different levels of failure probability, this becomes more
obvious. As in Tabs. 3 and 4, the contribution of safety sample decreases significantly in MCS,
while those in IS and SS remain the same level.
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Figure 2: The results of contribution computed by IS method for case 1

4.2 Example 2: Nonlinear Example
The limit state function is given by

g (x)= x31+x1x22+x32 − 18 (73)
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where x1, and x2 are independent normally distributed random variables, x1 ∼ N
(
10, 52

)
and

x1 ∼N
(
9.9, 52

)
. This example has been studied by Kaymaz [22].
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Figure 3: The scatter plot of the contribution results computed by SS method for case 1

Table 3: Results of the contribution for case β = 3.0 in example 1

MCS IS SS

N 105 103 1000× 3
Nf 128 519 112
Pf 1.28× 10−2 2.30× 10−2 1.12× 10−3

D
(
P̂f

)
1.278× 10−8 6.113× 10−4 5.938× 10−8

δ
(
P̂f

)
8.833× 10−2 5.684× 10−2 2.175× 10−1

Cj,s −1.000× 10−5 −1.001× 10−3 [−1.001× 10−3, 9.009× 10−3]
Cj,f 7.803× 10−3 [−1.001× 10−3, 7.008× 10−3] 7.936× 10−3

CDj −1.000× 10−5 −1.001× 10−3 –
Cδj −5.000× 10−6 −5.0038× 10−4 –
ĈDj,s −1.998× 10−5 −1.693× 10−3 [−1.982× 10−3, 2.180× 10−2]
ĈDj,f 7.783× 10−3

[−2.003× 10−3, 1.322× 10−2
] [−7.404× 10−3, 7.356× 10−3

]
Ĉδj,s 6.408× 10−9 1.549× 10−4 [−6.724× 10−3, 5.567× 10−3]
Ĉδj,f −3.934× 10−3

[−2.624× 10−3, 1.544× 10−4
] [−2.691× 10−3, 4.681× 10−3

]
The contribution indexes of samples of four methods, i.e., MCS, IS, LS and SS, are computed

and the results are given in Tab. 5. Note that the contribution indexes of samples in LS method
are not divided into safety samples and failure samples. It can be seen that when a total of
500 samples, which is approximately the number of failure samples of other methods, is used in
LS method, the corresponding contribution Cj,f values are approximately in the same order of
magnitude as those of different methods.
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Table 4: Results of the contribution for case β = 5.0 in example 1

MCS IS SS

N 5× 107 103 1000× 7
Nf 14 492 291
Pf 2.8× 10−7 2.639× 10−7 2.91× 10−7

D
(
P̂f

)
5.600× 10−15 4.310× 10−16 1.549× 10−14

δ
(
P̂f

)
2.672× 10−1 7.864× 10−2 4.277× 10−1

Cj,s −2.000× 10−8 −1.001× 10−3 [−1.001× 10−3, 9.009× 10−3]
Cj,f 7.142× 10−2

[−1.001× 10−3, 1.292× 10−2
]

2.438× 10−3

CDj −2.000× 10−8 −1.001× 10−3 –
Cδj −1.000× 10−8 −5.004× 10−4 –
ĈDj,s −4.000× 10−8 −1.841× 10−3

[−5.797× 10−3, 6.476× 10−2
]

ĈDj,f 7.142× 10−2
[−2.003× 10−3, 2.502× 10−2

] [−8.360× 10−3,−6.938× 10−3
]

Ĉδj,s 2.664× 10−15 8.092× 10−5 [−1.198× 10−2, 4.166× 10−3]
Ĉδj,f −3.775× 10−2 [−4.114× 10−3, 8.089× 10−4] [−3.167× 10−3,−2.459× 10−3]

Table 5: Results of the contribution for example 2

MCS IS LS SS

N 105 1000 500 1000× 3
Nf 582 383 – 583
Pf 5.82× 10−3 5.861× 10−3 6.420× 10−3 5.83× 10−3

D
(
P̂f

)
5.786× 10−8 1.406× 10−7 1.545× 10−8 1.271× 10−6

δ
(
P̂f

)
4.133× 10−2 6.398× 10−2 1.936× 10−2 1.934× 10−1

Cj,s −1.00× 10−5 −1.001× 10−3 [1.409× 10−4, [−1.001× 10−3,
5.019× 10−3] 9.009× 10−3]

Cj,f 1.708× 10−3 [−9.905× 10−4, – 7.159× 10−4

1.506× 10−3]
CDj −1.0000× 10−5 −1.001× 10−3 – –
Cδj −5.0000× 10−6 −5.003× 10−4 – –
ĈDj,s −1.994× 10−5 −1.758× 10−3 [−4.012× 10−3, [−3.133× 10−2,

2.045× 10−2] 1.531× 10−2]
ĈDj,f 1.688× 10−3 [−2.003× 10−3, – [−7.992× 10−3,

5.348× 10−2] −6.259× 10−3]
Ĉδj,s 2.927× 10−8 1.223× 10−4 [−2.195× 10−3, [−2.102× 10−2,

7.277× 10−3] 3.524× 10−3]
Ĉδj,f −8.652× 10−4 [−3.058× 10−3, – [−2.984× 10−3,

1.223× 10−2] −2.121× 10−3]
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Fig. 4 shows the results of contribution of the sample to estimate, Cj,s, and to c.o.v. Ĉδj,s of
IS method, and also the scatter of the sample is shown in the figure. Still, the contour of Cj,s is

exponent, and Ĉδj,s is not monotonous and has a minimum.
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Figure 4: The results of contribution of the sample in example 2

Fig. 5 shows the computed contribution indexes of LS method, as well as the scatter of the
samples with the limit state function are shown in the figure. It can be seen that, the contour of
Cj in this example is not monotonous, and the contour of Ĉδj,s is also not monotonous and has
more than one minimum.

Figs. 6 and 7 show the results of contribution of the sample of SS method. The histogram
of Cj,s for the samples in each level is shown in Fig. 6. The left side of the figure shows the
results of conditional safety samples in each level and the right side shows the results of failure
or conditional failure samples. The scatter plot of all the samples is shown in the Fig. 7. It can be
clearly seen that in this example the samples in the second level have the biggest absolute values
of contribution index.
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Figure 5: The computed contribution indexes of LS method in example 2

4.3 Example 3: Engineering Example
The reliability of turbine disk is the key to the safety of the aeronautical engine. The fatigue

life of an aeronautical engine turbine disk structure (See Fig. 8) is analyzed here.

According to the well-known Mason-Coffin law which is consider the effect of mean stress
and mean strain on the fatigue life, the fatigue life can be computed as

�εm

2
=

(
σf − σm

E

)(
2Nf

)b+ (
εf − εm

) (
2Nf

)c (74)
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where σf is the fatigue strength coefficient; εf is the fatigue ductility coefficient; εm is the mean
strain; σm is the mean stress; b is the fatigue strength exponent of Basquin law; c is the fatigue
ductility exponent of Coffin’s law; �εm is the strain range which �εm = εm/2 under 0-takeoff-0
load cycle here; E = 1.85× 105 MPa is the Young’s modulus.

Considering the actual life under of 0-takeoff-0 load cycle must exceeding the required fatigue
life, the limit state function can be expressed as

g (x)=Nf (σf , εf ,σm, εm,b, c)−Nf 0 (75)

where Nf 0 is the required minimum service life and it is set as a const Nf 0 = 106 (cyc); Nf is
the fatigue life under 0-take-off-0 load cycle computed by Eq. (74). All the random variables are
assumed to be normally distributed and the distribution information is given in Tab. 6.
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Figure 6: The results of contribution of the sample of SS method in example 2
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The contribution indexes of samples of three methods, i.e., MCS, IS, and LS, are computed
and the results are given in Tab. 7. It can be seen that similar conclusions can be made from this
engineering case. With approximate same size of failure samples, the contribution Cj in MCS and
IS methods are different related to the kind of samples. For safety samples, Cj,f of IS method is
about 100 times of the one of MCS, but for failure samples, the contribution indexes, Cj,f , for
both of these two methods are in the same order of magnitude. For LS method, Cj varies over

a wide range, i.e., from 10−6 to 10−2.
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Figure 7: The scatter plot of results of the sample contribution by SS method in example 2

Figure 8: An aeronautical engine turbine disk structure

Meanwhile it is found that the contribution Ĉδj and ĈDj of LS method are nearly in the

same order of magnitude with the ones, Ĉδj,f and ĈDj,f of IS method. For safety samples, Ĉδj,s

and ĈDj,f of IS method is bigger than those of MCS method inn absolute terms, which is the
primary reason IS method is more efficient than MCS.
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Table 6: The distribution information of the random variables in example 3

No. Random variable Mean C.o.v. Distribution

1 σf (MPa) 2029.0 0.1 Normal
2 εf 0.0196 0.1 Normal
3 σm (MPa) 536.6 0.1 Normal
4 εm 0.0002225 0.1 Normal
5 b −0.096 0.05 Normal
6 c −0.41 0.05 Normal

Table 7: Results of the contribution for example 3

MCS IS LS

N 105 500 500
Nf 190 261 –
Pf 1.90× 10−3 2.2452× 10−3 4.8990× 10−3

D
(
P̂f

)
1.8964× 10−8 4.6648× 10−8 4.9285× 10−8

δ
(
P̂f

)
7.2479× 10−2 9.6233× 10−2 1.4330× 10−2

Cj,s −1.00× 10−5 −2.0040× 10−3
[
1.4736× 10−6, 4.0825× 10−2

]
Cj,f 5.2523× 10−3

[−2.0036× 10−3, 3.0892× 10−2
]

–
CDj −1.0000× 10−5 −2.0040× 10−3 –
Cδj −5.0000× 10−6 −1.0015× 10−3 –
ĈDj,s −1.9981× 10−5 −3.5575× 10−3

[−4.0120× 10−3, 6.9834× 10−2
]

ĈDj,f 5.2333× 10−3 [−4.0118× 10−3, 9.9241× 10−2] –
Ĉδj,s 9.5182× 10−9 2.164× 10−4

[−1.2442× 10−3, 9.5977× 10−3
]

Ĉδj,f −2.6470× 10−4 [−6.6856× 10−3, 2.0664× 10−2] –

5 Conclusions

In this paper, three contribution indexes have been proposed, which are the relative changes
when a sample is included in reliability calculation or not. The indexes in three simulation-based
methods are examined, i.e., Monte Carlo simulation, importance sampling and subset simulation.
These indexes are proposed to quantify the sample contribution to the failure probability estimate
and its statistical characteristics, thus investigate the efficiency of widely used reliability analysis
methods from the contribution of the sample aspect.

Summarizing the arguments, the following findings can be concluded:

(1) For Monte Carlo simulation, results show that the contribution of the failure sample to
the estimate is bigger than that of safety sample in failure probability estimation.

(2) For Importance sampling, the contribution index of the failure sample to the estimate
is approximately proportional to its weighted function value while the safety samples
contribute equally.

(3) For line sampling method, the contribution indexes of the failure sample and safety sample
are nearly the same.
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(4) For subset simulation, the sample contribution index is related with the conditional prob-
ability, but not the target probability to be computed. This can be a good explanation of
why SS method owns high efficiency.

The further work should be the implementation of the proposed finding into the active learn-
ing in the DoE of surrogate methods, such as the combining of Kriging model with MCS [16],
Kriging with IS [17] and Kriging with SS [18,19]. It is noted that the constructed surrogate model
may quite sensitive to each selected point, and the most contributed samples are preferred. In this
context, the findings and information can be used and incorporated into these methods, further
improving the performance. Meanwhile, the proposed indexes may also be used in combination
with heuristic algorithm and sampling.
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