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Abstract: The past decade has witnessed the rapid advancements of geological 
data analysis techniques, which facilitates the development of modern agricultural 
systems. However, there remains some technical challenges that should be 
addressed to fully exploit the potential of those geological big data, while 
gathering massive amounts of data in this application field. Generally, a good 
representation of correlation in the geological big data is critical to making full use 
of multi-source geological data, while discovering the relationship in data and 
mining mineral prediction information. Then, in this article, a scheme is proposed 
towards intelligent mining of association rules for geological big data. Firstly, we 
achieve word embedding via word2vec technique in geological data. Secondly, 
through the use of self-organizing map (SOM) and K-means algorithm, the word 
embedding data is clustered to serve the purpose of improving the performance of 
analysis and mining. On the basis of it, the unsupervised Apriori learning 
algorithm is developed to analyze and mine these association rules in data. Finally, 
some experiments are conducted to verify that our scheme can effectively mine 
the potential relationships and rules in the mineral deposit data. 
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1 Introduction 
Data analysis method as an effective technique has been excessively employed in the era of big data 

[1–5]. During the last two decades, it drives many applications [6–12]. Specifically, while applying those 
methods to agricultural upgrading and reconstruction, it can not only accelerate the process of agricultural 
modernization, but also play an important role in realizing sustainable development [13]. Since the 
formation and development of agriculture is partly related to the evolution of surface geology, the 
geological data analysis approaches play an active role in supporting modern agriculture system [14,15]. 
While collecting and gathering a large amount of geological data in this field, it is challenging to analyze 
and utilize geological big data, and it also imposes an obstacle to the wide applications in modern 
agricultural system. In response to such limitation, we specifically conduct an exploration of using machine 
learning algorithms to achieve data-enabled intelligent analysis for geological big data in this article. 

Generally, geological big data relates to the various layers of the Earth, the history about the formation 
and evolution of the Earth, the material composition and changes of the Earth, and many others [16,17]. 
Then, geological big data has the characteristics of “4V” of traditional big data, that is, volume, variety, 
velocity, and value. Moreover, it also has its own particularities, such as multi-source heterogeneity, spatial-
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temporal correlation, and complexity fuzziness. Meanwhile, due to the huge space-time scope of geological 
object development and evolution, and the numerous factors affecting geological processes, the geological 
characteristics of high dimension, high complexity, and high uncertainty are more significant, which make 
the geological big data face unprecedented opportunities and challenges [18]. 

For geological big data, it is a challenging and important issue of extracting valuable information from 
these multi-source data in consideration of its complex characteristics, so as to analyze the mineral yield 
regularity, summarize the characteristics of a specific type of mineral deposit, and discover the attributions that 
may be included [19]. Hence, it is particularly difficult to mine association rules from geological big data. 

In this field, more emphasis is being placed on using Apriori algorithm to mine association rules for 
geological big data [20–22]. An algorithm was proposed to convert the spatial data to non-spatial one in the 
geographic information systems (GIS) database, while using the Apriori algorithm to explore a multi-level 
multi-relational space association rule mining method based on inductive logic programming [23]. Based 
on multi-source geological spatial database and spatial data mining technology, considering the spatial 
characteristics and uncertainty of geological data, a regional metallogenic prediction method was developed 
on the basis of geological spatial data mining, where the experimental comparison results showed that the 
prediction results based on geological spatial data mining using Apriori algorithm were more accurate than 
the traditional evidence weight model method, and the method was effective for regional mineralization 
prediction [24]. Furthermore, based on the Apriori algorithm, the frequent itemsets of the associated ore 
and intrusive rocks of hydrothermal gold deposits were extracted, and it was found that the associated 
minerals were closely related to the acidity and alkalinity of the intrusive rocks [25]. 

However, for those work mentioned above, when the amount of data is too large, the developed 
algorithms may have the following disadvantages. 

(1) If the degree of support or confidence is too low, Apriori algorithm will generate many useless 
rules that prevent users from quickly distinguishing and judging these rules, making it difficult for 
users to find truly useful knowledge. 
(2) On the contrary, if the degree of support is too high, it will ignore some valid and strong association 
rules. 
(3) When the number of database scans is too large or the frequent itemsets that need to be searched 
are too large, the algorithms will consume too much time or memory. 
In order to avoid such limitations and design a more practical method, this article combines self-

organizing map (SOM) and K-means with Apriori algorithm to effectively mine more valid and strong 
associated rules, especially for geological big data. The motivation of this scheme proposed here is shown 
as follows. 

Currently, SOM as an effective unsupervised learning algorithm can be used in clustering. However, 
the number of clustering results obtained through SOM is particularly large, then the K-means algorithm 
could be used to perform secondary clustering on the data. K-means is a classic clustering algorithm [26]. 
Its core idea is to first determine the number of clusters, and then divide all data into clusters with the pre-
defined number, according to the Euclidean distance. But the selection of the initial clustering center of the 
K-means algorithm has a great influence on the clustering results, and it is easy to fall into the local optimum. 
Specifically, it is sensitive to “noise” and isolated point data, and these defects greatly limit the clustering 
effect. By using SOM clustering as the input of K-means clustering, and using the K-means algorithm to 
perform secondary clustering on the results of SOM clustering, it is expected to overcome the above defects, 
and the data can be divided accurately according to the specified number of clusters [27,28]. Moreover, 
through the combination of SOM and K-means, it is able to improve Apriori algorithm [29,30]. 

Motivated by it, a SOM-K clustering-optimized unsupervised Apriori learning algorithm is developed 
to mine association rules in each category for geological big data. This algorithm is named as SOM-K-
Apriori. In this article, we specifically combine “Support”, “Confidence”, and “Lift” of association rules in 
Apriori as the evaluation criteria to further facilitate this scheme to find more valid and strong association 
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rules. Furthermore, to effectively show the mining results, the association rules are clearly demonstrated by 
tables and parallel visualization method. 

The contributions of this article are as follows: 
(1) Aiming at the practical demand for geological big data analysis, a machine learning-based 
intelligent mining scheme for association rules is accordingly developed, which greatly improves 
computational performance of mining task. 
(2) In the field of geological data analysis, through the use of unsupervised learning algorithm SOM-
K-Apriori, the proposed scheme can find more valid and strong association rules with low support 
degree, while providing an intuitive visualized result of those association rules. 
The rest of this article is arranged as follows. Section 2 will introduce the background, including SOM 
and Apriori algorithm. In Section 3, we detail the proposed scheme. In Section 4, the experiments of 
mining association rules for mineral deposit data are conducted to evaluate the performance of our 
proposed scheme. Finally, the conclusion is summarized in Section 5. 

2 Background 
In this section, we will simply introduce some key technologies in relation to our method. 

2.1 Self-Organizing Map (SOM) 
SOM was proposed by Kohonen, and it was also known as the Kohonen network [31]. It is one of the 

unsupervised learning methods. The main task of SOM is to convert input data of any dimension into one-
dimensional or two-dimensional discrete data through computational mapping. Currently, it can be used for 
many applications, such as clustering, high-dimension visualization, data compression, and feature 
extraction [32,33]. 

Essentially, SOM is a neural network with only an input layer and an output layer. The input layer 
receives external input information and the output layer responds to them. The data of the input layer can 
be any dimension, and each node in the output layer represents a class that needs to be clustered. 
Competitive learning is implemented in training phase. Each input sample finds the node that is most similar 
to it in the output layer, called the active node or the winning neuron. Then, an appropriate method is 
executed to update the parameters of the active node. Meanwhile, the neighbor nodes have also updated the 
parameters appropriately based on the distance from them to the active node.  

Therefore, there is a topological relationship between nodes in the output layer. This topological 
relationship needs to be determined manually. When their needs a one-dimensional model, the output nodes 
are connected in a line. Otherwise, when a two-dimensional topological relationship is needed, the output 
nodes are connected to form a plane. For example, the network structure of two-dimensional topological 
relationship is shown in Fig. 1, where the nodes of the output layer are fully connected to the nodes of the 
input layer. 

2.2 Apriori Algorithm 
The Apriori algorithm was proposed in [34]. It is now a classical algorithm in association analysis and 

mining, and it is used to find out the datasets that appear frequently in data values [35–37]. Finding patterns 
for these frequent sets can help us make some decisions [21,38]. 
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Figure 1: The network structure of SOM 

Some basic concepts about Apriori are introduced as follows: 
 Item and Itemset 
Let itemset be a collection of all items: 

itemset = {item1, item2,⋯ , item𝑘𝑘},𝑘𝑘 = 1,2, …, (1) 
where itemk is an item. The set of items is called an itemset, and the itemset containing k items is called a 
k−itemset. 

 Association Rules 
Association rules are implications of form 𝐴𝐴 → 𝐵𝐵, where A and B are both subsets of itemset and not 

empty sets, and 𝐴𝐴 ∩ 𝐵𝐵 = ∅. 
 Support 

support(𝐴𝐴 → 𝐵𝐵) = 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵), (2) 
where 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) represents the probability of an itemset containing set A and set B. 

 Confidence 

confidence(𝐴𝐴 → 𝐵𝐵) =  𝑃𝑃(𝐵𝐵|𝐴𝐴) = support(𝐴𝐴∩𝐵𝐵)
support(𝐴𝐴) = count(𝐴𝐴∩𝐵𝐵)

count(𝐴𝐴) , (3) 

where count(∙) is the count of the itemset. 
 Lift 

Lift(𝐴𝐴 → 𝐵𝐵) =  𝑃𝑃(𝐵𝐵|𝐴𝐴)
𝑃𝑃(𝐵𝐵) .  (4) 

If Lift(𝐴𝐴 → 𝐵𝐵) > 1, it means that the rule 𝐴𝐴 → 𝐵𝐵 is a valid and strong association rule. Inversely, 
Lift(𝐴𝐴 → 𝐵𝐵) < 1  means that the rule 𝐴𝐴 → 𝐵𝐵  is an invalid and strong association rule. Specifically, 
Lift(𝐴𝐴 → 𝐵𝐵) = 1 represents that A and B are independent. 

3 The Proposed Scheme 
In this section, we will present each step of the scheme we proposed. The ultimate goal is to effectively 

mine the valid and strong association rules between mineral deposit attributions and visualize them. 
The core processing process can be divided into four parts. Firstly, all geological data are expressed 

in the form of word embedding vector through word2vec technique. Secondly, the SOM algorithm maps 
the vector data in a two-dimensional space and puts similar data in adjacent locations. However, the number 
of clustering results of SOM is relatively large and the results may be unsatisfactory, we use the K-means 
method to further cluster. Thirdly, the Apriori algorithm is incorporated to analyze and mine the association 



 
IASC, 2020, vol.26, no.5 977 

rules in each category of geological data. Finally, the evaluation criterion is designed through the 
combination of “Support”, “Confidence”, and “Lift” in Apriori, to evaluate the quality of results achieved 
by SOM-K-Apriori method. Especially, the whole model of SOM-K-Apriori is shown in Fig. 2. 

 

Figure 2: SOM-K-Apriori model 

3.1 Preprocessing for Geological Data 
First, the abnormal data, including checking data consistency, handling invalid values, and missing 

values, are cleaned up. Then, some key attributes of the data are analyzed through simple statistical methods, 
to find out the evolution trend of the attributes. 

3.2 Word Embedding Using Word2vec 
Since there are so many text data in geological data, in order to normalize those data, we use word2vec 

model to process dataset to achieve word embedding. Here, for those massive data, we convert each 
attribute value to a 50-dimensional word embedding vector before mining association rules. 

3.3 Association Analysis via SOM-K-Apriori Algorithm 
After getting vectors for all data, we use the mode SOM-K-Apriori to cluster data and mine association 

rules. 
Firstly, the topological relationship of SOM network should be determined. Let the number of input 

data be N. Each input data vector is 𝒙𝒙 = [𝑥𝑥1, 𝑥𝑥2, ⋯ , 𝑥𝑥𝐷𝐷]T with D-dimension. For each node in the output 
layer, its dimension is the same as the dimension of the input. Thus, the weight vector of each output node 
j is recorded as 𝒘𝒘𝑗𝑗 = �𝑤𝑤𝑗𝑗1,𝑤𝑤𝑗𝑗2,⋯ ,𝑤𝑤𝑗𝑗𝑗𝑗�

T(𝑗𝑗 = 1,2,⋯ , 𝐿𝐿), where 𝐿𝐿 is the number of output nodes. 
1) Initialization 
Each weight vector of output node is initialized with a smaller random value. 
2) Competition 
The competitive process is to find the weight vector wj that is most similar to the vector x. We can use 

the Euclidean distance as the discriminant function. Then, the smaller the Euclidean distance, the more 
similar the vector 𝒙𝒙 is to the weight vector 𝒘𝒘𝑗𝑗. The index 𝑖𝑖(𝒙𝒙) which symbolizes the output node that is 
most similar to the input vector 𝒙𝒙 can be expressed as follows. 
𝑖𝑖(𝒙𝒙) = arg min |𝒙𝒙 − 𝒘𝒘𝑗𝑗|, 𝑗𝑗 = 1,2, … , 𝐿𝐿.        (5) 

The output node 𝑗𝑗 that satisfies (5) in the output layer is called the active node or winning neuron, 
which is most similar to the input vector 𝒙𝒙. 

3) Cooperation 
Let ℎ𝑗𝑗,𝑖𝑖 be a set of excited nodes in the output layer that are affected by the active node 𝑖𝑖, where 𝑗𝑗 

represents the node number in the output layer. Moreover, 𝑑𝑑𝑗𝑗,𝑖𝑖 represents the distance between the active 
node 𝑖𝑖 and the excited node 𝑗𝑗, then ℎ𝑗𝑗,𝑖𝑖 is a unimodal function, which is related to the distance 𝑑𝑑𝑗𝑗,𝑖𝑖. The 
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smaller the distance between the active node and the excited node, the greater the impact on the excited 
node. Thus, ℎ𝑗𝑗,𝑖𝑖  can also indicate the measure which the excited node is affected. 

Generally, ℎ𝑗𝑗,𝑖𝑖 is a Gaussian function as follows: 

ℎ𝑗𝑗,𝑖𝑖(𝒙𝒙) = exp �−
𝑑𝑑𝑗𝑗,𝑖𝑖
2

2𝜎𝜎2
� , (6) 

where 𝑖𝑖(𝒙𝒙) is the location of the active node, and 𝜎𝜎 is the effective width of the topology neighborhood. In 
addition, 𝜎𝜎 is expressed as follows. 

𝜎𝜎(𝑛𝑛) = 𝜎𝜎(0) exp �− 𝑛𝑛
𝜏𝜏1
� , 𝑛𝑛 = 1,2,3, …,  (7) 

where 𝜎𝜎(0) is the initial value of 𝜎𝜎, and 𝜏𝜏1 is a time constant. Then, ℎ𝑗𝑗,𝑖𝑖 can be defined as follows: 

ℎ𝑗𝑗,𝑖𝑖(𝑛𝑛) = exp �−
𝑑𝑑𝑗𝑗,𝑖𝑖
2

2σ(𝑛𝑛)2� , 𝑛𝑛 = 1,2,3, …, (8) 

Usually, the initial value 𝜎𝜎(0)  is the radius of the output mesh, and the time constant is 𝜏𝜏1 =
1000log(σ(0)). 

4) Weight update 
The weight vectors of the active node and its surrounding excited nodes are adjusted by the gradient 

descent method. 

𝒘𝒘𝑗𝑗(𝑛𝑛 + 1) = 𝒘𝒘𝑗𝑗(𝑛𝑛) + 𝜂𝜂(𝑛𝑛) × ℎ𝑗𝑗,𝑖𝑖(𝑛𝑛) × �𝒙𝒙 − 𝒘𝒘𝑗𝑗(𝑛𝑛)�,   (9) 

where 0 < 𝜂𝜂(𝑛𝑛) ≤ 1 is learning rate defined by: 

𝜂𝜂(𝑛𝑛) = 𝜂𝜂(0) exp �− 𝑛𝑛
𝜏𝜏2
� ,𝑛𝑛 = 1,2,3, …, (10) 

where 𝜂𝜂(0) is the initial value of 𝜂𝜂, and 𝜏𝜏2 is an another time constant. 
5) Iteration 
Steps 2), 3), and 4) are repeated until 𝒘𝒘𝑗𝑗 no longer changes significantly. 
Then, we use K-means algorithm to further cluster. Let the data vector mapped through SOM be 𝑥𝑥𝑖𝑖 

(i=1, 2, …, N), and it has the same dimension with the input data of SOM, where 𝑁𝑁 is the total number of 
data. Moreover, 𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝐾𝐾}(𝐾𝐾 ≤ 𝑁𝑁) is a set of 𝐾𝐾 cluster. Subsequently, we can select 𝐾𝐾 cluster 
center as follows. 

1) The initial 𝐾𝐾 cluster centers are randomly selected as �𝑧𝑧𝑗𝑗|𝑧𝑧𝑗𝑗 ∈ R𝑑𝑑 , 𝑗𝑗 = 1, … ,𝐾𝐾�. 
2) The distance between data 𝑥𝑥𝑖𝑖 and each cluster center 𝑧𝑧𝑗𝑗 is calculated, and then 𝑥𝑥𝑖𝑖 is assigned to its 

nearest cluster center. The distance can be expressed as follows: 

𝐷𝐷 = arg min
𝑗𝑗
∑ ∑ �𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑗𝑗�

2𝐾𝐾
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 . (11) 

3) For each cluster j, the new cluster center is calculated again. 

𝑧𝑧𝑗𝑗 = �∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1 � ∙ �∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑁𝑁

𝑖𝑖=1 �−1, (12) 
where 𝑟𝑟𝑖𝑖𝑖𝑖 = 1 when the data 𝑥𝑥𝑖𝑖 belongs to the j-th cluster, otherwise 𝑟𝑟𝑖𝑖𝑖𝑖 = 0. 

4) Steps 2) and 3) are repeated, until the cluster centers stay the same. 
Thirdly, we use the Apriori algorithm to mine the association rules in data. The Apriori algorithm uses 

an iterative method called layer-by-layer search, where the 𝑘𝑘 itemset is used to explore the (𝑘𝑘 + 1) itemset. 
In general, the process of mining association rules can be divided into two steps: 

1) Find out all the frequent itemsets 
First, after scanning the database, the count of each item is accumulated, and the frequent items whose 

appearance frequency are greater than or equal to the minimum support, are collected. We find the set of 
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frequent 1-itemsets, which is recorded as L1. Then, L1 is used to find the set L2 of the frequent 2-itemset, L2 
is used to find L3, and so on, until the frequent k-itemset can no longer be found. A complete scan of the 
database is required for each Lk found. 

The flow chart of finding frequent itemsets in Apriori algorithm is shown in Fig. 3, where min_Sup 
means minimum support. 

2) Generate strong association rules by frequent itemsets 
Once we have found all the frequent itemsets, the next step is to find the association rules. If there is a 

frequent itemset S, A and B are both not empty subsets of it, and 𝐴𝐴 ∩ 𝐵𝐵 = ∅. 
confidence(𝐴𝐴 → 𝐵𝐵) ≥ minConf,  (13) 
where minConf is the minimum confidence, then there is 𝐴𝐴 → 𝐵𝐵. 

 

Figure 3: The flow chart of finding frequent itemsets in Apriori algorithm 

3.4 Performance Evaluation 
Currently, there is no clear way to show the quality of results obtained by Apriori. However, the value 

of “Lift” with each association rule in Apriori can reflect whether the rule is valuable, “Support” and 
“Confidence” can also show the importance of rules. Therefore, in the proposed scheme the evaluation 
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criterion is designed by combining “Support”, “Confidence”, and “Lift” of all association rules mined in 
Apriori. Let the number of association rules is M, then the evaluation criterion can be defined as follows. 
EC = 1

𝑀𝑀
∑ (Support𝑖𝑖 × Confidence𝑖𝑖 × (Lift𝑖𝑖 − 1))𝑀𝑀
𝑖𝑖=0 ,  (14) 

where Support𝑖𝑖, Confidence𝑖𝑖, and Lift𝑖𝑖 are the “Support”, “Confidence”, and “Lift” of the i-th association 
rule, respectively. With (14), we can adjust the cluster number of K-means according to the EC. When the 
best EC is found, the mined association rules are optimal. 

4 Experimental Results and Discussion 
4.1 Experimental Description 

The dataset used here is from some hydrothermal copper deposits in China, and there are totally 252 
hydrothermal copper deposits used in the experiment. We select six important attributes from each 
hydrothermal copper deposit, including metallogenic epoch, mineral composition, rock structure, rock 
fabric, alteration type, and alteration intensity. 

Here, our experiments are conducted in the Python 3.6.4 environment running on the computer with 
an Intel(R) Core(TM) i7-6700 CPU and a 16 GB RAM. 

4.2 Parameters Optimization 
In our method, there are some parameters to be optimized, such as the dimension of each mineral 

deposit attribute, the size of SOM network, and the number of cluster centers in K-means.  
Generally, the dimension of word embedding in Chinese words is variable in different scenarios. In 

most cases, it is 50, 100, 200, or 300. Considering the size of data, 50-dimensional vectors are enough to 
represent all deposit attributes. From Fig. 4, we can find that when the number of cluster centers is larger, 
more association rules are mined, however the value of EC difference is not large. Meanwhile, when there 
are more cluster centers, the association rules between categories are also lost more. Hence, through the 
combination of the size of data, EC, and the number of association rules, the number of clusters is set as 3, 
which means that the data is divided into 3 categories. Lastly, according to empirical equation, the size of 
SOM network is set as 21 × 12. 

 
Figure 4: The relationship between EC, the number of association rules, and minimum support while using 
algorithm SOM-K-Apriori with different numbers of cluster centers 
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4.3 Performance Comparison 
In order to verify the superiority of the algorithm SOM-K-Apriori, we compare it with Apriori 

algorithm, and the results are shown in Figs. 5 and 6. 
In Fig. 5, when the minimum support is constant, the running time of SOM-K-Apriori is always shorter 

than that of Apriori. That is because the input/output cost of Apriori increases exponentially with the size 
of data, and once the range of database is reduced, the input/output cost is also greatly reduced. 

In addition, from Fig. 6, we can easily observe that the method SOM-K-Apriori is able to find more 
valid and strong association rules. This is because some valid and strong association rules are with low 
support in the database. When the data are clustered with similar characteristics by SOM and K-means, 
they have high support in categories. This phenomenon becomes clearer as support increases. 

 

 

Figure 5: The relationship between running time and minimum confidence while using algorithms SOM-
K-Apriori and Apriori 

 
Figure 6: The relationship between EC, the number of association rules, and minimum support while using 
algorithms SOM-K-Apriori and Apriori 

From the above experiment results, we find that, on the one hand, the algorithm SOM-K-Apriori can 
quickly find all association rules in the database. On the other hand, it can also find the association rules 
with low support but valid and strong. 
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4.4 Experimental Results 
Firstly, for those selected six important properties in each hydrothermal copper deposit, we clean the 

abnormal data, and a simple statistical method is employed to analyze the regulation of mineral deposit key 
properties, including epochs, the rock assemblage composition, and rock structure. The results are shown 
as Figs. 7–10. 

Fig. 7 shows the distribution of minerogenetic epochs in domestic hydrothermal copper deposits. We 
can see that the minerogenetic epochs of hydrothermal copper deposits are mainly concentrated in the 
Jurassic to Cretaceous, and its support is nearly 0.366. 

Fig. 8 shows the statistical result of the rock assemblage composition in domestic hydrothermal copper 
deposits. The most main mineral composition of rocks is Andesite, and its support is nearly 0.360. 

 

 

Figure 7: The distribution of minerogenetic epochs 
in domestic hydrothermal copper deposits 

 

Figure 9: The distribution of the rock structure of 
Andesite in domestic hydrothermal copper deposits 

  
Figure 8: The statistical result of the rock 
assemblage composition in domestic hydrothermal 
copper deposits 

 

Figure 10: The distribution of the rock fabric of 
Andesite in domestic hydrothermal copper deposits 

In order to get more information with the domestic hydrothermal copper deposits, we show the rock 
structure and rock fabrics of its main mineral composition Andesite. These two results are shown in Figs. 
9 and 10. 

Fig. 9 shows the distribution of the rock structure of Andesite in domestic hydrothermal copper 
deposits. Andesite has many kinds of rock structures, and the most important part of which is Porphyritic 
texture, whose support is as high as 0.769. 
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Similarly, Fig. 10 indicates that Andesite has many kinds of rock fabrics, but the main rock fabric is 
Massive structure, whose support is 0.824. 

Secondly, we convert each attribute value to a 50-dimensional word embedding vector using word2vec 
model. Because some attributes contain multiple values, each mineral deposit data is represented by a 600-
dimensional vector, in which the missing positions are supplemented with “0”. The word embedding 
expressions of the mineral deposit attributes are shown in Tab. 1. 

After getting 600-dimension data represented each mineral deposit, we cluster the data. Through 200 
iterations, the result obtained only by SOM is shown in Fig. 11(a), and the final result obtained by SOM 
and K-means is shown in Fig. 11(b), where each color represents a big category. The numbers of mineral 
deposits contained in each big category are 72, 76, and 104, respectively, named as cluA, cluB, and cluC. 

Table 1: The word embedding expression of the deposit attribution 

The value of deposit attributions Embedding of deposit 

J2 Andesite ...Middle 0.0044779866 -0.0034446819 ...0 0 

 

Figure 11: The clustering result: (a) Using SOM, and (b) Using SOM and K-means 

Then, we use the Apriori method to mine the data, after running SOM and K-means. Through many 
experiments, we set the parameter of minimum support to 0.09, and set the minimum confidence to 0.6. 
The results regarding association rules of associated rocks, alteration type and their strength in different big 
categories with SOM algorithm are shown as Tabs. 2–4, respectively. 

Tab. 2 indicates that Rhyolite is the highly associated rock of Rhyolitic Tuff, and Andesite is the highly 
associated mineral of Andesitic Volcanic Clastic Rock. The alteration type of Rhyolitic Tuff is strong 
Silicification. Andesite and Andesitic Volcanic Clastic Rock are mainly Massive Structure and Porphyritic 
Texture, while Rhyolite and Rhyolitic Tuff mainly are Layer Structure and Vitroclastic Texture. 

In Tab. 3, we can easily find that Andesite is the highly associated rock of Basalt, Pyroxene Andesite, 
Dacitic Breccia Lava and Andesitic Tuff. Pyroxene Andesite and Dacitic Breccia Lava are associated rocks 
of each other. The alteration types of Pyroxene Andesite and Dacitic Breccia Lava are strong Hornfelsic. 
Andesite, Rhyolite, Basalt and Andesitic Tuff are all Massive structure and Porphyritic texture while 
Pyroxene Andesite and Dacitic Breccia Lava are Block Lava structure and Detritus psammitic texture. 

Tab. 4 demonstrates that Andesite is the highly associated rock of Andesitic Crystal Tuff. The 
alteration types of Spilite is mainly medium Hornfelsic. Rhyolite, Andesite and Basaltic Andesite are 
Porphyritic texture and Massive structure, Dacite is Porphyritic texture, Massive structure and Vitroclastic 
texture. Andesitic Crystal Tuff has many structure types and fabric types, such as Porphyritic texture, 
Pilotaxitic texture, Vesicular structure, Panidiomorphic Granular texture, Amygdaloidal structure, and 
Massive structure. 
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Finally, to intuitively show those mined results, through the use of improved parallel method [39], 
we provide some visual descriptions of mining association rules, as Figs. 12, 13, and 14. In those figures, 
the antecedents are below the “−−”, and above the “−−” are consequents. Those three figures responds to 
Tabs. 2–4. 

  

Figure 12: The association rules of associated minerals   Figure 13: The association rules of minerals  
                                                                                          with alteration type and alteration intensity 

 

Figure 14: The association rules of minerals with structures and fabrics 

Table 2: The association rule of mineral deposits in cluA 

Association rules Confidence Occurrences 
times Lift 

(Rhyolitic Tuff) ==> (Rhyolite) 0.875 7 9.00 
(Andesitic Volcanic Clastic Rock) ==> (Andesite) 1.000 8 9.00 
(Rhyolitic Tuff) ==> (Silicification, Strong) 0.875 7 9.00 
(Andesite) ==> (Massive Structure, Porphyritic Texture) 0.833 15 4.00 
(Rhyolite) ==> (Layer Structure, Vitroclastic Texture) 0.846 11 5.54 
(Rhyolitic Tuff) ==> (Layer Structure, Vitroclastic Texture) 0.875 7 9.00 
(Andesitic Volcanic Clastic Rock) ==> (Massive Structure, 
Porphyritic Texture) 0.875 7 9.00 
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Table 3: The association rule of mineral deposits in cluB 

Association rules Confidence Occurrences 
times Lift 

(Basalt) ==> (Andesite) 0.750 12 4.75 
(Pyroxene Andesite) ==> (Dacitic Breccia Lava, Andesite) 1.000 8 9.50 
(Dacitic Breccia Lava) ==> (Pyroxene Andesite, Andesite) 1.000 8 9.50 
(Andesitic Tuff) ==> (Andesite) 1.000 13 5.85 
(Pyroxene Andesite) ==> (Hornfelsic, Strong) 0.875 7 9.50 
(Dacitic Breccia Lava) ==> (Hornfelsic, Strong) 0.875 7 9.50 
(Andesite) ==> (Massive Structure, Porphyritic Texture) 0.619 26 1.81 
(Rhyolite) ==> (Massive Structure, Porphyritic Texture) 0.733 11 4.75 
(Basalt) ==> (Massive Structure, Porphyritic Texture) 0.750 12 4.75 
(Andesitic Tuff) ==> (Massive Structure, Porphyritic 
Texture) 0.923 12 5.85 

(Pyroxene Andesite) ==> (Block Lava Structure, Detritus 
psammitic Texture) 1.000 8 9.50 

(Dacitic Breccia Lava) ==> (Block Lava Structure, Detritus 
psammitic Texture) 1.000 8 9.50 

 

Table 4: The association rule of mineral deposits in cluC 

Association rules Confidence Occurrences 
times Lift 

(Andesitic Crystal Tuff) ==> (Andesite) 1.000 12 8.67 
(Spilite) ==> (Hornfelsic, Medium) 0.714 10 7.43 
(Dacite) ==> (Massive Structure, Porphyritic Texture, Vitroclastic 
Texture) 0.706 12 6.12 

(Rhyolite) ==> (Porphyritic Texture, Massive Structure) 0.714 10 7.43 
(Andesite) ==> (Porphyritic Texture, Massive Structure) 0.742 23 3.35 
(Basaltic Andesite) ==> (Porphyritic Texture, Massive Structure) 0.017 11 8.67 
(Andesitic Crystal Tuff) ==> (Porphyritic Texture, Pilotaxitic 
Texture, Vesicular Structure, Panidiomorphic Granular Texture, 
Amygdaloidal Structure, Massive Structure) 

1.000 12 8.67 

5 Conclusion 
In this article, an intelligent scheme is proposed to analyze and mine the association rules of some 

hydrothermal copper deposits. The proposed scheme is mainly divided into three steps. First, the word 
embedding vectors are generated for geological data. Then, we use the SOM and K-means to cluster the 
similar attribution characteristics into one category. Finally, the evaluation criterion-guided Apriori 
algorithm is specifically used to mine the association relationship in every category. We can see from the 
experimental results that compared with the traditional Apriori, there are two main advantages in the 
proposed scheme, one is to quickly mine all the association rules by reducing the scope of scanning, and 
the other is to mine valid and strong association rules which are with low support. Hence, this intelligent 
scheme is more suitable for mining valid and strong association rules for geological data. However, in this 
model SOM-K-Apriori, as the data is clustered by SOM and K-means, the association rules among 
categories will be lost. Therefore, in the future, for those data with more key attributes, we will reduce the 
dimensionality of them, preventing the loss of association rules between categories. 
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