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Abstract: The Wiener model is widely used in industrial processes. It is 
composed of a linear dynamic block and a nonlinear static block. Estimating the 
Wiener model is challenging because of the diversity of static nonlinear 
functions and the immeasurableness of intermediate signals owing to the series 
structure of the Wiener model. Existing optimization algorithms cannot satisfy 
the requirements of accuracy and efficiency of identification and often lose into a 
local optimum. Herein, a modified Brain Storm Optimization (mBSO) is 
proposed to estimate the parameters of the Wiener model. Many different 
combinations of individuals from intra or extra-groups ensure the diversity of the 
proposed mBSO algorithm. Furthermore, the mBSO algorithm incorporates a 
multiplicative term. It is triggered by the current state of the population that 
achieves a good balance between global exploration and local exploitation. 
Comparative experiments are presented to demonstrate the effectiveness and 
efficiency of the proposed method.  

Keywords: Convergence; modified Brain Storm Optimization (mBSO); 
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1 Introduction 
The Wiener model describes the behavior of nonlinear systems adequately, and are widely applied in 

industrial processes, such as chemical [1], biological plant [2], and chromatographic separation processes 
[3]. Although the effectiveness of the Wiener model has been confirmed, estimating the structure and 
parameters of the Wiener model is still challenging in industrial applications [4,5]. 

Many studies have been reported including different techniques for identifying the Wiener model 
using various classical optimization methods. Wang et al. proposed the least squares iterative 
identification algorithm and the gradient iteration algorithm to identify Wiener nonlinear systems [6]. 
Furthermore, Ding et al. offered a Newton iterative identification algorithm to determine a unique Wiener 
system [7]. However, classical optimization methods assumed a smooth search space of the continuous 
derivative and optimized in the direction of the gradient. Therefore, it is easy to fall into a local extremum. 

To improve the modeling accuracy and efficiency of the optimization process as well as eliminate 
the occurrence of optimal local trapping, stochastic evolutionary optimization algorithms are presented as 
an alternative and effective tool to solve nonlinear optimizations. Different stochastic algorithms can be 
classified according to the inspiration behind their population update mechanism [8]. One category is the 
evolutionary algorithm, in which the biological evolution process inspires the update process. A 
representative is the genetic algorithm (GA) that is used to obtain the optimal solution by mimicking the 
mechanism of natural selection and inheritance [9]. It is well known that classical optimization algorithms 
iteratively seek the optimal solution from a single initial value, while the GA processes multiple 
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individuals simultaneously in the group. Bipin et al. adopted an adaptive GA and corresponding results 
were compared with those of classical GA and particle swarm optimization (PSO) algorithm [9]. The 
result indicated that the GA convergence accuracy was low. 

The other is the swarm intelligence algorithm, in which the update process is inspired by the 
behaviors of some living organisms [10]. Many swarm intelligence algorithms are called foraging 
algorithms as they mimic the foraging behavior of animals and/or insects, such as particle swarm 
optimization [11] and ant colony optimization (ACO) [12]. They are inspired by bird-watching behavior 
and ant-searching behavior for food in nature, respectively. Compared with GAs, PSO models a society 
rather than the principle of survival of the fittest. Every particle in a group represents a potential solution. 
Wu used the Bacterial Foraging Optimization Particle Swarm Optimization (BFOPSO) algorithm to test 
four classical functions and modeled a Wiener simulation. The results indicated its superiority in the 
overall searching ability. However, the BFOPSO algorithm failed to demonstrate its efficiency in high-
dimension optimization problems. Although ACO exhibits strong robustness, its searching time is longer 
thus affecting its convergence speed. Moreover, if excessive “elites” are selected, ACO will cause 
premature stagnation in the process owing to an earlier convergence to the local suboptimal solution.  

Brain Storm Optimization (BSO) algorithm is a meta-heuristic optimization algorithm developed by 
mimicking the human brainstorming procedure [13]. Compared with other animals, the human’s thinking 
pattern is more intelligent [14]. Therefore, optimization algorithms based on brainstorming should 
demonstrate better performance in accuracy and convergence than other swarm intelligence optimizations. 
However, the original BSO cannot obtain the global solution during successive iterations because of 
premature or local minima trapping [15]. Hence, a modified BSO (mBSO) algorithm is presented herein. 
In its update process, new ideas can be generated from a cluster center and another randomly chosen 
cluster. Compared with the original BSO algorithm, many combination methods are used to generate new 
ideas to improve the diversity of mBSO algorithms. In addition, to prevent an algorithm falling into a 
local optimal and facilitate in obtaining an optimal value in a population, a multiplicative term is 
introduced. It can intelligently change the searching domain according to the current state of an individual 
combined with a global-best version. Numerical and industrial cases have been presented to illustrate the 
performance of the mBSO algorithm.  

The remainder of the paper is organized as follows: Section 2 describes the optimal problem. Section 
3 details the original BSO and the mBSO. Section 4 presents the numerical simulation and industrial 
cases. Finally, discussions and conclusions are summarized in Section 5 and Section 6 respectively. 

2 Problem Description 
A Wiener model consists of a linear, time-invariant, dynamic subsystem followed by a static 

nonlinearity [16]. 

 

Figure 1: Structure of the Wiener model 

The differential equation of the Wiener model is as follows: 

( )

1 1( ) ( ) ( ) ( )
,

( ) ( ) ( )

dA q z k q B q u k
y k f z k kε

− − − =
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where ( )f ⋅  is a nonlinear function,  and  are the input and output of the dynamic linear block, 
respectively.  is the output of the Wiener model,  is white noise, i.e., , and  is the 
number of sampling instants. 

The polynomials  and  are defined as follows: 
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The vector θ  is defined as follows: 
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Combining Eq. (1) and Eq. (2), the output of the linear block is rewritten as follows: 

( ) ( )Tz k kθ ϕ=   (3) 
with 

( ) [ ( 1), ( 2), , ( ),
( ), ( 1), , ( )]T

k z k z k z k n
u k d u k d u k d m

ϕ = − − ⋅⋅⋅ −

− − − − −  
Subsequently, the estimated output ˆ( )y k  is:   

( )ˆ( ) ( )Ty k f kθ ϕ=   (4) 

The parameter θ̂  can be estimated by minimizing the objective function.  
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Owing to the nonlinear static block of the Wiener model, the parameter θ̂   cannot be solved directly. 

In this study, an intelligent algorithms, i.e., BSO, is used as a tool to obtain the optimal value. 

3 Modified Brainstorm Optimization Algorithm 
3.1 BSO Algorithm 

The BSO algorithm is inspired by the brainstorming process in human-problem solving [17]. In BSO, 
each idea represents a potential solution to a problem and is  updated in each iteration. Initially, n  ideas 
are clustered into m  clusters with k-means clustering. The best idea in each group is maintained as the 
cluster center. In each iteration, a new individual newx  is generated as follows: 

  Clustering 
n  individuals are classified into m clusters. According to their fitness value in each cluster, the best 

individual will be chosen as the cluster center. 
  Disruption 
Randomly select an original idea orgx  from the population, and change its value in a randomly 

selected cluster using Eq. (6) 
(0,1),new orgx x Nξ= + ×   (6) 

max() log ((0.5 ) / ),currand sig H H sξ = × −   (7) 
where (0,1)N  represents a Gaussian distribution with mean 0 and standard deviation 1, ξ  is a 
dynamically updated step-size, log ()sig  is a logarithmic sigmoid transfer function, maxH  is the maximum 
number of iterations, curH  is the current iteration number, s  is for changing log ()sig  function’s slope, and 

()rand  is a random value within (0,1).  

  Generation 
The generation of newx  exhibits three characteristics: Leading, colonial and flexible. 

(1)  Leading 
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Good ideas will be clues for the next generation, i.e., assigning cluster centers with a high probability 
of participating in the creation of new individuals. 

(2)  Colonial 

All individuals in the group have been thoroughly discussed according to the learning mechanism. 
Assume that m  clusters exist; therefore, jm  is the total number of individuals in one cluster and 

1
, [1, ]

m

j
j

m n j m
=

= ∈∑ . In the BSO algorithm, a new individual can be created from the choice of cluster 

center c
jx (see Eq. (8)) or the random individual r

jx (see Eq. (9)) in the j cluster,  
new c

jx x=   (8) 
new r

jx x=   (9) 
Furthermore, it can be obtained from the combination of two cluster centers (see Eq. (10)) or two 

random individuals by probability (see Eq. (11)). 
() (1 ()) ,new c c

j gx rand x rand x= × + − ×   (10) 
() (1 ()) ,new r r

j gx rand x rand x= × + − ×   (11) 
where , r r

g jg j x x≠ ≠ , , [1, ]j g m∈ , and ()rand  is a random value between 0 and 1. Detailed combination 
methods are described in Fig. 2. 

(3) Flexible 

Similar to a random mutation process, the algorithm will add a random value ()rand  to the 
generated individuals in Eq. (7). 

  Updating 

During each iteration, the existing individuals will generate a new idea. After comparison, better 
individuals will be remained and subsequently enter the next iteration [18]. Hence, the entire process of 
obtaining an optimal solution will end until the number of iterations reaches the upper limit. 

The procedure of the BSO algorithm is listed in Algorithm 1. 

3.2 Modified BSO Algorithm 
In this section, two modified procedures to improve the performance of the BSO algorithm are present. 

  The generation process 

( ){ },

,
,
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hst p new
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p N F x F x
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Algorithm 1: BSO 

Begin   max 1 2 3 4, , , , , , , 1H n m P P P P iter =    

randomly generate n  ideas;  
evaluate the n  ideas; 

while maxiter H≤   

clusters n ideas into m clusters using k-means; 
rank and select the best as cluster center; 

for each problem variable j , g  do 

if 1rand P<  then 

 replace the selected cluster center; 
if 2rand P<  then 

 select a cluster jx  randomly; 

if 3rand P<  then 

new c
jx x=  ; 

else 
new r

jx x= ; 

end if 

else 

select two clusters jx  and gx ; 

select two ideas r
jx  and r

gx ; 

if 4rand P<  then 

() (1 ())new c c
j gx rand x rand x= × + − × ; 

else 

() (1 ())new r r
j gx rand x rand x= × + − × ; 

end if 

end if 

max() ((0.5 ) / )currand logsig H H lξ = × − ; (0,1)orgnewx x Nξ= + × ; 

if ( ) ( )org newF x F x>   then 

org newx x= ; 

end if 
end if 

end for 
end while 

end begin 

In the BSO algorithm, the generation of new individuals relies on the combination of intra and extra-
groups [19]. One or two individuals can be chosen randomly from different clusters or linearly combining 

generatio
 

disruption  
updating  

Initialization  clustering
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two cluster centers, as shown in Fig. 2. However, the modified BSO algorithm increased the population 
diversity by using proposed the strategy shown in Fig. 3. 

Based on the original BSO algorithm, the generation process can be characterized by Eq. (13) (Fig. 
3e) or Eq. (14) (Fig. 4g) in one cluster.  

() (1 ()) ,new c r
j jx rand x rand x= × + − ×   (13) 

() (1 ()) ,hnew
j j
t rrx rand x rand x= × + − ×   (14) 

where  tr c
j jx x≠   , t h≠  and , [1, ]jt h m∈ . 

Additionally, a new idea generated from one cluster center and one random individual in two clusters 
is described as follows (Fig. 3f): 

() (1 ())new c r
j gx rand x rand x= × + − ×   (15) 

  The global-best update 

As shown in Eq. (16), the global-best information improved the performance of meta-heuristic 
algorithms significantly. The effect of the global-best idea gbx  in the population will be added after the 
new idea is generated as follows:   

() ( ) ,org gb orgnewx x rand x x α+ × ×= −   (16) 
where ()F  is the fitness value of the individuals, newx  is the current individual, ,hst px  is the historical best 
individual, gbx  is the global best individual in each iteration, and n  is the total population number. N   
represents the current set of individuals whose individual fitness values are larger than the historical 

optimal individual fitness values.
,( ) ( )

( ) ( )

new hst p

new gb

F x F x
F x F x

−
−

 describes the learning value of the object being 

studied. , )( hst p newx x−  is the distance from the current individual to the object being learned. 

If the current individual does not behave well, the value of ( )newF x  will be large.  

The greater the fitness value of the current individual, the greater the 
,( ) ( )

( ) ( )

new hst p

new gb

F x F x
F x F x

−
−

 is. This 

implies that the current idea must learn from other good ideas. In other words, the searching domain will 
tend to a global search. On the contrary, the smaller the fitness value of the current individual, the smaller 
α  is. When α  becomes smaller, the searching domain tends to local search. Triggered by the current 
state of the individuals, the multiplicative term α   intelligently determines the searching area of the next 
iteration to achieve a balance between local search and global search in the population. 

The procedure of the mBSO algorithm is listed in Algorithm 2. 

4 Case Studies 
The experimental section is divided into three: The performance comparison among mBSO 

algorithms, original BSO algorithm, and PSO algorithm based on four benchmark functions; the 
comparison between the original BSO and mBSO on a second-order model, and the comparison on an 
actual nonlinear CE8 coupled electric drive system.  

Two indexes, i.e., absolute-relative error ( ARE ) and root-mean-square-error ( RMSE ) are used to 
demonstrate the algorithm’s performance. 

( )ˆ / 100%ARE θ θ θ= − ×
  (17) 
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Algorithm 2: mBSO 

Begin  max 1 2 3 4, , , , , , , 1H n m P P P P iter =    

Randomly generate n  ideas;  
Evaluate the n   ideas;  

while  maxiter H≤  do 

cluster n  ideas into m clusters using k-means; 
rank and select the best as cluster center; 
for each problem variable , , ,j g t h  do 

if 1rand P<  then 

replace the selected cluster center; 
if 2rand P<  then 

choose one cluster; 

if 3rand P<  then 

(1 )new c r
j jx rand c rand c= × + − × ;  

else 

(1 )t hr rnew
j jx rand c rand c= × + − × ; 

end if 

else 

select two clusters jx  and gx ; 

if 4rand P< && 5rand P<   then 

(1 )new c c
j gx rand c rand c= × + − × ; 

elseif 4rand P< && 5rand P≥ then 

(1 )new c r
j gx rand c rand c= × + − × ; 

else 4rand P≥  

(1 )new r r
j gx rand c rand c= × + − × ; 

end if 
end if 

end for 

( )org gb orgnewx x rand x x α= + × − × ; 

(16)eqα =  ; 

if ( ) ( )org newF x F x>  then 

if ( ) ( )org newF x F x>  then 

    org newx x= ; 
end if 

end while 
end begin 

initialization  clustering
 

generation  
disruption  
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Figure 2: Simulated searching process in the BSO Algorithm 

 

Figure 3: Simulated searching process in the mBSO Algorithm. Notes: Each same geometric figure 
represents a cluster. Unshaded shapes represent ordinary individuals in the cluster, while gray-shaded 
shapes represent the cluster center. Blue lines represent the generation process of new individuals, and 
colored shapes represent the newly-generated individuals 
 

[ ]2

1
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4.1 Benchmark Functions 
Based on the Matlab software simulation platform, four selected benchmark functions (Rosenbrock, 

Griewank, Rastrigin and Quadric, shown in Tab. 1) are selected to test the performance of PSO, BSO and 
mBSO algorithms. The information of the four functions are shown in Tab. 1. 

The parameters of three intelligent optimization algorithms are listed in Tab. 2. The probability value 
is the result obtained by multiple random experiments. 

The results are shown in Fig. 4. Regardless of whether the dimension of the problem is 30 or 50, it is 
clear that the performance of the mBSO algorithm is the best among the three algorithms.  

4.2 Numerical Simulation 
A classical Wiener model is used as an example herein: 

( )

( )

( ) 1.5 ( 1) 0.7 ( 2)
           ( 1) 0.5 ( 2)

( ) ( ) ( ) ,
( ) / 2, ( ) 0

( )
( ) / 2, ( ) 0

z k z k z k
u k u k

y k f z k k

z k z k
f z k

z k z k

ε

= − − −
 + − + −
 = +
  ≥ =  − − <  (19) 
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where 1 2 0 1[ , , , ] [ 1.5,0.7,1.0,0.5]T Ta a b bθ = = −  and  ( ) (0,0.1)kε ∈ . 

Table 1: Information of four benchmark functions 

Name Function Expression Search Space 

Rosenbrock 
1

2 2 2
1 1

1

( ) (100( ) ( 1) )
d

i i i
i

f x x x x
−

+
=

= − + −∑  [ 2.408, 2.408]d−  

Griewank 
2

2
1 1

( ) cos( ) 1
4000

dd
i i

i i

x x
f x

i= =

= − +∑ ∏  [ 600, 600]d−  

Rastrigin 2
3

1

( ) ( 10 cos(2 )+10)
d

i i
i

f x x xπ
=

= −∑  [ 5.12,5.12]d−  

Quadric 2
4 1 1
( ) ( )d i

ji j
f x x

= =
= ∑ ∑  [ 100,100]d−  

 

Table 2: Parameters of three intelligent optimization algorithms 

Number Algorithm Parameter setting 

1 PSO 1 2100, {30, 50}, 10, 0.4 0.9, 1.49445n d m w c c= = = = − = =   

2 BSO 1 2 3 4100, {30,50}, 10, 0.2, 0.8, 0.4, 0.5n d m P P P P= = = = = = =   

3 mBSO 1 2 3 4 5100, {30,50}, 10, 0.05, 0.6, 0.6, 0.2, 0.6n d m P P P P P= = = = = = = =   

 

The identified results are shown in Tabs. 3–5. 

Table 3: Results of the original BSO Algorithm 
Iterations 1a  2a  0b  1b  ARE 

20 -1.4702 0.6976 0.5833 0.7624 20.2433% 
60 -1.4819 0.6785 0.8651 0.6250 8.2032% 

100 -1.4894 0.6925 0.9369 0.5143 2.6272% 
150 -1.4964 0.6977 0.9868 0.5207 1.0747% 
200 -1.5003 0.7002 1.0073 0.4928 0.4038% 

True value -1.5 0.7 1 0.5 -- 
 

Table 4: Results of the mBSO Algorithm 
iterations 

1a  2a  0b  1b  ARE 
10 –1.4229 0.6548 1.7431 0.3658 23.8429% 
15 –1.4399 0.6573 0.8923 0.8171 13.8588% 
20 –1.4912 0.6910 1.0258 0.5420 2.2852% 
40 –1.5103 0.7012 0.9834 0.4987 0.9820% 
50 –1.5097 0.7089 1.0034 0.4999 0.6806% 

True value –1.5 0.7 1 0.5 -- 
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(a) 1f  (b) 2f  

  
(c) 3f  (d) 4f  

Figure 4: Comparisons of the algorithms in benchmark functions 

 

 

Figure 5: Optimal fitness values vs. iterative steps 
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As shown in Tab. 3 and Tab. 4, the convergent rate of the mBSO algorithm is faster than that of the 
original BSO algorithm. Additionally, the accuracy of the mBSO had been modified significantly. 
Meanwhile, the ARE was reduced to 0.6806% only after 50 iterations. 

The iterative process is shown in Fig. 5; the optimal fitness value is gradually reduced, and the 
estimated parameters are closer to the real value. As observed, the red curve exhibits a steeper slope 
during the interval (5–50) and the mBSO achieved an excellent convergence. 

4.3 Industrial Case 
The CE8 couples two current-controlled electric motor drive systems through a pulley. The pulley is 

suspended in a fixed spring at one end to form a dynamic light damping mode, as shown in Fig. 6. 
 

 

Figure 6: CE8 coupled electric drive system 

The pulse sensor used in the system could not detect the positive and negative angular velocities of 
the pulley. Apparently, the absolute value function could describe the irreversible nonlinear process. The 
system model was a dynamic third-order linear model, which was described as follows [20]: 

1 2 3
1 2 3

1 2 3
1 2 3

( ) ( ) ( )
1 ,

( ) ( ) ( )

b q b q b q
z k u k w k

a q a q a q
y k z k kε

− − −

− − −

 + +
= + + + +

 = +   (20) 
where ( )u k the input voltage is signal; ( )y k  is the output angular velocity; ( )z k is an intermediate signal,

( )w k  and ( )kε  are interference signals. 
To confirm the performance of the mBSO, both PSO and BSO algorithms were used to compare 

with the mBSO. The parameters used in the PSO, BSO and mBSO algorithms are shown in Tab. 5. 
The difference between the actual and estimated outputs of the mBSO algorithm is shown in Fig. 7, 

and the corresponding iterative process is shown in Fig. 8. 

Table 5: Parameter identification results of the stochastic algorithm 
Method 1a  2a  3a  1b  2b   3b  RMSE   

PSO -2.5427 2.2956 -0.7290 0.0068 -0.0025 0.0626 0.3954 
BSO -2.5510 2.3043 -0.7320 0.0070 -0.0097 0.0721 0.3177 

mBSO -2.5639 2.3394 -0.7516 0.0068 -0.0129 0.0734 0.2726 
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Figure 7: The deviation curve between the 
actual and predicted value 

Figure 8: The optimal fitness values vs. the 
iterative steps 

The iterative process of each stochastic algorithm is shown in Figs. 9–11. 
Three algorithms are implemented in a computer with Intel(R) Core (TM) i5-3317U CPU, 4-GB 

memory and Windows 7 operating system. The PSO algorithm achieved convergence in 400 iterations 
(consuming 214.2940s), the BSO algorithm converged in 327 iterations (consuming 180.3679s), and the 
mBSO algorithm converged in 173 iterations (consuming 92.2496s). It can be concluded that the 
convergence speed of the mBSO algorithm is faster than those of the BSO and PSO algorithms. 

 

  

Figure 9: Parameter estimation of the mBSO Figure 10: Parameter estimation of the BSO 

 

Figure 11: Parameter estimation of the PSO 
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5 Discussion 
With optimization problems becoming increasingly complex, classical numerical optimization 

algorithms can no longer cater to demands, and many evolutionary optimization algorithms have been 
presented that achieved great success in many true-value and portfolio optimization problems. However, 
most stochastic optimization algorithms still suffer from “dimensional disasters”. Herein, the dimensional 
sensitivity of the mBSO algorithm is further considered and tested using four benchmark functions. The 
result indicates that the increase in magnitude in the fitness mean value of the mBSO algorithm is 19.83% 
(shown in Fig. 4). The accuracy of the mBSO algorithm is relatively insensitive to the dimension, thus 
indicating that the mBSO algorithm can be used to solve large-scale optimization problems. 

6 Conclusion 
To accurately and quickly estimate the parameters of the Wiener model, the mBSO algorithm was 

presented herein. Many combination strategies of ideas in the update process and a real-time variable 
parameter combined with the global best design were introduced to improve the performance of the 
mBSO. The mBSO-based optimization technique can be extended to other block-oriented models such as 
the Hammerstein and the cascaded combination of Hammerstein and Wiener models. 
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