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Abstract: Causality learning has been an important tool for decision making, 
especially for financial analytics. Given the time series data, most existing works 
construct the causality network with the traditional regression models and estimate 
the causality by pairs. To fulfil a holistic one-shot inference procedure over the 
whole network, we propose a new causal inference method for the multi-
dimensional time series data, specifically related to some case studies for the 
industrial finance analytics. Specifically, the time series are first converted to the 
event sequences with timestamps by fluctuation the detection, and then a multi-
dimensional point process is used for learning the underlying causality among the 
event sequences, which we assume stands for the relations among the time series. 
The expectation-maximization algorithm is used for minimizing the negative log-
likelihood with the regularization in order to avoid overfitting in the high 
dimension and will make the causal inference more reasonable. Over 250 factors 
with time series data related to the industrial finance are used in this paper to 
evaluate the model and the experimental showcase of the superiority of our 
approach on the real-world finance data. 

Keywords: Causality learning; Hawkes processes; directed graph model; time 
series; industrial finance 

1 Introduction 
Causality learning has been an important and interesting task with a directed network, which plays an 

increasingly critical role in real world applications, including forecasting, predictions and data analysis for 
THE financial data [1,2]. 

Granger [3] first proposed the notion of causality and it is mainly used for the time series data, which 
tries to find whether time series X is meaningful in predicting another Y with regression and statistical tests, 
which is used for constructing the causality from X to Y. For example, when the US Dollar Index (USDI) 
becomes larger, does it cause a significant change in oil prices, if yes, one can consider the USDI to be 
causally related to oil prices? 

Nowadays, causality learning [4,5] has found wide applicability in economics, computer versions and 
social analysis including government spending and taxes on economic output, pixels and labels of images, 
and the Granger causality among IPTV programs and so on. Most studies of causality learning are based 
on the auto-regressive model with corresponding statistical tests. And if the test is significant, one can 
consider the two variables to be causal. 
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However, the auto-regressive model exists with major flaws [6,7], which prevents its application in 
the real world, especially for financial data. At first, the model determines the causal structure pair by pair. 
When two series are highly correlated, the causal analysis of the other indicators can be confusing, which 
is hard to tell exactly which sequence worked. Besides, the model is only available for time series data, 
which is not available for the event sequence with timestamps.  

Instead of the auto-regressive model based on discrete time-lagged variables, the multi-dimensional 
point process has been a new and important tool to perform the causal inference [2,8]. The process tries to 
model the influences among different dimensions or types, which is frequently used for evaluating the 
causality. The Hawkes process [9] is the most popular point process to perform the causal inference, which 
performs very well in the real word data and is always used to do the causal inference for both the low and 
high dimensional fields [2,10].  

However, most existing works, which learns the causality with the multi-dimensional Hawkes process, 
are all designed for the event sequence data [8,11,12], but not available for the time series such as the 
financial data [6,7], which is fixed time-lagged observation in the discrete time point. It severely limits the 
application of the point process model in the practical field of the causal analysis. 

This paper mitigates the shortcomings of the causal model of the point process to make it available for 
both the event sequence and time series. In general, this paper aims to make the following highlights: 

 A causal model based on the multi-dimensional point process is proposed for both the event 
sequence data and the time series data, which increases the applications of the causal model of 
the point process. 

 Specifically, our approach consists of two main steps: First finding the high rise and high fall of 
the time series data with a sliding window and a history-based normalization method such that 
we can get a rise and fall event sequence based on the time series. and the second step is using 
the EM algorithm to evaluate the influence causality network for the event sequence. 

 Some technical improvements are proposed for the algorithm of the point process. A lag time 
tolerance variable is introduced to model the time delay for an occurring event, which represents 
the time lag of the information dissemination. The regularization is used to improve the training 
of the model, which significantly improves the effect of the inference and interpretability of the 
causal networks. 

 The experimental result is provided for the financial data, which reveals some of our causality 
discovery of financial relations. The result shows that the point process model can be used in the 
causal analysis of the financial time series and one can achieve the casual inference effectively 
with our model. 

The rest of the paper is organized as follows: In Section 2, related work is discussed, whereby related 
techniques and application scenarios are described and analyzed. In Section 3, the basic concepts are 
introduced in this paper, which is helpful to realize our model. Then the major proposed model based on 
the multi-dimensional Hawkes processes is presented in Section 4 in detail, which uses three different 
regularizations and graph cuttings to improve the model. Also, the parameter setting, and experiment results 
are given. Remarks and outlooks for future work are in Section 5. 

2 Related Work 
In this section, related works on the causal inference and point process is presented, which may be 

helpful to understand our model. 

2.1 The Point Processs 
The temporal point process [13,14] has been a popular and principled tool for modeling and predicting 

event data in a continuous time space. Many existing works design and employ different intensity functions 
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or density functions for describing the event occurrence rate over time, which does some analysis and 
predicts future events [7,15]. 

The Hawkes process [2,8] is an important point process, which is proposed to model more complicated 
event sequences where historical events have impacts on future events. The process has many application 
on the real world: citation analysis, financial analysis, social network modeling, earth quack modeling and 
causality inference for decision making. For the estimation of the Hawkes process, most existing methods 
use the EM algorithm, which iteratively estimates the parameters by iterations, while other methods apply 
ODE or an adversarial learning approach to make the inference [8,16]. 

Recently, neural point process models are becoming increasingly popular, which achieves good 
prediction results [17,18]. Besides, some analytical results can also be evaluated such as the influence 
among types with the attention-based models. 

2.2 Causal Inference 
The Causality theorem is first proposed by C.W. Granger, called the Granger Causality, which can be 

viewed by a directed network or graph [3,19]. The method is mainly based on the auto-regressive model, 
which is useful in decision making. Many efforts are proposed to improve the model, such as the L1 norm 
regularization, i.e., the Lasso regression and the Graphical model, whose causal structure is determined 
purely from statistical tests, and sometimes efficiently [19,20]. A lot of research has been done on the causal 
learning with the time series data, which has the time-lagged observations in discrete time points. Most 
have been focused on the causal relationship modeling between temporal variables, thus admitting the 
formulation of the causal modeling problem as that of the standard time series statistical modeling. 

3 Preliminaries 
In this section, some basics for the temporal point process is introduced at first and the concepts of the 

causality in the view of the multi-dimensional Hawkes is presented, which may be useful for understanding 
our model. 

3.1 The Temporal Point Process 
The point process and intensity.  A temporal point process is an important mathematical model for 

event sequences, which consists of a list of discrete events as S = {t_i } where t_i∈[0,T]. Here [0,T] is the 
time interval for the point process. Equivalently it can be viewed as the counting process that 𝑁𝑁 =
{𝑁𝑁(𝑡𝑡)|𝑡𝑡 ∈ [0,𝑇𝑇]}, where 𝑁𝑁(𝑡𝑡) = 1 if 𝑡𝑡 ∈ S and 𝑁𝑁(𝑡𝑡) = 0 if 𝑡𝑡 ∉ S. 

For a multi-dimensional point process with 𝑈𝑈  types of events, there are 𝑈𝑈  counting processes 
{𝑁𝑁𝑢𝑢(𝑡𝑡)|𝑡𝑡 ∈ [0,𝑇𝑇]} where 𝑢𝑢 = 1,2, … ,𝑈𝑈. Then the conditional intensity can be defined as: 

λu(t) =
E�dNu(t)�Ht�

dt
,  (1) 

where 𝐻𝐻𝑡𝑡 = {(𝑡𝑡𝑖𝑖,𝑢𝑢𝑖𝑖)|𝑡𝑡𝑖𝑖 < 𝑡𝑡} is the history of the events before time 𝑡𝑡. The conditional intensity function 
represents the expected instantaneous rate of events at time t. 

Then for the inference of the point process, the Maximum Likelihood Estimation (MLE) is usually 
used for learning the parameter of the point process: 

L𝚯𝚯 = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 λui(ti)N
i=1 − ∑ ∫ λu(t)dtT

0
U
u=1 . (2) 

With the different forms of the intensity, many of the point processes are defined to capture the 
phenomena of the interests with different mechanisms. For example, when the intensity is a constant, the 
point process is known as the Poisson process. 

The Hawkes process.  The Hawkes process is a kind of point process, whose events can be triggered 
by other events. Then the multi-dimensional Hawkes process can be defined with the intensity that 

λu(t) = µu + ∑ ∫ ϕuu′(s)dNu(t − s)t
0

U
u′=1 ,  (3) 
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where the first term 𝜇𝜇𝑢𝑢 is the base intensity, while 𝜙𝜙 is the impact function evaluating the influence of the 
influence from 𝑢𝑢′-type to 𝑢𝑢-type. 

3.2 The Causal Inference for the Point Process 
Many efforts have been made to learn the causal inference in different fields since the notion of the 

Granger causality was proposed in the paper, and with the development of the causality learning model, the 
causal inference with the point process model are popular for the event sequence data. Some studies try to 
reveal the relationship between the Hawkes processes’ impact function and its Granger causality graph.  

Theorem 3.1. Assume the Hawkes process with the conditional intensity function is defined in Eq. 
(2). If the condition for the 𝑢𝑢 dimension is 𝑑𝑑𝑁𝑁𝑢𝑢(𝑡𝑡 − 𝑠𝑠) > 0 and that 𝑡𝑡 > 𝑠𝑠 ≥ 0 holds, then causality 𝑢𝑢′ →
𝑢𝑢 exists if and only if 𝜙𝜙𝑢𝑢𝑢𝑢′(𝑡𝑡) = 0 for 𝑡𝑡 ∈ [0, +∞). 

Theorem 3.1 provides an explicit representation of the Granger causality of the multi-dimensional 
Hawkes process by learning whether the impact function of  𝜙𝜙𝑢𝑢𝑢𝑢′(𝑡𝑡) is zero or not. In another words, the 
numerical values of the impact functions among the dimensions indicates the causality graph over the 
dimensions of the Hawkes process. Hence, we learn the causality via learning and its impact functions, 
which requires proper methods. 

4 The Proposed Model  
The model mechanism is shown in Fig. 1 and the working flow is shown in Fig. 2. The model will be 

introduced in detail in this section. 

 

Figure 1: The overview of the point process modeling mechanism with the multi-dimensional point process 

3.3 The Event Extraction from the Time Series 
Given a collection of time series {𝑋𝑋𝑡𝑡𝑢𝑢} where 𝑋𝑋𝑡𝑡𝑢𝑢 is the lagged observation at time 𝑡𝑡 on type 𝑢𝑢, we get 

the normalization of {𝑋𝑋𝑡𝑡𝑢𝑢} based on the history:  

X�tu =
Xt
u−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�X[t−m:t−1]

u �

𝑠𝑠𝑠𝑠𝑠𝑠�X[t−m:t−1]
u �

  (4) 

where 𝑋𝑋[𝑡𝑡−𝑚𝑚:𝑡𝑡−1]
𝑢𝑢  are the series from time 𝑡𝑡 − 𝑚𝑚  to time 𝑡𝑡 − 1 . Besides, the mean(𝑋𝑋[𝑡𝑡−𝑚𝑚:𝑡𝑡−1]

𝑢𝑢 )  and 
std(𝑋𝑋[𝑡𝑡−𝑚𝑚:𝑡𝑡−1]

𝑢𝑢 ) is the mean and standard deviation of the time series.  

With the normalized time series {𝑋𝑋�𝑡𝑡𝑢𝑢}, we get the event sequence that 
S = {(t, u)|�X�tu� > σ} (5) 
where 𝜎𝜎 is the threshold value, which controls the frequency of the event extraction. Then, 𝑆𝑆 can be viewed 
as the event sequence, which is used for the point process modeling. 

3.4 The Event Sequence Learning 
The event sequence has been transformed from the time series based on the historical normalization 

method, then the causal inference is learned with the multi-dimensional Hawkes process. 
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Given the event sequence of {(𝑡𝑡𝑖𝑖,𝑢𝑢𝑖𝑖)}𝑖𝑖=1𝑁𝑁  calculated by Eq. (5), the Hawkes process can be simplified 
by setting 𝜙𝜙𝑢𝑢𝑢𝑢′(𝑡𝑡) = 𝑎𝑎𝑢𝑢𝑢𝑢′𝑔𝑔(𝑡𝑡) as: 
λu(t) = µu + ∑ auuig(t − ti)ti<t ,  (6) 
where 𝑔𝑔(𝑡𝑡) is the time-varying kernel for the event decaying influence and 𝑎𝑎𝑢𝑢𝑢𝑢′ ≥ 0 captures the influence 
of the 𝑢𝑢′-type events on the 𝜇𝜇-type ones. Then the infectivity matrix of 𝐀𝐀 = {𝑎𝑎𝑢𝑢𝑢𝑢′} is the adjacency matrix 
of the corresponding causality graph from the 𝑢𝑢′-type to 𝑢𝑢-type. 

 

Figure 2:  Working flow of the proposed approach. Time series data is firstly transformed into event 
sequence data through the identification of peaks and troughs. The parameters are fitted by using the EM 
algorithm to infer the causality based on the temporal point process 

3.4.1 The Modified Intensity of the Hawkes Process 
When a dimension is high or the event data is dense, observation errors are unavoidable, which leads 

to a misunderstanding of the model. For example, if many different time series increase heavily on the same 
day, whose observation accuracy is measured only in one day, then it is difficult to distinguish which 
influenced which. 

Besides, the occurrence of one event will not immediately affect others in the real world. Intuitively, 
there will be a lag time to have some effects. Therefore, the intensity of the Hawkes is modified as:  
λu(t) = µu + ∑ auuig(t − ti)t−ti>τ ,  (7) 
where τ is lag time, which represents the lag effect of the information transmission and successfully prevents 
high-impact events from happening on the same day. 

3.4.2 The Maximum Likelihood Estimation 
Suppose event sequence 𝑆𝑆 = {(𝑡𝑡𝑖𝑖,𝑢𝑢𝑖𝑖)}𝑖𝑖=1𝑁𝑁  has been calculated by Eq. (5), then for the intensity in Eq. 

(7), we get the MLE for the sequence: 

𝐿𝐿𝜣𝜣 = �𝑙𝑙𝑙𝑙𝑙𝑙 𝜆𝜆𝑢𝑢𝑖𝑖(𝑡𝑡𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

−�� 𝜆𝜆𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇

0

𝑈𝑈

𝑢𝑢=1

                     

= ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �𝜇𝜇𝑢𝑢𝑖𝑖 +∑ 𝑎𝑎𝑢𝑢𝑢𝑢𝑖𝑖𝑔𝑔�𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗�𝑡𝑡𝑗𝑗<𝑡𝑡𝑖𝑖−𝜏𝜏 �𝑁𝑁
𝑖𝑖=1  (8) 

     −��𝜇𝜇𝑢𝑢𝑇𝑇 + �𝑎𝑎𝑢𝑢𝑢𝑢𝑖𝑖𝐺𝐺(𝜏𝜏,𝑇𝑇 − 𝑡𝑡𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

�,                
𝑈𝑈

𝑢𝑢=1

 

where 𝜣𝜣 = {𝑨𝑨,𝝁𝝁} is the parameters, which needs to be estimated and we have:  

𝐺𝐺(𝜏𝜏, 𝑡𝑡) = � 𝑔𝑔(𝑠𝑠)𝑑𝑑𝑑𝑑
𝒕𝒕

𝜏𝜏
, 

which is the integral of 𝑔𝑔(𝑡𝑡). Here parameter 𝑨𝑨 = {𝑎𝑎𝑢𝑢𝑢𝑢′} is the infectivity matrix of the corresponding 
causality graph and 𝝁𝝁 = {𝜇𝜇𝑢𝑢} is the base intensity without the corresponding influence of the history event 
time. Maximizing Eq. (7) directly is not proper for estimating the infectivity of matrix 𝑨𝑨 if the dimension 
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number 𝑈𝑈  is too large, which is easy to be overfitting for the model, so it is necessary to do the 
regularizations for the log-likelihood.  

3.4.3 The MLE with Regularizations 
With dimension number 𝑈𝑈 becoming larger, it is necessary to add the regularization terms to improve the 

model. For the Hawkes process model defined in Eq. (5), there are 𝑈𝑈2 + 𝑈𝑈 parameters, which need to be 
optimized. With only the 𝑐𝑐𝑐𝑐  events, one may achieve, where𝑐𝑐  is the average number of events in one 
dimension. Hence it is necessary to add the L2 norm regularization ‖𝑨𝑨‖2 to prevent overfitting. One the other 
hand, it is unreasonable that there exists the causal relationship between any two dimensions. Similar with the 
casual inference with the Lasso regression, it is reasonable to use the regularizations to limit the parameters. 
Following previous work, the low-rank and sparse regularizations are used to improve the model. 

In view of the whole causality graph, not all the nodes are connected in the graph. So, the Low-rank 
regularization is used to regularize the log-likelihood with the norm of ‖𝑨𝑨‖∗. and not all the dimensions 
have impacts. For the 𝑢𝑢-type and 𝑢𝑢′-type, if there does not exist the impact or influence of  𝜙𝜙𝑢𝑢𝑢𝑢′(𝑡𝑡) then it 
must be zero for all of the 𝑡𝑡′𝑠𝑠, which means 𝑎𝑎𝑢𝑢𝑢𝑢′ = 0 in reality. The norm ‖𝑨𝑨‖0 is not easy for learning, 
and the ‖𝑨𝑨‖1 is often used as regularization instead. 

In summary, the learning problem of the Hawkes process is written as:   
𝑚𝑚𝑚𝑚𝑚𝑚
𝚯𝚯≥0

−L𝚯𝚯 + Ω(𝐀𝐀)  (9) 

where 𝛺𝛺(𝑨𝑨) = 𝜆𝜆1‖𝑨𝑨‖1 + 𝜆𝜆2‖𝑨𝑨‖∗ + 𝜆𝜆3‖𝑨𝑨‖22. 
Here 𝜆𝜆1, 𝜆𝜆2 and 𝜆𝜆3 are the penalty parameters, which control the influence of the regularizations and 

𝑨𝑨 can be viewed as a vector for the simplicity for the regularization. Besides, the nonnegative constraint 
for 𝑨𝑨 guarantees the model is being meaningful. 

3.4.4 The EM Algorithm 
Zhou et al. have proposed an EM-based learning method for low-rank and sparse regularizations. By 

following the previous work, a new EM- based algorithm proposed for Eq.8 by solving the optimization 
problem with calculating E-step and M-step iteratively. Specifically, given the current parameters of 𝜣𝜣 =
{𝑨𝑨,𝝁𝝁}, Jensen’s in-equality is applied to construct a tight upper-bound of the log-likelihood function that 
appeared in Eq. (6) as: 

𝑸𝑸 = ��𝑝𝑝𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙
𝜇𝜇𝑢𝑢𝑖𝑖
𝑝𝑝𝑖𝑖𝑖𝑖

+ � 𝑝𝑝𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙
𝑎𝑎𝑢𝑢𝑢𝑢𝑖𝑖𝑔𝑔�𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗�

𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗<𝑡𝑡𝑖𝑖−𝜏𝜏

�
𝑁𝑁

𝑖𝑖=1

   

 
   −∑ �𝜇𝜇𝑢𝑢𝑇𝑇 + ∑ 𝑎𝑎𝑢𝑢𝑢𝑢𝑖𝑖𝐺𝐺(𝜏𝜏,𝑇𝑇 − 𝑡𝑡𝑖𝑖)𝑁𝑁

𝑖𝑖=1 � + 𝛺𝛺(𝑨𝑨)   𝑈𝑈
𝑢𝑢=1  (10) 

Obviously, the optimization is the convex, and we still obtain the global optimum for this sub problem 
and one can calculate 𝜣𝜣 and {𝑝𝑝𝑖𝑖𝑖𝑖} alternatively to obtain the convergence of the sub-problem. 

The E-step. In the EM algorithm, every event is triggered by the history event or the base intensity, 
so that in the E-step, the expectation of the triggering probability is: 

𝑝𝑝𝑖𝑖𝑖𝑖 =
𝜇𝜇𝑢𝑢𝑖𝑖

𝜇𝜇𝑢𝑢𝑖𝑖 + ∑ 𝑎𝑎𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗𝑔𝑔�𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗�𝑡𝑡𝑗𝑗<𝑡𝑡𝑖𝑖−𝜏𝜏
 

𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑎𝑎𝑢𝑢𝑢𝑢𝑖𝑖𝑔𝑔�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗�

𝜇𝜇𝑢𝑢𝑖𝑖+∑ 𝑎𝑎𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗𝑔𝑔�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗�𝑡𝑡𝑗𝑗<𝑡𝑡𝑖𝑖−𝜏𝜏
  (11) 

Here 𝑝𝑝𝑖𝑖𝑖𝑖 is the probability that the event 𝑖𝑖 is triggered by the base intensity of the 𝑢𝑢𝑖𝑖 dimension and 
𝑝𝑝𝑖𝑖𝑖𝑖 is the probability that the event 𝑖𝑖 is triggered by event 𝑗𝑗. The hidden triggering distribution guarantees 
that the infectivity matrix is positive, which meets the basic hypothesis. 



 
IASC, 2020, vol.26, no.5 879 

The M-step. Based on the triggering probability of {𝑝𝑝𝑖𝑖𝑖𝑖} , the parameter can be estimated by 
calculating the partial differential:  

𝜇𝜇𝑢𝑢
(𝑘𝑘+1) =

∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖=𝑢𝑢

𝑇𝑇
  

𝑎𝑎𝑢𝑢𝑢𝑢′
(𝑘𝑘+1) = −𝐵𝐵+�𝐵𝐵2+4𝜌𝜌𝜌𝜌

2𝜌𝜌
 (12) 

where  

𝐵𝐵 = � 𝐺𝐺�𝜏𝜏,𝑇𝑇 − 𝑡𝑡𝑗𝑗�
𝑗𝑗:𝑢𝑢𝑗𝑗=𝑢𝑢′

+ 𝜌𝜌(𝒁𝒁1,𝑢𝑢𝑢𝑢′
(𝑘𝑘)  

+𝒁𝒁2,𝑢𝑢𝑢𝑢′
(𝑘𝑘) + 𝒁𝒁3,𝑢𝑢𝑢𝑢′

(𝑘𝑘) −𝑼𝑼1,𝑢𝑢𝑢𝑢′
(𝑘𝑘) −𝑼𝑼2,𝑢𝑢𝑢𝑢′

(𝑘𝑘) −𝑼𝑼3,𝑢𝑢𝑢𝑢′
(𝑘𝑘) ) 

𝐶𝐶 = ∑ ∑ 𝐺𝐺�𝜏𝜏,𝑇𝑇 − 𝑡𝑡𝑗𝑗�𝑗𝑗:𝑗𝑗<𝑖𝑖,𝑢𝑢𝑗𝑗=𝑢𝑢′𝑖𝑖:𝑢𝑢𝑖𝑖=𝑢𝑢  (13) 

Here 𝜌𝜌 > 0 is the penalty parameter and the soft-thresholding method is applied to shrink the updated 
parameters with the regularizations. 

Vectors 𝒁𝒁1
(𝑘𝑘+1),𝒁𝒁2

(𝑘𝑘+1),𝑼𝑼1
(𝑘𝑘+1),𝑼𝑼2

(𝑘𝑘+1) are similarly defined in a previous paper, which is proposed by 
Zhou et al. and 𝒁𝒁3

(𝑘𝑘+1),𝑼𝑼3
(𝑘𝑘+1) can be calculated as: 

𝒁𝒁3
(𝑘𝑘+1) =

𝜌𝜌
2𝜆𝜆3 + 𝜌𝜌

�𝑨𝑨(𝑘𝑘+1) + 𝑼𝑼3
(𝑘𝑘)� 

𝑼𝑼3
(𝑘𝑘+1) = 𝑼𝑼3

(𝑘𝑘) + �𝑨𝑨(𝑘𝑘+1) − 𝒁𝒁3
(𝑘𝑘+1)� (14) 

When parameters 𝜣𝜣 = {𝑨𝑨,𝝁𝝁} converges, the causality graph is obtained with the low-rank and the 
sparse matrix 𝑨𝑨. Given the larger 𝜆𝜆1,𝜆𝜆2,𝜆𝜆3, matrix 𝐴𝐴 will be more low-ranked and sparse. It is important 
to choose the suitable penalty parameters of 𝜌𝜌, 𝜆𝜆1,𝜆𝜆2,𝜆𝜆3. 

 

Figure 3:  The discovery of the oil-related causality 

3.5 The Causality Network 
As discussed above, the point process model is used with the estimation of influence among different 

factors or dimensions. With the EM algorithm, we get the convergence of matrix A, which is of vital 
importance for constructing the graph for the causal learning. We set 𝑨𝑨� as the causality graph as follows: 

𝑨𝑨�𝑢𝑢𝑢𝑢′ = �𝑨𝑨𝑢𝑢𝑢𝑢′ 𝑨𝑨𝑢𝑢𝑢𝑢′ > 𝑠𝑠
0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (15) 

where 𝑠𝑠 is the minimum threshold for the causality graph. Exactly, 𝑨𝑨�𝑢𝑢𝑢𝑢′ captures the degree of influence 
of events occurred from the 𝑢𝑢′-th type to the 𝑢𝑢-th type with 𝑨𝑨�𝑢𝑢𝑢𝑢′ events per day. Larger value of  𝑨𝑨�𝑢𝑢𝑢𝑢′ 
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means that events in 𝑢𝑢′-th dimension are more likely to trigger the events in the 𝑢𝑢-th dimension in the future, 
which is the causality learned from the time series data. 

3.6 The Technical Comparison to Other Works 
Following previous literatures [2,8], this work adopts the EM based method to maximize Eq. (7) to learn 

the multi-dimensional Hawkes model. To tailor the point process model to the data characteristics in our 
experiments, there are several main differences in our learning procedure compared with these references. 

First, in our approach, the event sequence is not obvious, which is in fact transformed from the raw 
time series data by the rule-based event point detection. 

Second, we introduce a lag time tolerance variable to model the time delay for an occurring event. The 
key observation is that the detected event’s timestamp is daily. With such a limited temporal granularity, 
many stock pricing variation events will be aggregated on the same day, which can have a negative impact 
on the point process model training due to inaccurate and biased timestamp information. Specifically, we 
add the assumption that the event’s impact will be delayed for the propagation. 

Third, we enforce the additional L2 norm regularization to the infectivity matrix other than using the 
low-rank and sparsity regularization as used in paper. The hope is that the resulting model can be less prone 
to overfitting.  

4 Experiments 
In this section, the experimental results on the real-world causality inference are provided.  

4.1 Datasets 
We collect data from the Wind–major company, (https://www.wind.com.cn/), a research report from 

the industry researchers, and the securities exchange all in China, which are used for the economic analysis. 
There are three kinds of data used in our model to build the whole network.  

1) Financial data. Including stocks, funds, bonds, foreign exchange, insurance, futures, and 
financial derivatives, the first thing we need to study is the causal relationship between the rise 
and fall of the financial data. For example, what will cause the Shanghai Stock Index to grow and 
what data will the Shanghai Stock Index cause? 

2) Industry data. Some specific industrial data related to the industrial basic raw materials such as 
soybean oil, soybean meal, coal, crude oil, etc. are collected, including their prices, inventory, 
ship's loaded and unloaded quantities, delivery quantities, registered warehouse unit quantities, 
etc. Studying this basic information of industrial raw materials helps to study their impact on other 
data such as the financial data. 

3) Macro-economy data. Macro data refers to a series of macroeconomics statistical indicators 
calculated through a certain formula to a comprehensive indicator, including the Gross Domestic 
Product (GDP), the Gross National Income (GNI), labor compensation, consumption level, etc. 

For experiments, these datasets are not be used alone. Exactly more than 300 kinds of time series are 
used and selected in the experiments from Jan. 2008 to Oct. 2019, and more than 150,000 events are 
transformed from the time series. Our goal is to discover the potential causal relationships between data 
indicators inside and outside each dataset. 

4.2 The Model Setting 
Before training the model, some hyper-parameters need to be set first. 
The Kernel Setting. For the time-varying impact functions of 𝜙𝜙𝑢𝑢𝑢𝑢′(𝑡𝑡) = 𝑎𝑎𝑢𝑢𝑢𝑢′𝑔𝑔(𝑡𝑡) , the kernel 

function  𝑔𝑔(𝑡𝑡) = 𝑒𝑒−𝑤𝑤𝑤𝑤 and hyper parameter 𝑤𝑤. For the hyper parameter 𝑤𝑤, we tested 0.1, 0.5, 1, 2, 5, 10. 
After the iterations of rigorous experiments, we set 𝑤𝑤 = 1. The criteria for choosing the optimal value is to 
maximize the model’s likelihood. 

https://www.wind.com.cn/
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The Hyper-parameter Setting. The model uses the penalty term, which tries to make the infectivity 
matrix.  

𝑨𝑨 low-rank, sparse and not overfitting. As a result, the penalty parameter is set as 𝜌𝜌 = 0.2, 𝜆𝜆1 = 1 
and 𝜆𝜆2 = 0.5, which tries to maximize the model’s likelihood. Besides, other hyper-parameters are set as  
𝜎𝜎 = 2 and 𝜏𝜏 = 0.1. 

The Initializations of 𝜣𝜣. The parameters of 𝜣𝜣 = {𝑨𝑨,𝝁𝝁} must be initialized before the triggering 
probability is calculated. Since the EM algorithm cannot guarantee the optimal solution of the objective 
function, we initialize 𝜣𝜣 for multiple times to calculate the convergences of 𝜣𝜣 to ensure that the algorithm 
approaches the optimal result and avoids the local optimal solution.  

4.3 The Experimental Results 
With the datasets introduced before, three sets of causal analysis studies are conducted in the economic 

field. Note all the three categories of data as described above are all used in each of the following studies. 
The results show the superiority of our model. 

4.3.1 The Experiment: Oil-related Causality 
The first experiment is about the oil price, which tries to find out what factor the oil affects and whether 

it will be affected by others.  
The Factor Choice. As known, the US dollar is strongly linked to oil prices. These factors, which are 

highly linked to the U.S. dollar, have been chosen to construct the causality network of oil: 1) The oil price 
(OIL); 2) the US Dollar Index & regulation (USDX); 3) the treasury bond yield of one year (ND-1) and  
4) the  treasury bond yield of ten years (ND-10). 

Results. In addition to the impact of OIL on itself, many factors in the United States will have an 
impact on OIL as shown in Fig. 4. Similarly, the oil prices will affect other factors within the US. In detail, 
the OIL influences and is influenced by the ND-1 best among these factors. With the results of the above 
experiment, it is reasonable to believe that the method works well. 

 

Figure 4: The discovery of the stock market-index causality 

4.3.2 The Experiment: The Stock Index Causality 
The stock market is the main object to be studied here. The Shanghai Composite Index is used to 

represent the degree of prosperity of the stock market in China and to study whether the rise and fall of 
macro data has a causal relationship with the rise and fall of stocks.  

The Factor Choice. The factors in this experiment include:  1) The Shanghai Securities Composite 
Index (SSEC); 2) Government revenue (GR), 3) the money in circulation (M0); 4) the Consumer Price 
Index (CPI); 5) the Project Management Institute (PMI) and 6) the Chinese bond yield (CBY).  
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Results. Shown in Fig. 5, more information can be obtained with the analysis of causality 𝑨𝑨�. It is 
obvious that there are high relationships among the GR, PMI, MO and CMI. Besides, the CBY can be 
more affected by the SSEC, which is intuitive with the economic view. Almost all the impacts do not 
influence the SSEC. Only the CBY can influence the SSEC weakly, which means that the Chinese 
government policy regulation may directly affect the stock market, however, the biggest influencing factor 
is still the stock market itself. Compared with the first experiment, more unrelated factors are analyzed to 
distinguish the relation without the causality (i.e., without relation). It is proven that our model works well 
and distinguishes the causality between factors. 

 

Figure 5: The network of the miscellaneous factor causality (Only 100 nodes are shown here as a subgraph) 

4.3.3 The Experiment: The Miscellaneous Factor Causality 
In this experiment, more than 250 kinds of time series data (factors) are randomly selected to model 

the multi-dimensional point process, whose goal is to discover the unknown potential relationship.  
The Factor Choice. Due to the lager dimensions, only parts of the nodes can be presented in this paper as 
shown in Fig. 6. Here, parts of the factors are in use: 1) Small and medium-sized institutions deposit the 
reserve ratio (DRR); 2) the soybean meal net sales  (SBNS); 3) the SHIBOR for one week (SHIBOR); 
4) the Interbank pledged repo weighted interest rate for a week (IPRIR-7); 5) the unshipped soybean oil 
for a week  (USO); 6) the Interbank pledged repo weighted interest  rate overnight (IPRIR-1); 7) the 
soybean meal export (SME); 8) the soybean oil net meal current market year (SMUV); 9) the global 
soybean meal annual opening stocks (GSMAOS); 10)  the unloaded volume of Soybean of the 
Qinhuangdao Port Domestic Trade 11) the reverse repo rate (RRR); 12) the coal inventory sales (SONE); 
(CI); 13) the International crude oil spot prices (ICOIL);14) the London Interbank Offered Rate (LIBOR); 
15) the Soybean Meal Unshipped in Next Market Year (USM); 16) The National Coal Price Index 
Comprehensive (CoaP);17) the Soyoil’s next year’s unshipped volume (USOY) and 18) the Chinese bond 
yield (CBY).  

 

Figure 6: The causal discovery based on the miscellaneous factor causality network 

Results: As shown in Fig. 5, the causality matrix is represented as a complex network. The whole 
network has 251 nodes, 1965 edges, which means that the average degree of each node is around 7.82. The 



 
IASC, 2020, vol.26, no.5 883 

causal relationship of the first 100 nodes are shown in Fig. 6. The node with the largest out degree is the 
market price sequence of polyvinyl chloride. There are 28 factors that have a great impact on it. It is in an 
affected position in the related indicators of the polyvinyl chloride and the model believes that it will be 
slightly affected by soybean meal.  

Fig. 6 is part of the results from the network in Fig. 5. The thin end of the line is the cause, while the 
thick end of line is the effect in the network. In order to better show in the text, we choose the nodes with 
higher degrees in the subgraph as our results with the graph cutting. Some results are obtained in Fig. 6. 
For example, the out degree of the LIBOR is large, which affects many factors in the network as the cause. 
It is obvious that the LIBOR has a large impact on the Coal inventory in Qinhuangdao, which is interesting 
and the need for us to discover the meaningful causality. 

In addition to causal analysis based on the point process model, the time prediction is also one of the 
important applications of the point process model.  

 

Figure 7: The results of the next time prediction errors with different regularizations 

Through the time predictions, one cannot know the expectation or probability that the series will rise 
or fall in the future. In addition, as shown in Fig. 6, one can measure the results of the model by measuring 
the accuracy of the predictions. Given event time 𝑡𝑡𝑗𝑗 and the history before 𝑡𝑡𝑗𝑗, one can predict event time 𝑡̂𝑡𝑗𝑗 
with the intensity of the point process. Based on the paper, the sampling method is used as a prediction for 
next time and Err is used as an evaluation of the model: 
𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ �𝑡̂𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗+1�𝑛𝑛

𝑗𝑗=1 , (15) 
where n is the event number for a batch, and we use the mean time error of all the batches to evaluate the 
model as shown in Figure 8. Besides, the predictions start from the second event time, and the difference 
will be larger if it is not well fitted. Figure 8 shows the prediction results of the Large graph Causality 
experiments. The low-rank and sparse regularizations increase the effect of the estimations and predictions.  

4.4 Summary and Discussion 
In our study, three different experiments have resulted in three different causal network structures. The 

first and second experiments have less factor data, so the network is not complicated, and some conclusions 
can be reached. In the third experiment, we used a large amount of factor data to obtain a more complex network 
structure. However, for such a network, finding some meaningful causal relationships can be more helpful. 

5 Conclusion and Future Work 
This paper develops a causal inference model based on the time series data with the point process for 

the industrial finance analytics. The model is mainly for the analysis of the economic data market data, 
industry data and macro data, which is discovered is some interesting relationships with the construction of 
the causality network. 

There are many possible directions for future work. First, in this paper, the multi-dimensional Hawkes 
process is mainly used to model the event sequence and the EM algorithm is applied to estimate the parameters. 
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With the development of machine learning, the temporal point process model has been witnessed ranging 
from parametric models to the nonparametric approaches and to the deep network-based methods. What’s 
more, combining two-way exploration, the GAN with causality generation may be one of our future directions. 
Second, the graph methods [5,20,21] may be helpful with the construction of the causality. There often exist 
very similar factors in the datasets, which constructing only one causality graph often hinders the discovery 
of the new causality. For this need, graph matching [22,23] can be a possible solution by infusing networks 
with corresponding structures. Many understandings of the causality have been shaped with significant 
increments of the machine learning community’s interest in the causality in recent years. In addition to 
regression and point process method, it will be interesting to construct the causal networks with these new 
methods. At last, more applications can also be found in a sequence-based recommendation.  
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