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Abstract: COVID-19 is one of the most highly infectious diseases ever emerged
and caused by newly discovered severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2). It has already led the entire world to health and
economic crisis. It has invaded the whole universe all most every way. The
present study demonstrates with a nine mutually exclusive compartmental
model on transmission dynamics of this pandemic disease (COVID-19), with
special focus on the transmissibility of symptomatic and asymptomatic infec-
tion from susceptible individuals. Herein, the compartmental model has been
investigated with mathematical analysis and computer simulations in order to
understand the dynamics of COVID-19 transmission. Initially, mathematical
analysis of the model has been carried out in broadly by illustrating some
well-known methods including exactness, equilibrium and stability analysis
in terms of basic reproduction number. We investigate the sensitivity of the
model with respect to the variation of the parameters’ values. Furthermore,
computer simulations are performed to illustrate the results. Our analysis
reveals that the death rate from coronavirus disease increases as the infection
rate increases, whereas infection rate extensively decreases with the increase
of quarantined individuals. The quarantined individuals also lead to increase
the concentration of recovered individuals. However, the infection rate of
COVID-19 increases more surprisingly as the rate of asymptomatic individu-
alsincreases than that of the symptomaticindividuals. Moreover, the infection
rate decreases significantly due to increase of self-immunity rate.
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1 Introduction

In the earth, viruses are the old detected human killer and in different times the world
had to face a big challenge to fight against world pandemic diseases causing a huge loss of
life and wealth. Different pandemic situations occurred in several parts of the world over the
years [1]. COVID-19 is the most recent emerged devastating fatal disease, caused by coronavirus
to make the jump to human infection [2]. However, there are several coronaviruses known to
be circulating in different animal population that have not yet been infected human. Middle
East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SERS-CoV-2)
are the two zoonotic (transmits from animals to humans) corona viruses’ outbreaks which have
recently been experienced in the world. Coronaviruses are such type of deadly viruses that cause
illness ranging from the common cold to severe respiratory disease. The genome of coronavirus
is fully sequenced. The genomic sequence of SARS CoV-2 showed identical, but distinct genome
composition of SARS-CoV and MERS-CoV. Since its first case reported in late 2019, the infec-
tion has spread to other regions in China and other countries, and the transmission rate, the
mortality rate and the clinical manifestation slowly emerged [3].

Mathematical modelling is playing a significant role to describe the epidemiology of infec-
tious diseases [4]. Mathematical modelling aims at the mathematical representation of various
biological processes such as wound healing, morphogenesis, blood-cell production and dynamics
of infectious diseases, using techniques and tools of applied mathematics [5,6]. There exist a
number of models for infectious diseases as well as chronic diseases; as for compartmental
models and optimal control problem, starting from the very classical SIR model to more complex
proposals [7-9]. The classical SIR type compartmental model was first introduced by Kermack
and McKendrick in 1927 [10]. Since coronavirus is a zoonotic virus, it first transmits from
animals to humans. Once people become infected, then it spreads from human to human by the
physical contact with infected human owing to its tremendous infectiousness. So the dynamics
of COVID-19 can be described by SIR type epidemic model. It is sometimes more realistic to
study such epidemic disease in terms of SEIR model when there is a certain incubation period
before showing the symptom. This global outbreak has attracted the interest of researchers of
different areas. Several researches of COVID-19 have been carried out focusing on mathematical
modelling of the mysterious mechanisms of this disease [11,12]. An estimation of the reproductive
number of coronavirus by using simulation has been introduced in [13]. Mathematical modelling
of COVID-19 transmission dynamics in Wuhan has been described with stability analysis in [14].
Evolution of the novel coronavirus from the ongoing Wuhan outbreak is discussed in [15].
Aguilar et al. [16] investigate the impact of asymptomatic carriers on COVID-19 transmission.
However, some articles [17-27] are referred for more details on SIR and SEIR type analysis and
development of mathematical model on the dynamics of COVID-19.

COVID-19 transmission now becomes a worldwide pandemic. Our main contribution in
this study is to consider the symptomatic and asymptomatic individuals who have remarkable
influenced on the spread of COVID-19. In this paper, we have developed a mathematical model to
study the dynamics of the deadly coronavirus disease in terms of nine ordinary nonlinear coupled
equations. We have considered rates of change for susceptible, exposed, quarantined, symptomatic,
asymptomatic, infected, hospitalized, death as well as recovered individuals. In our study, we have
determined the basic reproduction number and studied the existence of the solution of the model
with stability or instability criteria at disease-free and endemic equilibrium points. We have also
performed sensitivity analysis of the model. Finally, numerical simulations have been performed
to show the dynamic behavior of COVID-19.
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2 Present Scenario of COVID-19

The novel coronavirus disease (COVID-19) emerged in December 2019 in Wuhan, China and
since then it has spread globally resulting in an ongoing pandemic [28]. On 10 July, 2020 in China
more than 83,500 cases have been reported and more than 4634 death. Worldwide this scenario is
tremendous, more than 12.72 million cases have been reported across 213 countries and territories,
ensuing in more than 564,661 death and more than 7.4 million people have recovered [29]. Among
them more than 4,738,570 are active case and more than 7,982,416 are closed cases. In active
case, 99% is in mid condition and 1% is in serious condition and in closed case, 93% is recovered
and 7% is death [30]. After breaking out the COVID-19 in China, Europe is the first continent
to suffer severally. Especially in Italy, the situation was more serious and devastating with more
than 300,988 infected and more than 28,400 deaths till July 10, 2020 and in Europe more than
2.38 million people were infected and more than 190063 deaths [31].

After Europe, the COVID-19 spread out in American continent being USA as the epicenter
in North America followed by Brazil in Latin America. In North America the infected, recovered
and death are more than 3.49 million, 1.57 million and 1.75 lakhs respectively and in South
America the infected, recovered and death are more than 2.72 million, 1.79 million and 1.049
lakhs as on 10 July, 2020 [32]. India and Bangladesh are in the top most position in COVID-
19 infections in Asian continent. According to World Health Organization, Asia is within the
foremost risk position within the world of COVID-19 transmission including more than 1.37
million infected, 84.36 lakhs recovered and 35,745 deaths till July 10, 2020 [33]. The second
leading infected continent is Africa, having more than 5.59 lakhs infected, 1,93,481 recovered,
and 12,769 deaths [34]. The pandemic situation in Australia and Oceania is lowest under control
including infected more than 9,553 and 11,834, deaths 107 and 118 respectively [35]. The statistics
of global pandemic situation of COVID-19 outbreaks is studied graphically by drawing bar
diagram which is presented in Fig. 1.
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Figure 1: Continent wise total infected, deaths and recovered as on June, 07, 2020
(Source: [32-35])

The age and gender have great influence on COVID-19 infection and deaths. Research shows
that the older people are most likely vulnerable to get infected by coronavirus and deaths [30].
Mortality rates are significantly higher at the age of 80 years above and about 14.8%. The
worldwide death report in respect to age distribution is given in Fig. 2.
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Figure 2: Worldwide age distribution of death rate (Source: [30])

3 Basic Assumption and Formulation of the Model

Coronavirus is primarily spread during close contact via small droplets produced by coughing,
sneezing, or talking. The transmission dynamics of COVID-19 occurs when a person is in close
contact (within 1 m) with someone who has already infected [27]. Any individual may also become
infected by touching a contaminated surface and then touching their face. It is most contagious
during the first three days after the onset of symptoms, although spread hours or days may be
possible before symptoms appear and in later stages of the disease. However, evidence to date
suggests that older people (over 60 years old) and those are already affected by diabetes, chronic
respiratory disease and cancer are at a higher risk to be infected by coronavirus. World Health
Organization (WHO) has issued advice for these two groups and for community support to ensure
that they are protected from COVID-19 without being isolated, stigmatized, left in a position of
increased vulnerability or unable to access basic provisions and social care.

So, the whole dynamics of MERS and SARS-CoV-2 (COVID-19) can be described by a
SEIR type infectious disease model in terms of a set of nonlinear ordinary differential equations
(ODEs). In this paper, we extend the basic SEIR model to nine compartments to show the indi-
vidual significance of each compartment. We consider quarantine, symptomatic, asymptomatic,
hospitalized (or Isolation) and death compartments. The susceptible S (), who can acquire the
infection; exposed E (f), when the virus exposed itself into human bodies; the separation of a
person or group of people reasonably believed to have been exposed to a communicable disease,
such type of populations are considered as a quarantined populations in this model and these
populations are represented by Q(7). The populations who are pertaining to a symptom or
symptoms of the COVID-19 disease are considered as symptomatic populations (M (¢)). The
populations presenting no symptoms of the disease, we consider as asymptomatic populations and
denoted by A (¢). The novel coronavirus can transmit through direct contact with infected people
or with objects used on the infected person. Thus the population, who can transmit infection
to susceptible, is defined as infected [/ (#) populations. Since, there is no vaccine and no specific
antiviral medicines for COVID-19, those with serious illness, may need to be hospitalized so that
they can receive life-saving treatment for complications. In our model, we consider such kind of
people as the hospitalized populations presented by H (¢). The recovered class R (¢) are those
who are immunized from infection. Finally, the populations who have died of the COVID-19
are considered as death compartment and denoted by D (7). Let, N (¢) be the total population at
time ¢ where,

NO=SO+EDO+Q0O+MO+ADO+IO+H@+RDO+D().
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The transmission mechanisms of the novel coronavirus disease COVID-19 are shown
in Fig. 3.
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Figure 3: The schematic diagram of the transmission mechanisms of the novel coronavirus disease
COVID-19

Taking the above diagram presented in Fig. 3 into consideration, we formulate a nine com-
partmental model in terms of a set of nonlinear ordinary differential equations (ODEs) of the

following form:

dsS
AT pS (1) Q1) — (E (1) + ¢l () S (1) — uS ()

dE
ar =aSOEW—Br+B+y)E@) —pEQ)

d

7? —E () = pS (1) Q1) — v (1) — O (1)

dM

L BE )+ 750 (1)~ 7 M () — M (1)

dA

Y BE) A ()~ pA ()

dl
T =M @O+ 24 () +SOI @) — (S + Y1 +¥2) I (1) — pnl (1)

dH
— =81 =k H (1) = daH (1) = pH (1)

dR
—; = 22H O+l ()= pR®

dD
i AMH (1) + 2 (1)
¢
with initial conditions,
S0)=S8), EO0)=E), 00)=0y, MO)=M,, A@=A4y, 1(0)=1I,, H0)=H,,

R(0)=Ry and D(0)=D,
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In the model (1), we have considered the parameter A as the recruitment rate of susceptible
individuals and o« as the exposed rate of the individuals. 8; and g, are the rate at which the
symptomatic and asymptomatic individuals becoming infected. The probabilities of transmission
of infections from symptomatic, asymptomatic and susceptible individuals are represented by the
parameters 1, y» and ¢ respectively. In order to maintain physical distancing, some exposed
individuals go to self-quarantined and this rate is represented by the parameter y3. Quarantined
individuals are divided into parts when they get tested. If these individuals show negative result
of infection, they become infection free and hence they again enter into the susceptible individual
compartment at a rate p. On the other hand, if they express positive result of infection, they enter
into the symptomatic individual compartment at rate y4. The infected individuals get hospitalized
at rate §. A portion of hospitalized individuals become dead because of the severity of the infec-
tion and this phenomenon is denoted by rate A;. Another portion of hospitalized individuals get
recovered at rate A,. Besides, individuals also get recovered due to their strong immunity system
and this rate is represented by the parameter ;. Before getting into hospitalization, infected
individuals are died at rate . Finally, u denotes the natural death rate of each individual.

4 Mathematical Analysis of COVID-19 Model

In this section, we discuss the boundedness, Positivity, equilibrium analysis, dynamical behav-
ior of those points, local and global stability of the model (1).
4.1 Boundedness of the Model

Theorem 1: The region ® = {(S(®),E(®,Q®), M(®),A®, 11, H®), R®),D®) Ry} is
a positively invariant set of the proposed model.

Proof: Let the total population size is N (t) where, N() =S (O)+E()+ Q@)+ M (t)+ A () +
I(+H@)+R@+ D).

. . dN dS dE dQ dM dA dI
Th th th rate of the total lat - T,y =, o
€n, € grow rate o € total population 18 dt dl + dl + dt =+ d[ =+ d[ =+ d[ +
dH n dR n dD
dt dt dt’

dN
= E=A+/OS(I)Q(l)—(OéE(l)+<P1(l))S(t)—MS(Z)+<XS(I)E(I)—(/31 +B2+y3) E(1)

—HEM+yE0) = pSO) Q1) —yaQ (1) —pnQ )+ B1E) +yaQ (1) —yi M (1) — M (1)
THEW) = A (0) —pAd O+ M)+ 240+ eSO L) = @+ Y1 +y2) [ () — pul (1)
+ 81 (1) = M H (1) — M H (1) — wH (t) + Ao H (1) + Y11 (1) — wR (0) + A H (1) + 21 (1)

:>a;l—]j=A—M(S(Z)+E(Z)+Q(l)+M(t)+A(z)+1([)+H(Z)+R(Z))

=>dN—A N
dr H

After solving the above equation, we have

N(t)= 24 (N - é) e M.
1 Iz
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. A C A . A
Therefore, lim N (t) = — which indicates that Nyg < — i.e., — is the upper bound of N (t).
—00 n M 12

. A ) A . .
On the other hand, if Ny > —, then N (t) will decrease to — as ¢t — oo i.e., the solutions
W 5

SO.EM0, Q0 ,M@{),A).,.I@),H(t),R()) approaches the region & asymptotically. There-
fore, the model is mathematically and epidemiologically well-posed in the region ®. Hence, the
Theorem 1 is proved.

4.2 Positivity of the Model
Here, we will show that all the variables in the model (1) are positive.

Theorem 2: If S(0)>0, E(0)>0, Q0)>0, M0)>0, A(0)>0,7(0)>0,H(0)>0, R0)>0
and D (0) >0, then the solutions of the system are non-negative.

Proof: To prove Theorem 2 for the transmission of COVID-19, we recall the first equation
of model (1),

ds
i A+pS®) Q) —(E()+¢I (1)) S (1) —uS (1) 2

In order to find the positivity of the Eq. (2), we can write

B A s
dt — "
das

Integrating Eq. (3), we have

A . . .
S(t)> —+ce ™, where ¢ is an integrating constant. 4)
v

A
We apply the initial condition at 7 =0, then S(0) — — > ¢. Then putting the value of ¢,
“w

A A
Eq. (4) becomes S(t) > — + (S 0) — —) e M Hence, S(t)>0 at t=0 and ¢t — oo. Therefore,
5 5
S (t) >0 is positive for all > 0. Similarly, with the help of [5,9], we obtain E (¢) >0, M (¢) >0,
00=>0,4(1)>0,1(1)>0, H(®)>0 and R(t) >0 for all t>0.
Hence the Theorem 2 is proved.

4.3 Disease Free Equilibrium (DFE) Point

For the disease-free equilibrium point of the model (1), we have to solve
dS dE _dQ dM dA dl dH dR dD _ 5)
dt —dt dt dt dt dt dt dt dt

In case of disease free, all the state variables are zero except the susceptible individuals. By
solving the system (5), we obtain
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A+pS®H QM) —(@E@)+9I (1) S (1) —pnSH)=0

A
= So=—
I

A
Hence, the disease-free equilibrium point (DFE) of COVID-19 model is (—,0,0,0,0,0,0,0,0).
“w

4.4 Basic Reproductive Ratio

An important measure of transmissibility of the disease is the epidemiological concept of
basic reproductive ratio. It provides an invasion criterion for the initial spread of the virus in a
susceptible population.

Definition 4.1: (See [4]) The basic reproduction number, denoted by R( is defined as the
average number of secondary infections that occurs when one infective is introduced into a
completely susceptible population.

4.4.1 Basic Reproduction Number at DFE

Using the next generation matrix approach outlined in [36,37] to our model (1), the basic
reproduction number can be computed by considering the below generation matrices F and V,
that is, the Jacobian matrices associated to the rate of appearance of new infections and the net
rate out of the corresponding compartments.

aS B 0 0 aS p 00
0 O 0 0 0 0
Matrix for the gain term, F = 0 0 ZIS s | which implies F = 0 ZISO 5
0 0 0 0 0 0 0 0
at disease free equilibrium point.
Bi+B2t+y3+u) 0 0 0
0 0
Now, matrix for losses term, V' = i+
0 0 G+Y1+y2+pn) 0
0 0 0 (A +r2+nw0)
which at disease free equilibrium point, becomes
Bi+Br+r3+u) 0 0 0
Ve 0 n+w 0 0
0 0 G+Yr1+yYr+upn) 0
0 0 0 M +Ar2+w)

Now we have to evaluate next generation matrix G,



CMES, 2020, vol.125, no.3 1041
Such that G=FV !
1
0 0
S 0 . Br+B2+y3+u)
aSo 1 1
P 0 0 0
o o »n 0 Y1+
0 0 @Sy § 0 1
0 0 0 0 G+ +v2+nw
1
0 0 0 _
A +2r2+ )
S|
720 0 0 0
Br+P2+y3+w)
|0 0 0 0 ©)
0 @So
+y1+y2+w
0 0 0 0
Table 1: Description and estimation of the parameters
Symbols Descriptions Values Units
A Recruitment rate of the susceptible individuals 0.0185 day~!
o Exposed rate of the individuals 0.152 day~!
B1 Effective rate of exposed becoming symptomatic 0.138 Dimensionless
individuals
B Effective rate of exposed becoming asymptomatic 0.013 Dimensionless
individuals
Y1 Probability of transmission of infection from 0.025 day!
symptomatic individuals
%) Probability of transmission of infection from 0.015 day~!
asymptomatic individuals
10 Probability of transmission of infection from 1.55 day~!
susceptible individuals
V3 Quarantined rate from exposed individuals 0.25 Dimensionless
V4 Effective rate of quarantined individual becoming 0.02 day~!
symptomatic individuals
0 Effective rate of quarantined individual becoming 0.025 day~!
susceptible individuals
) Hospitalized rate of the infected individuals 0.4027 day~!
A Death rate of the hospitalized individuals 0.0437 day~!
A2 Rate of recovery from hospitalized individuals 0.8951 day~!
(3} Effective rate of recovery using self-immunity system 0.5887 day~!
Y Death rate of the infected individuals 0.0418 day~!
m Natural death rate 0.0078 day™!
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aA
wPBr+Br+ys+u)

Hence, the largest eigen value of the matrix G is Thus, the basic

aA
wPBr+B+rs+un)

For the parameters used in our simulations (see Tab. 1), we compute this basic reproduction
number to obtain Ry = 0.8724.

reproduction number of the model (1) is Ry=

4.5 Local Stability at Disease Free Equilibrium Point
Firstly, we investigate the local stability at disease free equilibrium point W. Before further
proceeding, we need the following Theorem 3.

Theorem 3: The disease-free equilibrium of model (1) is locally asymptotically stable if Ry < 1
and unstable if Ry > 1.

Proof: To prove the Theorem 3, the following variation matrix [38] is computed corresponding
to equilibrium point Wj. From the model (1), the Jacobean matrix of the model is

ayp —oS 0 pS 0 oS 0 0 0
alkl —(B1+pr+y3+pn) 0 0 0 0 0 0 0
0 B —(n+w) va 0 0 0 0 0
0 0 —(pS+ys+u) 0 0 0 0 0

J=1]0 B 0 0 —(+un) O 0 0 0
0 0 Y1 0 12) aee 0 0 0
0 0 0 0 0 8 —(A1+2r24+p) 0 0
0 0 0 0 0 U1 o —u 0
0 0 0 0 0 23| 0 0

(7)
where, a1) = — («E+ ¢l +p)+pQ and age =S —8 — Y1 — Y2 — i.
At disease free equilibrium, we get

J (W)
—u —aSy 0 0So 0 ¢So 0 0 0
0 —Bit+h+y+w) 0 0 0 0 0 0 0
0 B —VI—V3—HK V4 0 0 0 0 0
0 0 i —(pSo+yat+um) 0 0 0 0 0

=10 0 0 0 —(yr+wn) 0 0 0 07,

0 0 2 0 %) bes 0 0 0
0 0 0 0 0 8 —(42r+w) 00
0 0 0 0 0 ¥ A —n 0
0 0 0 0 0 1) Al 0 0
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where bgg = ¢Sy — 8 — Y1 — ¥» — . In order to determine the stability of disease-free equilibrium
point, we utilize |J (W) —AI| =0, where A be the eigen value and I be the identity matrix.

|/ (Wo)— 21|

—p—» —aSy 0 pSy 0 @Sy 0 0 0

0 by—2 0 0 0 0 0 0 0

0 B byz—A 0 0 0 0 0 0

0 0 " bas—h 0 0 0 0
—10 0 0 0 —(r+m)—r 0 0 0 0| =0,

0 0 " 0 ¥ beg—Ar 0 0 0

0 0 0 0 0 8 — (i 4A+w) = 0 0

0 0 0 0 0 v A =2 0

0 0 0 0 0 v Al 0 0

where, by =—(B1+ B2+ y3+w), b3z=—y1 —y3 —p and bag = — (pSo + ya + w).
By factoring out from the above matrix, we have

M=—u<0, M=-y1—u<0, A3=—(QSo+pys+pn) <0, AM=-y—u,
As=—(pSo—86—Y1—v2—w), re=—@A1+rr+un) <0, A7=-u<0.
The remaining two eigen values can be obtained from this characteristic equation,

(Bi+Br+vs+u)—A)(pSo+y3+un)—A)=0.

After simplifying, the eigen values will be

aA
A=— +B+ys+u)+(PSo+y3+ 1— )
((Br+ P2+ y3+ 1)+ (pSo+vs M))( /L(ﬁ1+/32+y3+ﬂ))

SA=—((Br+B2+y3+ )+ (pSo+ys+w) (1 —Ro).

The eigenvalues of the equation are negative when 1 — Ry > 0 i.e., Ry < 1. Since all the eigen
values are negative, the diseases free equilibrium point is locally stable when Ry < 1.

This holds the Theorem 3.

4.6 Global Stability of the Disease-Free Equilibrium Point
In this section, we use the Lyapunov direct method [39,40] to show the conditions for the
global asymptotic stability of the disease-free equilibrium point in int (Ry).

Theorem 4: The disease-free equilibrium point of the system (1) is globally asymptotically
: s+
stable if 0 <

< Ry < 1 in the interior of the feasible region, otherwise it is unstable.
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Proof: Theorem 4 can be proved based on the Lyapunov stability theorem [35,39]. For this
purpose, we consider the following nonlinear Lyapunov function,

— — — _ E I — Y I— — — R
V:S—S—Slni+E—E—E1n:+p—_s(1—1—11n:)+£R<R—R—Rzlnz).
S E  oFE 1) R

equilibrium point.
The derivative of V' along the solution curves of (1) is given by the expression:

. . SS . EE I—(. T. I—(. _RR
vos- 22 EEL P (L) L LR (o om BB
S E " 4E 1 P R

S
=A+pSQ—(er+<pI)S—MS—E[A+pSQ—(aE+goI)S—MS]+aSE—(/31+,32+)/3)E—ME

E pS*I* 1
_E[O‘SE—(,BI +B2+y3) E—pE]l+ T (V1M +y2A+@ST— 8+ +W2)1—M1]—7

I R*
(MM A+@eST— S+ Y1 +yY) I —ul]+ %R(sz-{—l/fll—/LR—R*?[)»zH-f—l//ll—/LR])

S S S E E
:A(l—g)—uS<l—§> —(czE—i-(pI)S(l—g) +aSE<1—E)—(,31+,32+y3)E—uE<1—E)

oS Ul R ol 1 @S 1
—ul==—pR=—(1-= SI=(1-=]-@ I~=[1-=
wlh=—n » ( R)+<p aE( 1) S+v1+v2) aE( 1)

+<AZH+1//11—MR)%+¢<Q,M,A,H>

At the disease-free equilibrium point, putting A = xS and simplifying the above equation,
we get

V:M§<1—§> —Ms<1—§) —(aE+<p1)S<1—§> +aSE—(B1+B2+v3) E—nE

pS ol ( S+ alA ) @S Yl
P2 R R (11— _ =1 4+ $(Q, M, A, H)
o i @ mwBr+p+ys+wn)) ok pn

=,LLS<1—§>—/LS<1—§)—((XE+(,DI)S<1—§>+(XSE—(,31+,32+)/3)E—[LE

S b Syl
—,uI—MR—R—<1— J”“-RO)I@ id
e ® oE

——+¢ (O, M,A,H).
"
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Since all the parameter values and state variables are nonnegative, it follows that ¥ <0 for

) _ — _ — _ _

0< 2Vl _ Ry<1 with P=0if and only if S=5, E=F, 0=0,1=T, R=R=0 holds.
Thus, we can say that the disease-free equilibrium point is globally asymptotically stable when
S+

0< <Ry<1.

@
This holds the Theorem 4.

4.7 Endemic Equilibrium Point (EEP)
Endemic equilibrium point (EEP) of the model (1) can be obtained by setting
dsS dE dQ dM dA dIl dH dR
—=0, —=0, —=0, —=0, —=0, —=0, —=0 d —=0 8
dt dt dt dt dt dt dt W ®
The differential equation for the death compartment (D (¢)) is not present here. This is due to
the fact that the state variable D () only appears in the corresponding differential equation and so
it has no significance in the overall system. Also, the number of death individuals at each instant
¢t can be obtained from N(O)=SO+E@O+ QO +M @) +AMD+1()+H )+ R+ D).
Let W*(S*, E*, Q*, M*, A*, I'*, H*, R*) be the endemic equilibrium point and by solving the
system (8), we get

S* * E* *
% (S*,E*, Q*,M*,A*,I*,H*,R*,D*) _ (:BI +,32 +¥3 +M’ (:O +V4+M) Q /31 +V4Q ’

a V3 oyt
y3E* BE* YiM* +ypA*
pS*+yat+p’ vt S+ v+ u— @St
8I* M H* + vy I*
M+ iz )
where, §* = PLt P2t vstu E*:(,BIM—OlA—f—ﬁz,U«—f—)GM—I—MZ)Al’ o Brtm Asdy
o ady(Pr+Br+yi+w) pAs (ya+ 1)
«_ _ yadsdy . _ B2ApA) I Y1vad3
p(yatm)As’ a(Br+ B2+ y3+ ) Aads’ (ya+ ) As’
o YOy Ay e A Ay o that AOZ(WA—ﬂlu—ﬂzu—yw—Mz),
(ya+mn) A2+ wp) As w(ya+p) As

A= (ay4 +ap+pBip+y3p +M>> (wﬁ — W +ap P +apvn + yinte — yaute — y3u2<p> :

Ar= (OlZM4+OlM4P —wrop+atsp’ +atpu’ +ayr —apt p—apii o — el o +apin’o —ays),
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A= <M2+V4M+AP), Az = 8o+ va9 + 119 + 1p + p¥r2) ,
As= (szp +ulo+8mp + yipe + V4WP) :
4.8 Basic Reproduction Number at EEP

By applying the similar approach as given in Sub-section 4.4.1, we have basic reproduction
number at the EEP.

aS* B 0 0
. . 0 0 » 0
Here, we get matrix for the gain term, Jp = ,
0 0 @S* &
0 0 0 0
Bi+B2+ys+wn) 0 0 0
0 + 0 0
and matrix for losses term, Jy = (i+a)
0 0 G+yY1+yvo+pn) 0
0 0 0 (A +A2+p)
Also, the next generation matrix, G=JpJ ;1
S*
al 0 0
Br+B2+y3+1)
0 0 0 0
SG=
0 vS”
@+vY1+v2+w
0 0 0 0
pS*

Thus the basic reproduc-

Hence, the largest eigen value of the matrix G is .
E+y1+y2+w

pS* . BitBtyvitu
where, $* = .
G+v1+v2+nw o
For the parameters used in our simulations (Tab. 1), it is easy to compute this basic repro-
duction number as Rj=4.0190. This means that the pandemic outbreak has not been controlled
in the world.

tion number at EEP is Rj=

4.9 Local Stability at the Endemic Equilibrium Point

Theorem 5: The endemic equilibrium point of the model (1) is locally asymptotically stable if
Ry > 1 otherwise, it is unstable.

Proof: To determine the local stability at endemic equilibrium point, the characteristic
equation of the model (1) is
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S NS (W) =M
biji—x» —aS* 0 pS* 0 oS* 0 0 0
akE* —by—x 0 0 0 0 0 0 0
0 B -+ =1 va 0 0 0 0 0
0 V3 0 —bgy—X 0 0 0 0 0
=10 B 0 0 —(»+u)—2 0 0 0 0 =0,
0 0 Y1 0 %) bgs—2 0 0 0
0 0 0 0 0 8 —by7—2 0 0
0 0 0 0 0 1 A2 —u—i 0
0 0 0 0 0 /) Al 0 0—2

here b1y = —(@E* +@I* + ) + pQ0", by =p1+ P2+ y3+ 1, baa=pS* +ya+ 1, bes =¢S* — & —
V1 —v2—p and b7 = A1 + A2+ .

Therefore, the eigenvalues are

_ aaS*E* —by1bxn

M=—(E +oI"+ 1) +p0%, i A3=—y1—pn<0,

b1
' apy3S*E* — aobqgS*E* 4+ b11b2bga e
4= @S E —brbn . As=-n—u,
1
Ag = 7 (—a(puj/l V3yaSTE* +h S*E* — h3 S*E* — hyS*E* +h5) , AM=—RA1+Ar2+wn),
1

Ay =—p and A9 <0, where, i = (y1 +p) (o — aabgsS*E* + b11bbas) (v2 + 1),
hy = apysbes (Wz v+t + Wl) . h=ax (Wz +ut+ Wl) ,
ha =ap ((Ly1 +v1v2) + Y1Y2V3V4) baa,  hs = b11b22basbes (MVZ +v1v2+uyr + MZ) .

In this case, the basic reproduction number is more than one, i.e., Rg > | according to the
given data. Therefore, the endemic equilibrium point of the model (1) is locally asymptotically
stable, which proves the Theorem 5.

4.10 Global Stability of the Endemic Equilibrium Point
In this section, we use the Lyapunov direct method to establish sufficient conditions for the
global asymptotic stability of the endemic equilibrium point W* in int (R;r) when Ry > 1.

Theorem 6: The endemic equilibrium point W* of the system (1) is globally asymptotically
stable if Ry > 1 in the interior of the feasible region, otherwise it is unstable.

Proof: Theorem 6 can be proved based on the Lyapunov stability theorem [21,39]. For that
purpose, we consider the following nonlinear Lyapunov function,

S E S*r* 1 I*R* R
L=S—S*—S*ln—+E—E*—E*ln——|—(p I-I"—TI"In— +W1 R—R*—R*In—
S* E*  aFE* I* m R*

)
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Then L is C! on the interior of R;r, W* is the endemic equilibrium point.

The derivative of (9) along the solution curves of (1) is given by the expression:

.. S*S . E*E oS*I* (. I*I I*R* (. R*R
p=5-224p 22,9 (1——)#”1 (R—R* )

S E aE* 1 " R

%

S
=A+,oSQ—(er+(pI)S—,uS—F[A+pSQ—(aE+(pI)S—,uS]+aSE—(/31+/32—|-y3)E

E* @ * Tk 7
—pE——[aSE= (Bt Prty3) E—pEl+ — M+ A+ oS-G +yr1 +y) I —pll—5
I*R* R*
[y1M+V2A+soSI—(5+1/f1+1/fz)1—/u]+wlu (/\zH+wll—MR—R*?[szJr%I—MR])

:A(l _?) —,uS(l _?) —(ozE—i—th)S(l _?) +aSE(1 _F) — (B +,32+y3)E<1 _F)

pE(1=20) - -2 )—ur 1= 2 ) os1 -
K ( E) a aE*( 1) B0 R )T I

WII*R*

S*I

k Tk &
—(@+Y1+v2)l (1——>+()»2H+1ﬁ11—MR)
aE* 1

(1—%) +¢(O,M,A,H) (10)

At the endemic equilibrium point W*, we have

A= («E* +I*) S* + uS* — pS* O, (1)
«SE* — uE*
,31+,32+)/3=T, (12)
M+ 2 A+ S T* — uI*
Sy +y, =12 I*‘p . (13)

Using the Egs. (11)—(13) in (10), we obtain

L= ((«E* +oI*) S* + uS* — pS* Q%) (1 — %) —,uS(l — %) — (aE+<pI)S<1 — %)

E* SE* — uE* E* E* S*I* I
yaSE(1-2) 2222 — R p( 2 ) uE(1- ) —ua? 1——
E E* E E aE* I

I*R* R* S*I* I* M A S*I* — ul* @S*I* I*
_MRllfl (1__>+(p5190 (1__>_)/1 +yAd+e w e (1__>
w

R aE* 1 I* aE* 1

WIIJR* (1 _ R—*> +¢ (0, M, A, H)

+ (A H 4+ Y11 — uR) =
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5* S 5% E*
—;LS*(2————)+(aE+¢I)S*2+,oS*Q (1——) (1——)+<pSI

QS*I* ( , S _Er SR*I)

S S* S E aE* \ S E*I S*RI*

+¢ (0, M, A,H)

Rwll*R* 4_£_J/125*21*2_1*2R*3 _M(pS*I*IZ . 1*2 +W1§05* *2 *
I I R? aE* ia apE*

S* S S*I* 287 I*R* S* EI* RE* SR*I
—MS*(z————)+(aE+<p1)S* pos2 N uRY (4 )

A aE* I* % S E*I R+¥E S*RI*
S* E* S*r* A
—pS*Q*<1——)(1——)“‘p ( 4 —1)+¢>(Q,M,A,H)
S E) aFE" \pu@+y1+v2+w
S* S OS*I* 128 1¥ Y I'R* S* EI* RE* SR*I
=uS*(2-=—= E+¢D)S* +¢SI 1R 4o
—H ( S S*)+(a eSS e T u S E'l RE S*RI*
S* E* pL(pS*I*
—pSTO" | 1—— || 1-— Ro—1 M,A,H).
b5 (1) (15 ) 5L 1y oot
Since the arithmetic mean is greater than or equal to the geometric mean, it follows that
Ss* S
2————<0,
A

S* EI* RE* SR*I <0
S E*I R*E S*RI* — 7

Further, since all the parameters of the model are nonnegative, it follows that L<0for Rop>1
with L=0 if and only if S=S* E=E* Q=0Q* M =M* A=A*1=1I*, H=H*, R=R* and
D = D* holds.

The largest compact invariant set in {(S, E.QO M, A,1I,H,R,D) € R;r: dL/dt = 0} is the single-
ton {W*}, where W* is the endemic equilibrium point. By LaSalle’s invariance principle [41,42],
it implies that W* is globally asymptotically stable in the interior of R;r.

Hence, the Theorem 6 is proved.

4.11 Sensitivity Analysis

In determining the best strategy to reduce the disease transmission and human mortality
due to pandemic outbreak of COVID-19, it is necessary to know the relative importance of the
different factors responsible for its transmission and prevalence. Initial disease transmission is
directly related to Rjj, and disease prevalence is directly related to the endemic equilibrium point.
Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model
or system can be divided and allocated to different sources of uncertainty in its inputs. It tells
us how important each parameter is to disease transmission. Such information is crucial not only
for experimental design, but also to data assimilation and reduction of complex nonlinear mod-
els [43]. Sensitivity analysis is commonly used to determine the robustness of model predictions
to parameter values, since there are usually errors in data collection and presumed parameter
values. It is used to discover parameters that have a high impact on Rj and should be targeted
by intervention strategies [44].
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More accurately, sensitivity indices allow us to measure the relative change in a variable
when a parameter changes. The normalized forward sensitivity index of a variable with respect
to a parameter is the ratio of the relative change in the variable to the relative change in the
parameter. When the variable is a differentiable function of the parameter, the sensitivity index
may be alternatively defined using partial derivatives.

Definition 4.2: ([14]) The normalized forward sensitivity index of R;, which is differentiable
with respect to a given parameter P, is defined by
Ry aRg P
P TP R
As we have an explicit formula for Rjj, we derive an analytic expression for the sensitivity R

to each of the different parameters described in Tab. 1. For example, the sensitivity index of R;
with respect to ¢ is

Y
Yo = 8—0% =0.9973
¥ Ky

These values have been calculated analytically from the real data collected from [30] (see
also [13,15] for the sources of similar data) such that the mathematical model describes the
present transmission scenario well. The description of all the parameters with the estimated values
used in the simulations of model (1) is presented in Tab. 1.

The values of the sensitivity indices for the different parameters of Tab. 1 are presented
in Tab. 2.

Table 2: Sensitivity indices of R evaluated for the parameter values given in Tab. |

Parameters Values Sensitivity index
o 0.15 —0.7711

B1 0.14 0.0515

B2 0.01 0.0037

) 1.55 0.9973

V3 0.25 0.0920

Y 0.5887 —0.2214

) 0.0428 —0.0016

n 0.0078 —0.0064

Note that, the sensitivity index may depend on several parameters of the system, but also

. R} . .
can be constant, independent of any parameter. For example, y,° = +1 means that increasing
(decreasing) P by a given percentage increases (decreases) always R;j by that same percentage.
The estimation of a sensitive parameter should be carefully done, since a small perturbation in
such parameter leads to relevant quantitative changes. On the other hand, the estimation of a
parameter with a rather small value for the sensitivity index does not require as much attention to
estimate, because a small perturbation in that parameter leads to small changes. From Tab. 2, we
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conclude that the most sensitive parameters to the basic reproduction number R of the COVID-
19 model (1) are ¢, and 1. In concrete, an increase of the value of ¢ will increase the basic
reproduction number by 99.73%. In contrast, an increase of the value of « will decrease R;
by 77.11%.

5 Numerical Simulations

We perform numerical simulations to compare the results of our model with the real data
published by Worldometer [30] till July 10, 2020. We show that our COVID-19 model describes
well the real data of daily confirmed cases during the 2 months outbreak. The computational
study for graphical representation of the model (1) was performed by ode45 solver using MAT-
LAB programming language. We use a set of suitable parameter values as presented in Tab. 1
for the simulations. We have considered the initial condition Sp = 100 x 10°, Ey = 70 x 107,
Qo =60 x 10°, My =40 x 105, 49 =30 x 10°, Iy = 10 x 10°, Hy =7 x 10°, Rg =8 x 10° and
Do =2 x 10*. Firstly, we solve the model (1) considering the initial values and all other parameters
that are shown in Tab. 1. Also, we have performed the numerical simulations for time interval
t €[0,60] for 60 days.

Our object is to study the effects of infection rate (p) from susceptible individuals, probability
of transmission of infection from symptomatic individuals (y;), probability of transmission of
infection from asymptomatic individuals (y»), quarantined rate (y3) and effective rate of recovery
using self-immunity system (¢1) in case of disease transmission. We have selected these param-
eters because they have a large impact in determining the best strategy to reduce the disease
transmission and human mortality due to pandemic outbreak of COVID-19. So, if it is possible
to minimize the infection rate from susceptible individuals, rate of transmission of infection from
symptomatic individuals, rate of transmission of infection from asymptomatic individuals and
maximize the quarantined rate and effective rate of recovery using self-immunity system then the
spreading of novel coronavirus will be controlled.

Considering these parameters into account, we have run the program for the state variables
to show all state trajectories simultaneously. The result of simulation of the combined class is
presented in Fig. 4.

From Fig. 4, we observe that the susceptible and quarantined individuals are decreased
monotonically. At the same time, the exposed individuals initially increase but after some days
it gradually decreases. From the very beginning of this pandemic, the symptomatic curve is
increased rapidly than asymptomatic individual but after some days asymptomatic curve is also
increased surprisingly. However, a massive number of individuals having no symptoms of COVID-
19 transmit the virus to others. Due to increase these symptomatic and asymptomatic individuals
the infected individual increases extensively. As a result, hospitalized and death individuals are
also increased than that of recovered individuals. From the dynamical behavior of the graph,
it is anticipated that the infected individuals will continue to grow up with the passes of time
until the initiation of vaccine or proper medicine. Though, it can be controlled by maintaining
physical distances, increasing quarantined rate and developing self-immunity system which reflect
our study.

Again, we run the program keeping all other values of the parameters same as before for
the susceptible, infected and death individuals. The result of simulation in this case is presented
in Fig. 5.
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Figure 4: Simulations for the coronavirus infection of the population with time (60 days) when
the basic reproduction number is greater than 1
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Figure 5: Dynamics of susceptible, Infected and Death individuals where the infected individuals
increase significantly as a result the rate of death from coronavirus is increasing day by day

Fig. 5 shows the state trajectories of three compartments such as susceptible, infected and
death individuals in the absence of any control measures. We have observed that the infected
individuals increase sharply whereas the death individuals increase steadily from the initial state.
Thus, these two individuals lead the susceptible individuals to be decreased dramatically.
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Now, we run the program for the quarantined, infected and recovered individuals to show the
effect of quarantine rate keeping the parameters value same as before. The result of simulation
in this case is shown in Fig. 6.

250

'% 150 Quarantined
= Infected
a —
£ 100 A ——— Recovared
50 j \
0 . . . . :
i} 10 20 30 40 50 60

Time (Days)

Figure 6: Dynamics of quarantined, infected and recovered individuals where recovered individu-
als are increased due to increase of quarantined individuals

In Fig. 6, we see the variation of three state trajectories of quarantined, infected and recov-
ered individuals with time. It has been observed that the infected individuals decrease significantly
as the quarantined rate increases. As a result, the decreasing rate of infected individuals bolsters
the recovered individuals to be increased extensively.

We also observe from Fig. 7 that the infected populations are significantly decreased due to
maintain the quarantine system strictly. The figure shows that if the quarantined rate is increased
from y3 =0.25 to y3 =0.50, the probability to become COVID-19 positive is very little. In this
case, the recovered individuals are also enhanced for the high rate of quarantine rate.

350
300 7
| /
§ 0} :
g e Quarantined
8 150} = Infecled
o e Recovered
100 f——— 1
50 \
o
0 10 20 30 40 50 60

Time (Days)

Figure 7: Dynamics of quarantined, infected and recovered individuals where the infected pop-
ulation is significantly decreased due to increase of quarantined rate from y3 = 0.25 to
13 =0.50

Again, we solve the model numerically for the class asymptomatic and infected individuals
to show how the change in the infected individuals due to impact of asymptomatic individuals.
The result in this case is presented in Fig. 8.
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Figure 8: Dynamics of asymptomatic and infected individuals where the infected individuals are
extensively increased due to increase of asymptomatic individuals

Fig. 8 represents the variation of asymptomatic and infected individuals with time while
symptomatic and other effects are not considered. We observe that the infected population
is extremely increased due to increase of asymptomatic individuals. Because an asymptomatic
individual does not exhibit the symptoms of COVID-19 outbreak but can transmit the virus to
others susceptible individuals and due to scarcity of symptoms the family members and others
live together with him and they become COVID-positive in absence of mind and still transmit
the virus to other members. Therefore, the population presenting no symptoms of the disease can
transmit the coronavirus rapidly.

In Fig. 9, we notice that infected populations of COVID-19 are increased with the increase
rate of symptomatic individuals. The important thing is that, the infected individuals are increased
due to symptomatic individuals but not as like in asymptomatic case.
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Figure 9: Dynamics of symptomatic and infected individuals where the infected population is
increased but not tremendously due to increase of symptomatic population

Next, we solve the model for the class of infected individuals to show how the change in the
infected individuals for different values of self-immunity rate. The result in this case is presented
in Fig. 10.

From Fig. 10, it has been observed that the infected populations are decreased tremendously
due to increase of self-immunity system (i.e., by increasing the self-immunity rate from ¥ =
0.27 to =0.37). Hence, to reduce the infected individuals from this outbreak, self-immunity sys-
tem must be developed for all the populations of a community. For that reason, it is mandatory
for each of the individuals to develop a strong immune system through indoor and outdoor
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activities, by trying muscle strength training, by eating a diet high in fruits, vegetables, and whole
grains and to restrict saturated fats and sugars to 10% of total calories while minimizing the
consumption of red and processed meats.
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Figure 10: Variation of infected individuals for different values of self-immunity rate where the
infected populations are significantly decreased due to increase of self-immunity system

In the epidemiology, disease transmission and disease prevalence are directly related to value
of basic reproduction number and endemic equilibrium point. It provides an incursion formula for
the initial spread of the disease in a susceptible population and it’s defined as the average number
of secondary infectious population that occurs when one infective people is introduced it into
others susceptible population. It is cleared to define that the outbreak of corona virus infection
will be eliminated if Ry < 1 and remained in the community if Ry > 1. Now, we run the program
to know which parameters are responsible for the corona virus transmission by considering the
initial values and parameters value that are shown in Tab. 1. The result obtained in this case is
given in Figs. 11-14,

Basic Reproduction Number (RD)

0 02 04 06 08 1 1.2 14 16 18 2
Value of ¢

Figure 11: Numerical simulation of basic reproduction number with respect to the infectious
rate ¢, where the value of Ry is increased linearly as the increase of ¢, i.e., the disease persist in
the community with the increase of infectious rate
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Figure 13: The value of Ry is decreased significantly with respect to the increase of isolation rate,
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Figure 14: The overall stability of pandemic corona virus infection using the parameter values in
Tab. 1, that may be wiped out when Ry < 1 and persist in the community when Ry > 1

Figs. 11-14 show the dynamics of the basic reproduction number with respect to the impor-
tant parameters that are responsible to continue this pandemic situation. It is observed from
Fig. 11 that the value of the basic reproduction number is increased linearly as the increase of
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the value of infectious rate. In this case, the disease persists in the community. It is also clear
from Figs. 12 and 13 that the value of basic reproduction number is extensively decreased with
respect to the self-immunity system as well as the increase of isolation rate. Fig. 14 illustrates the
overall scenario of the COVID-19 situation with respect to the basic reproduction number. The
pandemic corona virus infection may be wiped out when Ry < 1 and persist in the community
when Ry > 1. Thus, to eradicate the outbreak of coronavirus, it is important to develop the
individuals’ self-immunity system and maintain the physical distances strictly.

6 Conclusions

COVID-19 is a highly infectious pandemic disease which is impendence for the whole world.
There is no specific treatment for this novel coronavirus disease which leads it more deadlier.
This paper deals with a nine mutually exclusive compartmental model on transmission dynamics
of COVID-19. The compartmental model has been investigated with mathematical analysis and
computer simulations in order to understand the dynamics of this disease transmission. In our
study, we have observed that the spread of novel coronavirus largely depends on the rate of close
contact between susceptible and infected individuals. From Figs. 6 and 7, it has been observed
that the death rate from coronavirus disease increases as the infection rate increases whereas
infection rate extensively decreases with the increase of quarantined individuals. The quarantined
individuals also lead to increase of recovered individuals. In Figs. § and 9, we have noticed
that the infection rate of COVID-19 increases more surprisingly as the rate of asymptomatic
individuals increases than that of the symptomatic individuals. Figs. 7 and 10 show that the
infection rate significantly reduces due to increase of quarantined rate as well as the self-immunity
rate. From the sensitivity analysis, we have obtained that the most sensitive parameters to the
basic reproductive ratio of the COVID-19 model (1) are infection rate (¢), exposed rate («)
and the self-immunity rate (v/1). Our findings suggest that to combat or eradicate this pandemic
outbreak, the physical distances must be maintained rigorously. It is also highly recommended for
eating immune-boosting foods to increase immunity and taking immune-boosting drugs to defend
the virus.

Authors’ Contributions: This research is a group work carried out in collaboration among all
authors. Authors MHAB and MAI designed the study, performed the conceptualization and
methodological analysis and model formulation of the first draft of the manuscript. Authors SA
and SM analyzed the model analytically and wrote some literature of the study. Author AKP
wrote the programming codes and performed some part of the computational analysis. Author
SAS contributed to literature searches and calculated the real data to estimate the parameters,
MSK and MRK verified the parameters and checked the literature. All authors have read and
agreed to publish the final version of the manuscript.

Data Availability: The data used to support the findings of this study are included within
the article.

Funding Statement: The authors greatly acknowledge the partial financial support provided by
the Ministry of Science and Technology, Government of the People’s Republic of Bangladesh
under special allocation in 2019-2020 with the research Grant Ref. No. 39.00.0000.009.06.024.19-
12/410(EAS). Supports with Ref.: 17-392RG/MATHS/AS_I-FR3240297753 funded by TWAS,



1058 CMES, 2020, vol.125, no.3

Italy and Ref. No. 6(74) UGC/ST/Physical-17/2017/3169 funded by the UGC, Bangladesh are also
acknowledged.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References

1. Harbeck, M., Seifert, L., Hénsch, S., Wagner, D. M., Birdsell, D. et al. (2013). Yersinia Pestis DNA
from skeletal remains from the 6th century AD reveals insights into Justinian plague. PLoS Pathogens,
9(5), €1003349. DOI 10.1371/journal.ppat.1003349.

2. COVID-19: A History of Coronavirus (2020). https://www.labmanager.com/lab-health-and-safety/
covid-19-a-history-of-coronavirus.

3. Prompetchara, E., Ketloy, C., Palaga, T. (2020). Immune responses in COVID-19 and potential
vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and
Immunology, 38(1), 1-9. DOI 10.12932/AP-200220-0772.

4. Brauer, F., Castillo-Chavez, C., Feng, Z. (2019). Mathematical models in epidemiology. New York:
Springer Verlag.

5. Biswas, M. H. A., Samad, S. A. (2020). Dynamical transmission of HIV/AIDS and TB co-infection
model. Proceedings of the International Conference on Industrial Engineering and Operations Management,
pp. 2261-2273, Dubai, UAE, 2020.

6. Biswas, M. H. A. (2012). Model and control strategy of the deadly Nipah Virus (NiV) infections in
Bangladesh. Research & Reviews in BioSciences, 6(12), 370-377.

7. Khatun, M. S., Biswas, M. H. A. (2020). Mathematical analysis and optimal control applied to
the treatment of leukemia. Journal of Applied Mathematics and Computing, 64(1-2), 331-353. DOI
10.1007/s12190-020-01357-0.

8. Khatun, M. S., Biswas, M. H. A. (2020). Optimal control strategies for preventing hepatitis B infection
and reducing chronic liver cirrhosis incidence. Infectious Disease Modelling, 5(2020), 91-110. DOI
10.1016/5.idm.2019.12.006.

9. Khatun, M. S., Biswas, M. H. A. (2019). Modeling the effect of adoptive T cell therapy for the
treatment of leukemia. Computational and Mathematical Methods, 2(2), 1545. DOI 10.1002/cmm4.1069.

10. Burges, D. N., Borrie, M. S. (1981). Modeling with differential equations. New York, USA: Ellis
Horwood Limited.

11. Wu, I, Leung, K., Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and
international spread of the 2019-Ncov outbreak originating in Wuhan, China: A modelling study.
Lancet, 395(10225), 689-697.

12. Zhang, J., Weili, W., Zhao, X., Zhang, W. (2020). Recommended psychological crisis intervention
response to the 2019 novel coronavirus pneumonia outbreak in China: A model of West China
hospital. Precision Clinical Medicine, 3(1), 3-8. DOI 10.1093/pcmedi/pbaa006.

13. Zhang, S., Diao, M., Yu, W,, Pei, L., Lin, Z. et al. (2020). Estimation of the reproductive num-
ber of novel coronavirus (COVID-19) and the probable outbreak size on the diamond princess
cruise ship: A data-driven analysis. International Journal of Infectious Diseases, 93, 201-214. DOI
10.1016/;.1jid.2020.02.033.

14. Ndairou, F., Area, 1., Nieto, J. J, Torres, D. F. M. (2020). Mathematical modeling of COVID-19
transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals, 135, 109846. DOI
10.1016/j.chaos.2020.109846.

15. Xu, X., Chen, P, Wang, J., Feng, J., Zhou, H. et al. (2020). Evolution of the novel coronavirus
from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission.
Science China Life Sciences, 63(3), 457-460. DOI 10.1007/s11427-020-1637-5.



http://dx.doi.org/10.1371/journal.ppat.1003349
https://www.labmanager.com/lab-health-and-safety/covid-19-a-history-of-coronavirus
https://www.labmanager.com/lab-health-and-safety/covid-19-a-history-of-coronavirus
http://dx.doi.org/10.12932/AP-200220-0772
http://dx.doi.org/10.1007/s12190-020-01357-0
http://dx.doi.org/10.1016/j.idm.2019.12.006
http://dx.doi.org/10.1002/cmm4.1069
http://dx.doi.org/10.1093/pcmedi/pbaa006
http://dx.doi.org/10.1016/j.ijid.2020.02.033
http://dx.doi.org/10.1016/j.chaos.2020.109846
http://dx.doi.org/10.1007/s11427-020-1637-5

CMES, 2020, vol.125, no.3 1059

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Aguilar, J. B., Faust, G. S, Westafer, M. L. M., Gutierrez, J. B. (2020). Investigating
the impact of asymptomatic carriers on COVID-19 transmission. MedRxiv Preprint. DOI
10.1101/2020.03.18.20037994.

Andrew, N. (2007). Contesting the cause and severity of the black death: A review essay. International
Institute for Applied Systems Analysis, 33(3), 616-627.

Biswas, M. H. A., Paiva, L. T., de Pinho, M. D. R. (2014). A SEIR model for control of
infectious diseases with constraints. Mathematical Biosciences and Engineering, 11(4), 761-784. DOI
10.3934/mbe.2014.11.761.

Biswas, M. H. A., Khatun, M. S., Paul, A. K., Khatun, M. R., Islam, M. A. et al. (2020). Modeling
the effective control strategy for the transmission dynamics of global pandemic COVID-19. Collection
‘COVID-19 SARS-CoV-2." DOI 10.1101/2020.04.22.20076158.

Biswas, M. H. A. (2012). AIDS epidemic worldwide and the millennium development strategies: A
light for lives. HIV & AIDS Review, 11(4), 87-94. DOI 10.1016/j.hivar.2012.08.004.

Buonomo, B., Vargas-De-Leon, C. (2012). Global stability for an HIV-1 infection model including an
eclipse stage of infected cells. Journal of Mathematical Analysis and Applications, 385(2), 709-720. DOI
10.1016/j.jmaa.2011.07.006.

Latest Research on Asymptomatic Carriers (2020). https://www.businessinsider.com/coronavirus-
carriers-transmit-without-symptoms.

Islam, M. A., Imran, M. B. U.,, Biswas, M. H. A. (2020). Modeling the effects of transmission dynam-
ics of malaria: A mathematical approach on healthcare. Proceedings of the International Conference on
Industrial Engineering and Operations Management, pp. 2191-2202. Dubai, UAE.

Islam, M. A., Biswas, M. H. A. (2019). Optimal planning and management of groundwater level
declination: A mathematical model. Proceedings of the 2nd International Conference on Industrial and
Mechanical Engineering and Operations Management, pp. 107-117. Dhaka, Bangladesh.

El Allaoui, A., Melliani, S., Chadli, L. S. (2020). A simple mathematical model for Coronavirus
(COVID-19). In collection ‘COVID-19 SARS-CoV-2; preprints from medRxiv and bioRxiv. DOI
10.1101/2020.04.23.20076919.

Nadeem, S. (2020). Coronavirus COVID-19: Available free literature provided by various companies.
Journals and Organizations Around the World, 5(1), 7-13.

Coronavirus Cases Rising Fast in Bangladesh (2020). https://en.prothomalo.com/bangladesh/corona
virus-cases-rising-fast-in-bangladesh.

Chen, N., Zhou, M., Dong, X., Zhang, L., Zhang, X. et al. (2020). Epidemiological and clinical
characteristics of 99 cases of 2019 Novel Coronavirus pneumonia in Wuhan, China: A descriptive
study. Lancet, 395(10223), 507-513. DOI 10.1016/S0140-6736(20)30211-7.
COVID-19-Spreads-Transmission (2020). https://www.livescience.com/how-covid-19-spreads-transmission.
COVID-19 Coronavirus Pandemic (2020). https://www.worldometers.info/coronavirus/.

COVID-19 Situation Update for the EU (2020). https://www.ecdc.curopa.cu/en/cases-2019-ncov-cueea.
UNDP Report, COVID-19 Pandemic in America (2020). https://www.undp.org/content/undp/en/
home/news-centre/news/2020/LAC_COVID19.

World Bank Report, COVID-19 in South Asia (2020). https://www.worldbank.org/en/region/
sar/overview.

WHO African Region, External Situation Report 01 (2020). https://apps.who.int/iris/handle/10665/
331330.

Number of COVID-19 Cases per 100,000 Population in Australia and Oceania (2020). https://www.
statista.com/map/australia-and-oceania.

Driessche, P. V. D., Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria
for compartmental models of disease transmission. Mathematical Biosciences, 180(1-2), 29-48. DOI
10.1016/S0025-5564(02)00108-6.

Heffernan, J. M., Smith, R. J., Wahl, L. M. (2005). Perspectives on the basic reproductive ratio. Journal
of the Royal Society Interface, 2(4), 281-293. DOI 10.1098/rsif.2005.0042.



http://dx.doi.org/10.1101/2020.03.18.20037994
http://dx.doi.org/10.3934/mbe.2014.11.761
http://dx.doi.org/10.1101/2020.04.22.20076158
http://dx.doi.org/10.1016/j.hivar.2012.08.004
http://dx.doi.org/10.1016/j.jmaa.2011.07.006
https://www.businessinsider.com/coronavirus-carriers-transmit-without-symptoms
https://www.businessinsider.com/coronavirus-carriers-transmit-without-symptoms
http://dx.doi.org/10.1101/2020.04.23.20076919
https://en.prothomalo.com/bangladesh/coronavirus-cases-rising-fast-in-bangladesh
https://en.prothomalo.com/bangladesh/coronavirus-cases-rising-fast-in-bangladesh
http://dx.doi.org/10.1016/S0140-6736(20)30211-7
https://www.livescience.com/how-covid-19-spreads-transmission
https://www.worldometers.info/coronavirus/
https://www.ecdc.europa.eu/en/cases-2019-ncov-eueea
https://www.undp.org/content/undp/en/home/news-centre/news/2020/LAC_COVID19
https://www.undp.org/content/undp/en/home/news-centre/news/2020/LAC_COVID19
https://www.worldbank.org/en/region/sar/overview
https://www.worldbank.org/en/region/sar/overview
https://apps.who.int/iris/handle/10665/331330
https://apps.who.int/iris/handle/10665/331330
https://www.statista.com/map/australia-and-oceania
https://www.statista.com/map/australia-and-oceania
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1098/rsif.2005.0042

1060 CMES, 2020, vol.125, no.3

38. Gantmacher, F. R. (1998). The theory of matrices, vol. 1. Providence, RI: AMS Chelsea Publishing.

39. Huo, H. F, Feng, L. X. (2012). Global stability of an epidemic model with incomplete treatment and
vaccination. Discrete Dynamics in Nature and Society, 2012 (530267), 1-14. DOI 10.1155/2012/530267.

40. Vargas-De-Leon, C. (2017). Global stability of infectious disease models with contact rate as a
function of prevalence index. Mathematical Biosciences and Engineering, 14(4), 1019-1033. DOI
10.3934/mbe.2017053.

41. Cheng, Y., Wang, J., Yang, X. (2012). On the global stability of a generalized cholera epidemiological
model. Journal of Biological Dynamics, 6(2), 1088-1104. DOI 10.1080/17513758.2012.728635.

42. Safi, M. A., Garba, S. M. (2012). Global stability analysis of SEIR model with holling type II
incidence function. Computational and Mathematical Methods in Medicine, 2012(826052), 1-8. DOI
10.1155/2012/826052.

43. Chitnis, N., Hyman, J. M., Cushing, J. M. (2008). Determining important parameters in the spread
of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology,
70(5), 1272-1296. DOI 10.1007/s11538-008-9299-0.

44, Rodrigues, H. S., Monteiro, M. T. T., Torres, D. F. M. (2013). Sensitivity analysis in a dengue
epidemiological model. Conference Papers in Mathematics, 2013. DOI 10.1155/2013/721406.


http://dx.doi.org/10.1155/2012/530267
http://dx.doi.org/10.3934/mbe.2017053
http://dx.doi.org/10.1080/17513758.2012.728635
http://dx.doi.org/10.1155/2012/826052
http://dx.doi.org/10.1007/s11538-008-9299-0
http://dx.doi.org/10.1155/2013/721406



