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Recently, owing to the capability of mobile and wearable devices to sense daily human activity, human activity recognition (HAR) datasets have become a
large-scale data resource. Due to the heterogeneity and nonlinearly separable nature of the data recorded by these sensors, the datasets generated require
special techniques to accurately predict human activity and mitigate the considerable heterogeneity. Consequently, classic clustering algorithms do not work
well with these data. Hence, kernelization, which converts the data into a new feature vector representation, is performed on nonlinearly separable data.
This study aims to present a robust method to perform HAR data clustering to mitigate heterogeneity in data with minimal resource consumption. Therefore,
we propose a parallel approximated clustering approach to handle the computational cost of big data by addressing noise, heterogeneity, and nonlinearity
in data using data reduction, filtering, and approximated clustering methods on parallel computing environments that have not been previously addressed.
Our key contribution is to treat HAR as big data implemented by approximation kernel K-means approaches and fill the gap between the HAR clustering
cost and parallel computing fields. We implemented our approach on Google cloud on a parallel spark cluster, which helped us to process large-scale HAR
data across multiple machines of clusters. The normalized mutual information is used as validation metric to assess the quality of the clustering algorithm.
Additionally, the precision, recall, f-score metrics values are obtained somehow to compare the results with a classification technique. The experimental
results of our clustering approach prove its effectiveness compared with a classification technique and can efficiently detect physical activity and mitigate
the heterogeneity of the datasets.
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1. INTRODUCTION

With the growth of data in various fields from gigabytes to
terabytes and even larger, new and promising data mining
techniques and approaches are required to extract relevant
information from these data. Because smart devices and
wearable devices are integrated with various accelerometers,
gyroscopes and GPS sensors, human activity data sets produced
by multiple data sources have become large-scale. The data
collected from the sensors are used to monitor a person’s sports
activities and health situations. Moreover, human activity
recognition (HAR) uses the data to automatically recognize the
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daily activities of a person, such as sitting, walking, stair up,
stair down, running, biking, and so on. Although the studies
on HAR started in the 1980s [1], HAR only gained significant
attention with the development of sensors, wearable devices,
and smartphones. However, the differences in smart device
models from numerous manufacturers results in a considerable
heterogeneity in the collected data. This heterogeneity is due
to several specific reasons, such as differences in sampling
frequency, operating system, and central processing unit (CPU)
load condition, thus it causes difficulty in processing the data.

For HAR purposes, time, frequency, and statistical domain
features are used for dimensionality reduction and to easily
manipulate data [2, 3]. Image-based methods in which the user
is monitored with a camera in real-time have also been used for
activity recognition [4, 5]. However, this method is not ideal due
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to portability and user privacy concerns. Simple sensors reduce
the disadvantages of using cameras for activity recognition.

The HAR problem in which daily activities are categorized
into groups, such as sitting, walking, stair up, stair down,
running, biking, etc., can be considered as a clustering problem.
Thus, clustering approaches, which have been successfully
applied in pattern recognition, machine learning, image segmen-
tation, text mining, computer graphics, and learning theory [6, 7]
can be utilized to recognize human activity.

Many types of research focus on detect human activity with
data mining and machine learning techniques. Classification
algorithms such as Support vector machine (SVM), Decision
tree, K nearest neighbor (KNN), Random forest and naïve Bayes
have been widely used in HAR field [8–18]

Additionally, various versions of deep learning and neural
network algorithms are also implemented in this field [19–21].
As can be seen, most of the research focuses on solving the HAR
problem as a classification task where ground truth data (target
class data) must exist in the classifier training data, which are
not always available. Thus, there is a limited number of studies
on HAR using clustering algorithms [2, 3, 22].

The clustering of HAR data is a challenging task for the
following reasons [2, 8, 23–25].

• HAR data is noisy and requires digital signal processing
operations before clustering

• HAR data is big and its clustering requires huge computa-
tional resources.

• HAR data suffer from heterogeneity, which makes linear
cluster separation almost impossible. Nonlinear clus-
tering techniques also require much more computational
resources.

Further, implementing HAR in parallel manner is ignored
in most research. Therefore, we noticed the technology gap
between the two disciplines; big data clustering and HAR
that needs to be filled. To that end, we proposed a parallel
implementation of approximate kernel k-means to solve the
problem of HAR data clustering with minimum computational
resources and accuracy as high as the one obtained from
classification methods.

We used a kernelization approach in this work. The
approach involves kernel functions converting data into a new
feature vector representation to exploit more information and
accomplish better clustering in nonlinearly separable data.
While these functions allow the data to be manipulated in
a high-dimensional feature space, the high dimensionality of
the kernel matrix still remains a significant bottleneck of the
kernel K-means algorithm as it consumes high resources such as
memory and CPU cores.

To overcome this problem, the algorithm of approximate
kernel K-means is proposed, which uses only a small part of
the kernel matrix for implementation. The data proportions are
extracted systematically based on multistage sampling methods
by a combination of stratified sampling and simple random
sampling (SRS) as multistage approaches. Stratified sampling
is a sampling method that divides data into groups that share
the same properties. These groups are called stratas [26]. SRS
selects samples of data randomly. First, we performed the first

stage of stratified sampling before low-pass filtration is applied
to filtering to reduce noise. Next, the second stage of stratified
sampling is applied, and the data is subsequently normalized.
The principal component analysis (PCA) is used [27–29] to
avoid the correlation and overlap of the data. Further, the
whole population of the dataset is divided into a small and big
proportion with the SRS method. In the small proportion, we
use kernelization to fit the nonlinearly separable dataset as the
basic K-means algorithm does not work well with nonlinearly
separable datasets [30]. The big proportion is approximated
using the Euclidean distance and KNN classifier based on the
small proportion’s centroids.

It is not suitable to employ personal computers for imple-
menting the algorithms specially designed for big data as they
require a long time for processing. Therefore, parallel algorithms
were developed to save time on massive, complex problems that
are difficult to solve with limited computer memory. Parallel
algorithms can exploit cluster resources on the Wide Area
Network (WAN) or cloud, which have massive data storage and
allow for quick data computations. Several studies have been
published regarding the implementation of machine learning
algorithms in parallel environments. In [31–37], parallel
K-means clustering algorithms on multicore systems such as
CPU and graphics processing unit (GPU) were implemented.
In these studies, data was divided into small chunks in which
each chunk was processed by one core simultaneously. Further,
studies [38–43] accomplished parallel K-means algorithm on
apache Hadoop, MapReduce, and Spark environments. The
Spark standalone machine uses a simple first in first out (FIFO)
scheduler for applications, in which each application uses all the
available nodes in the cluster; thus, the number of nodes can
be limited per application. Hence, in this work we clustered
big HAR datasets on the cloud by Spark framework. We
implemented our parallel approach on Google cloud [44] as
cloud computing is advantageous for low cost, accessibility,
flexibility, and reliability. Apache Spark is an open-source
library that permits parallel processing on large-scale data across
multiple machines of clusters and saves processing time.

To summarize, the contributions of this paper are shown as
follows:

• Unlike most HAR problems that dealt with classification
tasks, we attempt to identify human activities by using
approximation kernel K-means algorithm which is not
addressed with HAR before.

• Dealing with human activity recognition datasets as big
data.

• Clustering human activity recognition data in a parallel
environment by using Spark on google cloud.

The remaining part of this paper is organized as follows.
Section 2 provides general information on the kernel K-means
algorithm. Section 3 presents an overview of related works while
Section 4 presents the methods that have been used to preprocess
the data, sampling, and clustering approaches. Section 5
provides the experimental setup and dataset while Section 6
presents the results and data evaluation. Section 7 provides the
discussions, and the last section presents the conclusion.
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Table 1 Kernel functions and their formula
Kernel function Equation
Polynomial K (xi , x j ) = (x T

i x j + γ )δ

RBF Gaussian K (xi , x j ) = exp(−xi − x2
j /2σ 2)

Sigmoid K (xi , x j ) = tanh(γ (x T
i x j ) + θ)

2. KERNEL K-MEAN

The kernel K-means algorithm depends on kernelization to
achieve more accurate clustering capabilities for detecting
nonlinearly separable clusters. In kernel K-means, the data
points are projected from the input space into a higher-
dimensional kernel space through a nonlinear transformation
and then K-means is applied in the feature space [30, 45].
The computational complexity of kernel K-means is higher than
K-means as kernel K-means computes the data as the n×n kernel
matrix where n represents the number of records. The popular
kernel functions are polynomial, Gaussian, RBF Gaussian, and
Sigmoid functions (Table 1). This work focuses on the Gaussian
kernel function.

Assuming the data points are to be clustered into C clusters,
and each cluster has center w in the higher dimensionality space,
as each data point is assigned to a cluster, the C cluster center is
calculated using (Equation 1) [30, 45].

w =
∑

i∈C φxi

C
(1)

The squared distance Dis(xi , w) = ||φ(xi ) − w||2 between the
vector x and w can be written as (Equation 2) [30, 45].

‖φ(xi ) − w‖2 = φ(xi )φ(xi ) − 2

∑
j∈C φ(xi )φ(x j )

C

+
∑

i∈C
∑

j∈C φ(xi )φ(x j )

C2

= k(xi , xi ) − 2

∑
j∈C k(xi , x j )

C

+
∑

j∈C
∑

j∈C k(xi , x j )

C2 (2)

After measuring the distance between the data points and cluster
centers, the data sample is reassigned with the minimum distance
Dis(xi , w) to the cluster C . This is an iterative process in which
the distances are calculated, and the cluster assignments are
updated until the cluster entry assignments are no longer changed
or the maximum number of iterations is reached.

3. RELATED WORK

HAR applications can be used in various fields such as health
services, smart environments, and security. In the health sector,
HAR is used for activity tracking and monitoring for aging
people [46, 47]. To detect the activities, most studies related
to HAR applications employed classification algorithms, and a
few of the studies employed clustering algorithms, Hence, this
present study employed the kernel K-means clustering algorithm
to recognize six activities of nine users.

To monitor and track the activities of patients prescribed
by doctors, whether the patients are committed, Zhao et al.
[22] presented an embedded model (TransEMDT) in mobile
phones that integrates classification (decision tree) and clustering
(K-means) algorithms. TransEMDT aims to solve the problem
of obtaining inaccurate results when the phone is used by a
different user. The model utilizes unlabeled examples to adjust
the activity recognition model and build a customized model for
the new user.

Albert et al. [46] performed an experiment on eighteen
healthy objects and eight patients diagnosed with Parkinson’s
disease (PD). They predicted the activities (standing, walking,
sitting, holding, or not wearing the phone) by utilizing SVM
and sparse multinomial logistic regression (SMLR) algorithms.
They reported the accuracy measurement for both proposed
algorithms. The SVM reached 96.1% for healthy subjects and
92.2% for PD patients. Regarding the SMLR, the results reached
89.7% for healthy subjects and 84.7% for PD patients.

HAR is utilized in several applications, such as those that
estimate a falling accident and measure calorie consumption
and energy utilization [48]. These applications require the
accelerometer to work consistently so as to continuously
perceive distinctive physical human activities. This results in
superfluous power utilization by the sensor as well as computa-
tional overhead, which is viewed as a major problem considering
the constrained power assets of smartphones. Luštrek and
Kaluža [49] investigated fall detection and activity recognition
approaches by employing machine learning algorithms. Three
attributes were selected to describe a user’s behavior: locations
of body parts in the reference coordinate system,body coordinate
system, and angles between adjacent body parts. Eight machine
learning algorithms were applied and compared. The authors
reported that the highest accuracy was achieved at approximately
95% with SVM. Regarding power consumption, Vo et al. [50]
expected to reduce the energy utilization of the accelerometer
and CPU by enhancing the HAR algorithm. The proposed
method depended on the integration of SVM classification
and k-medoids clustering algorithms as a personalization
algorithm to choose confident samples. An 11% increase in
accuracy was achieved compared to the non-personalization
methods.

Another study field of HAR applications is the position and
orientation problem of smartphones [51]. The authors designed
an approach to overcome the problem. The approach consists
of two phases. First, the position recognition was performed
using gyroscope data. Second, the activity recognition was
performed using accelerometer data. SVM algorithm was
used in both phases to recognize positions and four activities
(run, walk, down-stairs, up-stairs). The authors reported that
the accurate measurement of the overall classification without
position recognition was higher than the accurate measurement
of overall classification with position recognition. However, the
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proposed two-phase approach has stable performance in overall
activities.

One application of activity recognition is fall detection.
Generally, as a result of the rapid aging of people, efforts
must be made to ensure that elderly people can live longer
with minimal support. To follow elderly home activities, Xu
et al. [13] proposed a two-stage method for recognizing elderly
home activity based on random forest and activity similarity.
In a similar study Kumar and Bhavani [18] performed activity
recognition for elderly people and disabled patients based on a
combination of SVM and KNN algorithms. The experimental
results concluded that the proposed work achieved superior
results than other classifier algorithms.

Borazio and Laerhoven [52] performed the activity detection
process and classification of eleven activities on both accelerom-
eter (sensor) and time-activity survey datasets using the SVM
algorithm. In this study, according to accuracy measurement,
25%, 18%, and 6% were obtained for activities such as eating,
socializing, and hobbies, respectively, which was obtained using
sensor data only. However, the positive effect of using time-
activity survey data varies with activity and has been shown to
have a positive effect on accuracy only for some activities.

Li et al. [14] presented human motion and position
recognitions based on Wi-Fi-signals. The signals generated
from Wi-Fi devices by utilizing the Discrete Wavelet Transform
(DWT) technique. Then the signals have been classified based on
the SVM algorithm to identify five activities (bend, halve, squat,
step, stretch leg, and jump). They reported that the proposed
approach obtained robustness performance. In a similar study,
Feng et al. [15] presented a three-phase system Wi-multi
technique. They aimed to recognize multiple human activities
in a wireless environment. After the feature extraction process,
the activities recognized by using the SVM algorithm. The
experimental results proved that the proposed approach achieved
91.6% accuracy.

Manzi et al. [53], reviewed various state of art methods
and described each of them as a literature survey. They
reviewed HAR based on machine learning techniques including
supervised techniques like KNN, SVM, decision trees, and
later presented deep neural network techniques like artificial
neural networks, convolutional neural networks, and recurrent
neural networks. In a similar survey, Liu et al. [54] presented
a review study on human activity with wireless signals. In
this study, the authors reviewed the studies on HAR based
on classification, clustering, and neural network techniques.
We noticed the limited number of studies reviewed regarding
clustering techniques.

Some studies have focused on recognizing activities by
employing the random forest classifier in various applications
[55–57]. The random forest classifier generates a set of decision
trees from a randomly selected subset of the training set. The
final decision of the test object is then aggregated. Gjoreski
and Gams [55] showed the importance of activity recognition
data preparation and applied low and high pass filters. They
performed an attribute finding process to describe the user’s
behavior. The random forest classification algorithm was carried
out on the data, and an accuracy greater than 93% was achieved
based on the f-score performance metric. Xu et al. [56]
proposed an approach to avoid the privacy and light conditions of

vision-based activity recognition by employing a single wearable
device sensor. A random forest classification algorithm was
applied to identify six activities (walking, standing, stair-down,
stair-up, jumping, and running). They achieved an average
accuracy of 90% for walking, stair-up, and standing; 80% for
running and stair-down; and 75% for jumping recognitions.
Further, Ar and Akgul [57] presented a novel approach of
extracting motion and pose features from image sequences
(videos). The two features were combined using statistical
methods that describe the global motion and global pose
information in the entire image sequence. The authors used two
datasets called KTH and Weizmann. Thereafter, the random
forest algorithm was implemented to recognize the activities.
They reported that the combination approach and classification
process achieved good accuracies.

Ignatov and Strijov [58] proposed a technique for human
activity recognition by utilizing time series data gathered from
a single triaxial accelerometer of a smartphone. Time series
segmentation and noise reduction were performed as data
preparation. Thereafter, the KNN classification algorithm was
applied to classify the obtained segments. The technique
accomplished above 96% accuracy.

Some studies have focused on HAR by employing neural
network techniques. Wang et al. [19] accomplished a novel
method for the identification of human activity based on attention
to process the data of the weakly labeled behavior by utilizing
the Convolutional Neural Network (CNN) technique. The
experimental results showed a high performance in terms of
labeling accuracy. In a similar study Zhu et al. [20] proposed
an ensemble model based on CNN technique to recognize
human activity using nine-axis motion signals of gyroscope,
accelerometer, and the magnetometer in smartphones. They
reported that their work achieved 96.11% in terms of accuracy.

In our study, we treated the kernel K-means on HAR as
a clustering task, and studied the implementation of kernel
K-means in other fields. It was seen that the kernel K-means
has not been implemented on HAR before. Thus, we filled the
gap between the two fields by implementing kernel K-means
clustering on HAR data based on Google cloud in a parallel
manner.

The most common problem in the K-means algorithm is
cluster center initialization, and several studies have attempted
to solve it. Tzortzis and Likas [59] proposed a method to solve
the problem by avoiding the high sensitivity of K-means, and
they discussed the usage of the kernel step in the K-means
algorithm. Kernel K-means is a technique that uses a kernel trick
to enhance the accuracy of the K-means algorithm for clustering
nonlinearly separated data. Several works have used and
discussed kernel techniques, and significant ideas are detailed
in [60]. Several approaches have been employed to improve the
accuracy and time complexly of kernel K-means. Particularly,
Chitta et al. [25] accomplished an efficient approximate kernel
K-means algorithm by reducing computational complexity and
the memory of the full kernel matrix K-means by a randomized
approach. To avoid computing a full kernel matrix, they
restricted the solution for the cluster centers to a smaller subspace
spanned by a set of randomly sampled data points. The
authors compared between proposed work with full kernel matrix
K-means and two-step kernel K-means. According to speedup,
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Adjusted Rand Index (ARI), error reduction, and NMI metrics,
the proposed algorithm showed its efficiency compared to full
kernel K-means. Additionally, Tsapanos et al. [61] optimized
kernel matrix computations for largescale data clustering. The
fast computation was performed by the exceedingly optimized
library of linear algebra named basic linear algebra subprograms
(BLAS), which can be very fast on modern CPU architecture.
Kong and Kong [62] proposed a fast and effective version of
the kernel K-means clustering algorithm. They used a technique
named conditionally positive definition (CPD) kernel in the state
of the mercer kernel function. They performed experiments on
artificial and real datasets and reported that the proposed method
converged and was faster compared to K-means algorithm.

In another work of Tzortzis and Likas [63], they accomplished
a fast-implementation version of kernel K-means, named global
kernel K-means, by locating near-optimal solutions, which
enables the recognition of nonlinearity separable clusters in
the input space. Wang et al. [64] employed an approach of
kernel K-means to avoid its local minima domination called
conscience online learning (COLL). This approach chooses the
wining paradigm based on the conscience mechanism. They
used several datasets in a video clustering dataset and reported
that the proposed work gives superior results compared to other
kernel clustering methods.

Zhang and Rudnicky [65] presented an implementation of the
kernel K-means algorithm on a large-scale data. To overcome
the expensive computations and storage cost, they implemented
a new clustering technique by changing the clustering order from
a sequence of samples to the sequence of kernels, which is an
efficient method of kernel matrix calculations utilizing a disk-
based strategy. The authors reported that the running times of
the proposed method were better than those of the K-means
algorithm, which was implemented on both artificial and real
data.

Regarding the parallelization kernel K-means algorithm on
multicore CPU and GPU, Baydoun at el. [66] implemented
parallel kernel K-means on multicore CPU and GPU by utilizing
OpenMP, Cilk Plus, and Nvidia CUDA. They reported that
kernel K-means is more accurate than the traditional K-means,
and a GPU implementation is faster than a multicore CPU
implementation. Baydoun et al. [30] optimized and extended
to the previewed work. They implemented a parallel kernel
K-means algorithm on CPU and GPU. Further, they optimized
CUDA-based code and addressed the impact of pattern, number
of clusters, and features on computational time. The method
was tested on artificial and real datasets. The authors achieved
the best results in the CUDA implementation.

Concerning the parallelization kernel K-means algorithm
on distributed frameworks, Tsapanos et al. [45] proposed a
technical implementation of the kernel K-means algorithm on
large datasets. Different clustering frameworks were tested,
such as trimmed kernel K-means (TKKM), efficient TKKM,
and approximate kernel K-means (AKKM). The authors focused
on reducing computation time and computing kernel matrix
techniques and such as full/partial fast and slow kernel matrix
techniques. The MapReduce framework is used based on
Apache Spark. The authors reported that implementing partial
fast kernel matrix plus AKKM is more suitable for large-scale
datasets. However, where the running time is not an issue, full
slow kernel matrix plus TKKM is preferred. Another work of

the same authors [67] presented an implementation based on the
Spark cluster computing MapReduce distributed framework for
the particular version of kernel K-means and nearest neighbor
algorithm in which kernel matrix is managed as a full graph.

In summary, according to the papers reviewed, we concluded
that most of the research focuses on human activity recognition
as a classification problem. Many classification techniques have
been used like SVM, KNN, random forest, and decision tree.
Besides, neural network techniques have been implemented
in this filed. As can be seen, the papers worked with HAR
as a classification task that has not addressed the clustering
task. Additionally, they have not manipulated with HAR as
big data. Further, the parallel implementation of HAR also
has not addressed in recent papers. Moreover, we observed
that the papers implemented kernel K-means algorithm have not
addressed the HAR field. Therefore, we filled the gaps in the
mentioned problems by combining all these fields. Thus, in this
paper, we proposed a parallel implementation of HAR data based
on the approximation kernel K-means algorithm.

4. PROPOSED METHOD: APPROXIMATE
PARALLEL KERNEL K-MEANS

Due to the high heterogeneity and nonlinearity of HAR datasets
caused by various sensors of the smartphones and smartwatches,
our approach was to employ kernelization, which transforms
the data into a high-dimensional feature space based on an
n × n kernel matrix. However, kernelization increases the
processing time quadratically. Hence, when it is applied to
a large-scale dataset, converting data into high-dimensionally
feature space becomes considerably difficult. Therefore, we
propose an approximate kernel K-means to cluster big HAR
datasets. The main idea of the approximation approach is to
represent only a small part of the data on the kernel matrix. The
block diagram of the proposed approximate method is shown
in Figure 1. We first applied some preprocessing operations on
the data and then performed stratified sampling based on device
feature.

The stratified sampling, which is an unbiased sampling
technique, represents a dataset by its proportion created based
on common property, and samples are randomly gathered from
each subgroup [68]. The population of size N is divided into
k subpopulations of sizes N1, N2, N3, ...Nk . When we have a
sample of n elements from the initial population, a sample of
ni in which n1 + n2 + n3 + . . . . + nk = n is selected. The
most important two terms in a sample are sampling and elevation
factors. Sampling factor is the ratio between the size of the
selected sample and the whole population and is represented as
n
N . To obtain the percentage of the population represented in the
sample, we multiply the sampling factor by 100. The elevation
factor is the ratio between the size of the entire population and
the size of the selected sample and is represented as N

n . This
ratio represents the number of elements existing in the entire
population for each element of the selected sample.

In our approach, four stages of sampling techniques are
performed. In the first and second stages, stratified sampling
is performed based on devices and users, respectively. Addi-
tionally, SRS is performed to divide the whole dataset into 90%
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Figure 1 Proposed work flowchart.

and 10% proportions from data as the first stage of SRS. From
here on out, the 90% and 10% proportions from data will be
referred to as big and small proportions respectively. The small
proportion from whole data is divided into another big 90% and
small 10% proportions as the second stage of SRS. As can be seen
in Figure 1, the proposed work starts with preprocessing steps
involving cleaning, visualizing, getting data information. Then,
the first stage of stratified sampling is applied based on devices.
Thereafter, filtration, the second stage of the stratified sampling
based on users, normalization, and PCA is applied sequentially.
The small proportion of second stage of SRS is then clustered by
kernel K-means. The clustering method lies in calculating the
kernel matrix for each user separately. That is, each kernel matrix
for each user is calculated once, where the distance between
points will be called in the cluster assignment step. Hence, the
calculation time is expected to decrease significantly. The kernel
matrix calculation step is applied in parallel on a cloud platform.
Subsequently, a new cluster centroid and cluster assignment is
calculated for each cluster.

The approximation part of Figure 1 illustrates the approxima-
tion approaches used in this paper in (Figure 2 and Figure 3).
The big proportion of the second stage of SRS is approximate
based on Euclidean distance and KNN classifier. In the first
approach of approximation with Euclidean distance. After the

small proportion of the data being clustered, we calculate the
cluster centers by taking the average of all data points of each
cluster. Then, the big proportion of the data is approximated to
be assigned to each cluster according to the shortest distance
between the data points and cluster centers using Euclidean
distance calculations (Figure 2).

In the second approximation approach with the KNN clas-
sifier, we were inspired by the idea presented in [69, 70, 71].
The applications related to data generated by sensors, especially
HAR data, require costly labeling process. Therefore, the
generation of clusters from a small amount of data by clustering
algorithm presents a fast, simple, and accurate labeling process
for the rest of the data by a classification algorithm, in which the
classification model is built over the past labeled data with labels
provided by the clustering algorithm. The KNN model is built
by setting the small proportion as input and the clustered data by
kernel K-means as output. Then, the big proportion of the data
is approximated by the KNN model (Figure 3). This process
continues until the first big proportion being approximated.
Thus, the entire data points being clustered. The approximation
approach enables the clustering of large-scale data in a shorter
processing time and overcomes the kernel function calculations
on all data.
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Figure 2 Approximation with Euclidean distance.

Figure 3 Approximation with KNN classifier.

5. EXPERIMENTAL SETUP AND DATASET

In this study, all the implementations were conducted using
Python version 3.7.6, and Spark was used as the parallel
programming environment. Pyspark API helped us to construct
a relationship between Spark and Python kernel.

5.1 Datasets

In this study, we verified our work with two publicly available
smartphone and smartwatch accelerometer datasets mentioned
in the heterogeneity of human activity recognition study [72].
The raw data of phone and watch accelerometer datasets
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Table 2 The devices and their corresponding sampling frequency.

Devices Sampling frequencies (Hz)
Smartphones

Nexus 4 200
Samsung Galaxy S3 150
Samsung Galaxy S3 mini 100
Samsung Galaxy Gold 50

Smartwatches
LG watches 200
Samsung Gear 100

(a)                                                                                      (b)

Figure 4 The distribution of the datasets: (a) phone accelerometer dataset (b) watch accelerometer dataset.

contained 13,062,475 and 3,540,962 records of raw time-
series tri-axil accelerometer data, respectively. The phone
accelerometer dataset was recorded from four models with eight
smartphones (2 × 4, 2 × Samsung Galaxy S3, 2 × Samsung
Galaxy S3 Mini, and 2 × Samsung Galaxy Gold). The watch
accelerometer dataset was recorded from two models with four
smartwatches (2 × LG watches, and 2 × Samsung Gear). Each
dataset was recorded by nine users, with each user performing
a set of activities including walking, sitting, biking, standing,
moving upstairs, and moving downstairs). Each activity was
performed for five minutes. In this study, the six activities were
considered as target clusters. The structure and distribution of
both datasets were different (Figure 4). Each of the mentioned
devices had different frequencies. Thus, each device had to be
treated separately, especially in the filtration step (Table 2).

5.2 Data preprocessing

Due to the large-scale of the HAR data we used in this study,
which was created from readings of various frequencies of
smartphones and smartwatches, it contained corrupted and
empty values. This affects the clustering accuracy. Therefore, to
pass a pure dataset into the algorithm, some preprocessing steps
were performed. After the cleaning steps (i.e., removing null
values and records), the phone and watch datasets decreased
to 11,279,275 and 3,020,605 records, respectively. After the
cleaning, the sampling technique was applied based on the
devices as the first stage of the stratified sampling. The filtration
was then performed on the sampled data, and the second stage
of the stratified sampling was applied successively. Afterward,

the PCA was used for data visualization and feature reduction,
in which the corrupted data could be shown clearly with the
reduction of the data into two components. In the phone dataset,
user “f” did not exist in Samsung Galaxy S3_1, and due to the
lack of all users’ data in the Samsung Galaxy S3 mini_2 device, it
was considered as noise. As can be seen in Figure 5, each cluster
(target clusters) is represented as colored line. It is observed that
the figures do not contain all colored lines; hence, the values
associated with the corrupted data were excluded. The excluded
data represents 0.08% of all data. Therefore, it did not affect the
structure of the dataset.

Regarding the watch dataset, Samsung Gear 1 and Samsung
Gear 2 did not contain data from user “i”. Additionally, users
“f” and “h” of Samsung Gear 1, users “g” and “h” of LG Watch
1, and users “b”, “d”, and “h” of LG watch 2 were corrupted and
did not contain all clusters. Therefore, they were excluded from
the dataset (Figure 5).

The datasets contained nine features. Five representative
features (accelerometer reading x , y, and z; creation time; and
arrival time) were selected as input parameters, and PCA was
used to reduce the five features into two components.

5.2.1 Filtration

Owing the heterogeneity of the datasets, which was caused by
multisensory devices, after the first stage of the stratification
sampling step, a frequency filtration was accomplished on the
accelerometer data. As a nature of HAR data and the variation
of smartphone model frequencies, the high frequencies are a
resource of noise, which affect the clustering accuracy. To
avoid and filter the high frequencies, a low-pass filtration was
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(a)

(b)

(c)

Figure 5 Corrupted data: (a) users “a” and “b” of Samsung S3 mini 2; (b) users “f” and “h” of Samsung Gear 1; and (c) users “h” and “d” of LG watch 1 and LG
watch 2, respectively.

Figure 6 Order and cut-off frequency: (a) Phone accelerometer; (b) watch accelerometer.

applied on the raw accelerometer readings, which allowed low
frequencies to be passed. Unlike the study in [2], the raw
data were filtered directly on accelerometer features (x , y and
z) separately, as addressed in [55]. Further, as mentioned
in Section 4, stratified sampling was accomplished based on
devices, then filtration was applied sequentially. Using stratified
sampling, a reduction of the heterogeneity was observed because
the data were separated into groups based on devices, and the
correlation between data was reduced as well. Further, the
heterogeneity was significantly reduced by implementing low-
pass filtering directly without the need to implement frequency
and time domain as in [2]. After several trials, a sixth-order and
cut-off frequency of 3 Hz, and a fifth-order and cut-off frequency
of 5 Hz for phone and watch datasets, respectively, were applied
with a low-pass filter (Figure 6).

As addressed in [73, 74], this cut-off frequency was
appropriate to filter the data without losing any information
(Figure 7).

5.2.2 Feature reduction by principal component analysis

As mentioned in Subsection 5.2, the datasets consist of nine
features. The most representative features used were (x , y, z,
arrival time, and creation time). Because of the value variations
of arrival and creation time features compared to the other
features, a value normalization process was performed on the
five features after the second stage of stratification. Further, due
to the difficulty of data visualization and time-consumption of
kernel matrix calculations, PCA was applied on the five features
to represent them in two components. PCA is statistical feature
extraction strategy in feature engineering in which a linear
transformation is used to modify a set of possibly correlated
observations into a number of uncorrelated variables called
principal components, where the first component contains the
highest variability of a data [75]. Additionally, it used for feature
and dimensionality reduction [76]. PCA was useful in this study
to plot the features easily with six activities, reduce the kernel
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(a)

(b)

Figure 7 Duration of 180 s for phone and 50 s for watch data: (a) (left) raw x-axis of the accelerometer of Nexus4_1 and (right), filtered accelerometer data where the
user was moving stairs-up; (b) (left) raw x-axis of the accelerometer of Samsung Gear 1, and (right) filtered accelerometer data where the user was moving stairs-up.

Table 3 Execution time of kernel K-means on the small proportion of the second SRS stage.

Time Serial Parallel
Total execution 11:17:27.541 hours 2:49:48.567 hours
Maximum iteration 9.230 seconds 4.158 seconds
Average iteration 3.682 seconds 1.655 seconds
Maximum kernel matrix 10:03.359 minutes 27.540 seconds
Average kernel matrix 04:54.668 minutes 12.054 seconds

matrix calculations, and avoid high correlations between the data
points.

6. RESULTS

This section presents results that have been obtained from our
approach to cluster the data using approximation kernel K-means
approach. We focused on the Gaussian kernel function. The
two smartphone and smartwatch datasets were utilized to verify
our approach. The precision, recall, f-score, and (NMI) were
used as validation metrics to assess the quality of the clustering
algorithm. Although our approach is a clustering problem, we
assessed our work with the classification metrics and compared
them with the results in [72]. Additionally, NMI was used
to assess the mutual dependencies of cluster points. We used
the Google Cloud Platform GCP DataProc cluster and Google
storage for storing the data. The google storage specialized for
storing big data to be manipulated by the google cloud platform.
The serial implementation carried out with single machine type
n1-standard-4, which worked as a master node with 4 cores CPU
and 15 GB of random access memory (RAM). The platform for
parallel implementation was one master and six workers with
the same properties above.

6.1 Results of phone dataset

As described in Section 4, regarding the sampling techniques
we used in this study, the phone dataset was grouped into eight
devices that represented eight strata based on the first stage of
stratified sampling. The low-pass filter was applied in each

stratum. As the second stage of stratified sampling, each stratum
(device) was grouped into nine strata based on users. Further, the
Samsung Galaxy S3 mini_2 device was excluded; thus, 62 strata
were finally obtained.

Each stratum represented all the data of a single user from
single devices. Furthermore, each stratum contained all six
clusters (activities), and each of the 62 strata was divided into
big and small proportions as the first SRS stage. Next, the small
proportion was also divided into small and big proportions as the
second SRS stage. Thereafter, the kernel K-means was applied
on the small proportion in both serial and parallel manner. As
seen in Table 3, the iteration time represents the duration of the
algorithm to calculate the cluster assignment until it converges.
These values change according to the data size. Regarding our
approach, we calculated the kernel matrix and cluster assignment
to the users’ data separately. The maximum iteration time
represents the longest iteration taken by the algorithm in the
dataset. Moreover, the average iteration time represents the
average time of all the iterations. Due to the kernel matrix
calculated for each user data separately, the maximum kernel
time represents the longest kernel matrix calculations for certain
users. Further, the average kernel matrix time represents the
average time of all kernel matrix calculations. The kernel
matrix time is changed according to user data. The high
size of data means the long duration of iteration time. These
values are the main metrics for time assessment. Therefore, the
total execution time of serial implementation is 11 hours and
17 minutes. In contrast, the time decreased significantly in the
parallel implementation to 2 hours and 49 minutes. Additionally,
it is important to emphasize that the maximum iteration time was
reached in 9 seconds in serial and 4 seconds in parallel.
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Table 4 Global metric values of the whole small proportion of the first SRS stage.

Metrics Serial Parallel
Approximation with Euclidean Trained with KNN Approximation with Euclidean Trained with KNN

NMI 0.831 0.842 0.832 0.843
Precision 0.840 0.841 0.830 0.830
Recall 0.857 0.863 0.855 0.859
F-score 0.843 0.846 0.836 0.838

Table 5 Total execution time of approximation with Euclidean distance and KNN classifier on the small proportion of the second SRS stage.

Approximation with Euclidean Trained with KNN
25.836 seconds 57:31.10 minutes

Table 6 Metrics and execution time of the approximation step on the big proportion of the first SRS stage.

Metrics Values
NMI 0.840
Precision 0.903
Recall 0.902
F-score 0.902
Total execution time of approximation step on the big
proportion of the first SRS stage

05:10.038 minutes

Figure 8 Comparison of HAR performances in [72] and our proposed approach on smartphone dataset.

The big proportion of the second SRS stage was approximated
by both Euclidean distance and KNN classifier. Hence, the
evaluation metrics of the whole small proportion of the first SRS
stage is shown in Table 4.

As can be seen in Table 4, the evaluation metrics of both
Euclidean distance and KNN classifier are almost the same, with
only minor differences. However, due to a large number of KNN
neighbors, in our approach, when we set the neighbors as 200,
we noticed a large difference between both approaches in terms
of execution time (Table 5). As can be seen, the total execution
time of approximation with Euclidean decreased compared to
approximation with KNN classifier.

After obtaining the whole small proportion of the first SRS
stage clusters, the big proportion of the first SRS stage remains.
A new centroid is calculated and the rest of the data (big
proportion of first SRS stage) is approximated using both
Euclidean distance and KNN classifier. As can be seen in Table 6,
the evaluation metrics of the whole data clustering using the
approximation approach significantly increased, especially the
f-score measure. Additionally, due to the higher execution time

of KNN compared to the Euclidean approach, the Euclidean
distance execution time of 5 minutes was selected. In [72], the
authors utilized four classification algorithms using three feature
types (empirical cumulative distribution functions, frequency,
and time domain) combined across various cross-validation and
evaluation methods.

Our approach with only low-pass filtration and PCA feature
selection obtained higher results than all the classification
algorithms used in [72], except the 10-fold technique (Figure 8).
Although the 10-fold technique in [72] obtained relatively higher
results, the values are not realistic as addressed in the same paper.
As the target data of clustering problems does not exist, the
clustering problem results are usually less than the classification
problem results. In our approach, we reached higher results than
the classification problem, and this indicates that our approach is
efficient. Furthermore, we also concluded that when the data size
increased, the efficiency as an evaluation metric (i.e. F-score)
also increased. It went from 0.84 in the whole small proposition
to 0.902 in the whole dataset.
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Table 7 Execution time of kernel K-means on the small proportion of the second SRS stage.

Kernel execution time Duration time
Total execution 01:33:02.717 hours
Maximum iteration 5.184 seconds
Average iteration 1.796 seconds
Maximum kernel Matrix 41.553 seconds
Average kernel matrix 10.395 seconds

Table 8 Global metrics values of the whole small proportion of the first SRS stage of watch dataset.

Parallel
Approximation with Euclidean Trained with KNN

NMI 0.714 0.731
Precision 0.643 0.678
Recall 0.681 0.702
F-score 0.647 0.674

Table 9 Total execution time of approximation with Euclidean distance and KNN classifier on the small proportion of second SRS stage of watch dataset.

Approximation with Euclidean Trained with KNN
7.412327 seconds 24.882297 seconds

Table 10 Global metrics values of the whole small proportion of the first SRS stage.

Metrics Values
NMI 0.720
Precision 0.817
Recall 0.799
F-score 0.794
Total execution time of approximation step on the big
proportion of the first SRS stage

0:01:11.084461 minutes

6.2 Results from watch dataset

The watch dataset has a different structure and data distribution.
It was recorded by four devices; therefore, the record number and
dataset size are less than the phone dataset. The watch dataset
was grouped into 4 strata based on 4 devices as the first stage
of stratified sampling, then the low-pass filtering was applied
on each stratum. According to the users, each stratum (device)
was grouped into nine strata as the second stage of stratification.
After the exclusion of corrupted data as mentioned in Subsection
5.2, we obtained 30 strata. Each of the 30 strata was also divided
into big and small proportions as the first SRS stage. The small
proportion was also divided into small and big proportion as the
second SRS stage. Afterward, the kernel K-means was applied
on the small proportion in a parallel manner.

As summarized in Table 7, the execution time calculations of
kernel K-means is 1 hour and 33 seconds, and the maximum
iteration time is 5 seconds. As can be seen, although the size
of the watch dataset is less than the phone dataset, the total
execution time is slightly high, and the maximum iteration time
is almost the same. This is because the LG watch_1 contained
most data records and even more than one device compared with
the phone dataset. Thus, the kernel function calculations are
high. The increase in the kernel function calculations leads to an
increase in the total execution time spent to realize the clustering,
and it also leads to resource consumption.

Thereafter, the big proportion of the second SRS stage was
approximated by both Euclidean distance and KNN classifier.

We evaluated the results of the whole small proportion of the
first SRS stage with the assessment metrics (Table 8).

The evaluation metrics of both Euclidean distance and KNN
classifier are presented in Table 8; they are very similar, with
minor differences, as observed in the phone dataset. As
addressed in the previous section, the difference is only in terms
of execution time. Due to the smaller dataset size relative
to the phone dataset, we set the neighbors as 25. We also
noticed a difference between the two approaches in terms of
execution time. The short execution time in the approximation
with the Euclidean distance compared to the KNN classifier is
shown in Table 9. Here, the approximation with the Euclidean
distance was implemented in 7 seconds and the KNN classifier
in 24 seconds.

Here, we repeated the same steps as we performed in the
phone dataset. After obtaining the whole small proportion of
the first SRS stage, new centroids are calculated, and the big
proportion of the first SRS stage is approximated. Due to the
time-consumption of KNN, we utilized the Euclidean distance
as an approximation approach.

As can be seen in Table 10, the evaluation metrics of the
whole watch data clustering using the approximation approach
significantly increased compared to the whole small proportion
of the first SRS stage. Furthermore, the total execution time is
1 minute. From Table 10, we conclude that our metric results
are higher compared to results in [72], in terms of the f-score
(Figure 9). As we addressed in the phone dataset results in the
previous subsection, the higher result in the mentioned paper is
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Figure 9 Comparison of HAR performances in [72] and our proposed approach on smartwatch dataset.

not realistic, thus indicating that our approach in both phone and
watch datasets provided efficient clustering.

7. DISCUSSION

Nowadays, the smartphone and wearable devices have an
enormous sensing ability including accelerometer, gyroscope,
and GPS to record human daily activity. The data generated
by the sensors let to have high heterogeneity. In other words,
if the person performs more than one activity at the same
time, the recognition task becomes difficult [8]. Owing to
the heterogeneity issue, it is impracticable to pass the raw
data to clustering techniques. Therefore, HAR data with high
heterogeneity should be decreased somehow to be smooth to the
recognition system. In addressing this challenge, we performed
such analysis to decrease the heterogeneity like filtration and
sampling, and feature reduction like PCA. Raw accelerometer
data have been obtained from the Heterogeneity Human Activity
Recognition Dataset available on UCI [72] contains datasets
collected by nine users performed six activities.

During this work process, we faced several challenges. In
the filtration phase, we attempted several trials until we set
a proper cut-off frequency and order. As a result of the
heterogeneity of the data it was difficult to show the outliers,
thus by performing PCA we could reduce the features into two
components in which be able to visualize the data and identify the
outliers. Google cloud provides a perfect parallel environment to
implement a project, however, still, there are several challenges.
Because of the Spark written in Scala language it must utilize
Pyspark Application Programing Interface (API) that provides
interactions between Spark and Python language. Another
challenge is the implementation of the kernel matrix calculations
in a parallel manner. We employed one master and six workers.
According to the Tables 3 and 7, it can be seen that the execution
time of parallel implementation is decreased significantly.

Through the research reviewed regarding HAR recently. Most
of the research concentrated on HAR datasets as a classification
task [8–21]. However, they did not address HAR as a clustering
problem. Additionally, the research reviewed regarding kernel
K-means techniques did not implement on HAR. Thus, we filled
the gap between them and merged the two fields. Therefore, we
proposed a clustering technique to deal with HAR. Generally,
due to HAR data generated by various types of sensors, it causes

a heterogeneity to the data. Hence, it causes the nonlinearity of
the data. Therefore, we employed the kernel K-means algorithm
that works well with nonlinearity datasets [25] to recognize
human activities. As a result of the kernelization technique
consume more time and computational resources, we used the
approximation technique. The idea behind approximation is
that dividing data into subsets of data in which a kernelization
technique works using only a small part of the kernel matrix [25,
60, 77] and approximate the remaining data based on Euclidean
distance and KNN which have been proposed in this work.

After using the approximation technique in both serial and
parallel manner, we observed a high reduction in parallel
compared with serial implementation in terms of processing
time. Further, the parallel implementation of HAR data is not
addressed in the recent papers.

Usually, when any approach implemented to solve a problem,
the work has to be assessed in terms of accuracy. To validate our
clustering approach, we compared our approach with the works
used the same data. As can be seen in the Tables 6 and 10, the
obtained results are very promising and prove the validity and
robustness of our approach. Our approach is related to Stisen
et al. [72], who clustered based on devices that have recorded
the data and treat measuring human activity as a classification
problem and used several classification algorithms. Besides,
Dobbins and Rawassizadeh [2] clustered the same datasets based
on K-means, Hierarchal and DBSCAN algorithms by using
feature engineering without parallel implementation. Unlike
these works, we applied a clustering technique based on the
approximation kernel K-means algorithm in a parallel manner.
However, the obtained results should be improved more by using
more feature engineering in which to get higher results in terms of
accuracy. If a new dataset with the same properties is collected,
then the same process would be tested, as these have confirmed
to be the best technique for this type of data.

8. CONCLUSIONS

In this work, we presented and analyzed datasets obtained from
accelerometers that can detect human physical activities. Due to
the heterogeneities and high correlations of the datasets, we used
low-pass filtration and data reduction using PCA, which reduced
the features into two components. Subsequently, we clustered
the data using the approximate kernel k-means approach. For
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the approximation step, we utilized the Euclidean distance and
KNN classifier methods. To select an unbiased sample for
the approximation approaches, we used multistage sampling
techniques based on stratification and SRS. The best results were
obtained from phone and watch datasets, with 90% and 79%
accuracies, respectively, in terms of the f-score metric. Further,
we compared our results with the classification algorithms
mentioned in [72]. Although our approach was performed as a
clustering problem, it obtained better results than classification
algorithms results mentioned in the same paper. Additionally,
our approach was implemented in a parallel environment; thus,
a significant improvement was observed in terms of execution
time.

The previous studies fundamentally treat HAR data as a
classification problem by using several classification techniques.
A lack of a number of works focused on HAR as a clustering
problem encouraged us to fill this gap and propose a new
technique in HAR field. Another inference from previous
works has not addressed the parallel implementation of HAR.
Furthermore, the studies related to HAR have not addressed
big data. Thus, we proved that our approach has not been
implemented previously on HAR. Therefore, our study fills
the gap between several fields by implementing a parallel
approximation kernel k-means clustering algorithm on HAR as
big data.

As a result of the nonlinearity and big size of data, we obligated
to implement the kernel K-means algorithm in an approximation
approach in parallel. Investigating a new approach to deal with
all data without using approximation technique and optimizing
the technique we used by using feature engineering to increase
the accuracy will be our future work.
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