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Abstract: The 3D reconstruction using deep learning-based intelligent systems
can provide great help for measuring an individual’s height and shape quickly
and accurately through 2D motion-blurred images. Generally, during the acquisi-
tion of images in real-time, motion blur, caused by camera shaking or human
motion, appears. Deep learning-based intelligent control applied in vision can
help us solve the problem. To this end, we propose a 3D reconstruction method
for motion-blurred images using deep learning. First, we develop a BF-WGAN
algorithm that combines the bilateral filtering (BF) denoising theory with a Was-
serstein generative adversarial network (WGAN) to remove motion blur. The
bilateral filter denoising algorithm is used to remove the noise and to retain the
details of the blurred image. Then, the blurred image and the corresponding sharp
image are input into the WGAN. This algorithm distinguishes the motion-blurred
image from the corresponding sharp image according to the WGAN loss and per-
ceptual loss functions. Next, we use the deblurred images generated by the BF-
WGAN algorithm for 3D reconstruction. We propose a threshold optimization
random sample consensus (TO-RANSAC) algorithm that can remove the wrong
relationship between two views in the 3D reconstructed model relatively accu-
rately. Compared with the traditional RANSAC algorithm, the TO-RANSAC
algorithm can adjust the threshold adaptively, which improves the accuracy of
the 3D reconstruction results. The experimental results show that our BF-WGAN
algorithm has a better deblurring effect and higher efficiency than do other repre-
sentative algorithms. In addition, the TO-RANSAC algorithm yields a calculation
accuracy considerably higher than that of the traditional RANSAC algorithm.
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1 Introduction

Due to some factors, such as camera shaking and human motion, real-time image blurring easily occurs.
For a good visual effect, it is very important to remove the blur and obtain a sharp image [1]. The “intelligent”
solutions are essential in solving the blurring problem by using the effective critical thinking procedures to
restore the sharp image. Most of the existing image deblurring methods are based on the image prior
probability model. Krishnan et al. [2] assumed that the image gradient obeys the Laplace distribution, and
Zoran et al. [3] simulated the distribution of the image gradient with a Gaussian mixture model. The
image prior probability methods overlap with noise in the frequency domain or transform domain, so the
excessive smoothing of texture structures greatly reduces the visual effect. In recent years, many scholars
have applied deep learning to image deblurring algorithms. Xu et al. [4] proposed an image deblurring
method based on a convolutional neural network (CNN) to overcome the ringing effect in saturated
regions of images. Chakrabarti [5] predicted complex Fourier coefficients of motion kernels to perform
non-blind deblurring in the Fourier space. Gong et al. [6] used a fully convolutional network for motion
flow estimation. Nah et al. [7] adopted a kernel-free end-to-end approach that uses a multiscale CNN to
directly deblur the image. However, the CNN method considers the prior features of the image indirectly,
which are easily affected by noise.

To solve the problems of the existing deep learning algorithms, we propose a BF-WGAN algorithm,
which combines the bilateral filtering (BF) [8] denoising theory with the Wasserstein generative
adversarial network [9] (WGAN), to remove motion-blurred images. The BF-WGAN algorithm contains
two parts. First, the bilateral filter denoising algorithm is used to remove the noise and retain the details
of the blurred image. The advantage of the bilateral filter theory is that it not only considers the spatial
distance between pixels but also considers the degree of similarity between pixels, which ensures that the
pixel values near the edge are preserved. Second, the blurred image and corresponding sharp image are
input into the WGAN. This algorithm distinguishes the motion-blurred image from the corresponding
sharp image according to the WGAN loss and perceptual loss [10] functions, which allows the finer
texture-related details to be restored and the high-precision contours of the image to be revealed. Further,
the BF-WGAN has fewer parameters comparing to multiscale CNN, which heavily speeds up the
inference. Therefore, the BF-WGAN obtain state-of-the-art results in motion deblurring while faster than
the closest competitor-CNN.

3D reconstruction of the human body is very useful for the rapid and accurate measurement of an
individual’s height and body shape [11]. With the use of 2D real-time images of the human body taken
from different angles, 3D reconstruction technology can quickly and accurately provide information on
the growth of children. At present, it is estimated that there are approximately 149 million children under
the age of 6 with physical dysplasia worldwide. A child’s height and shape can directly reflect his or her
magnitude of growth [12]. Because there are many children that need to be evaluated, the traditional
manual measurement methods for height and body shape require considerable manpower and time.

For the 3D reconstruction of motion-blurred images, we use the deblurred images generated with the
BF-WGAN algorithm to perform the 3D reconstruction. The most important part of 3D reconstruction is
the calculation of the camera parameters, which mainly include the global rotation matrix and global
translation vector for multiview 3D reconstruction [13]. The global rotation matrix was used to remove
the wrong relationship between two views in the 3D reconstructed model. A commonly used method to
calculate the global rotation matrix is the RANSAC algorithm [14]. However, the traditional RANSAC
algorithm uses a fixed threshold, which can affect the accuracy of the global rotation matrix. This paper
proposes a threshold optimization random sample consensus (TO-RANSAC) algorithm that can adjust the
threshold adaptively to improve the accuracy of the 3D reconstruction results.

The contributions of this paper are listed as follows:

2088 CMC, 2021, vol.66, no.2



a) We use deep learning-based intelligent systems to remove the motion blur in images. The BF-WGAN
algorithm is proposed, which combines the BF denoising theory with WGAN. The BF denoising
algorithm is used to remove the noise and retain the details of the blurred image. The WGAN adopts
the blurred image, and corresponding sharp images are input into the WGAN. The BF-WGAN
algorithm has a better deblurring effect and higher efficiency than other representative algorithms.

b) We adopt the deblurred images generated from the BF-WGAN algorithm to perform the 3D
reconstruction. The TO-RANSAC algorithm is proposed, which can remove the wrong
relationship between two views in the 3D reconstructed model relatively accurately. Compared
with the traditional RANSAC algorithm, the TO-RANSAC algorithm can adjust the threshold
adaptively, which improves the accuracy of the 3D reconstruction results.

The remainder of this paper is organized as follows: Section 2 consists of two parts. Part 2.1 presents the
deep learning-based intelligent systems to remove the motion blur of images through the BF-WGAN
algorithm, and Part 2.2 explains the TO-RANSAC algorithm that we used to perform the 3D
reconstruction. In Section 3, we designed and evaluated an experiment to test the performance of the BF-
WGAN algorithm and the TO-RANSAC algorithm. In Section 4, we conclude our study and suggest
directions for future work.

2 Our Approach

2.1 BF-WGAN Algorithm

Normally, the processing of an image depends upon the quality, and the captured image in poor quality
might result in a mistake. The intelligent systems using intelligent decision-making algorithms and
techniques can help us to solve the image blurring problem.

In a mathematical model, image blurring can be described by the convolution process for an image. The
original sharp image x is convolved with the blurring kernel k, while noise n is added. Then, we obtain the
blurred image [15]:

y ¼ x � k þ n (1)

where � is a convolution operator.

2.1.1 Bilateral Filter Denoising Algorithm
A bilateral filter is a nonlinear denoising algorithm that eliminates noise while preserving image details

[16]. The general Gaussian filter mainly considers the spatial distance between pixels when sampling but
does not consider the degree of similarity between pixels [17]. Compared with the Gaussian filter, the
bilateral filter considers both the spatial distance and degree of similarity, thereby suppressing the
irrelevant details and enhancing the sharp edges of the image.

Step 1: Compute the Gaussian weight region filter based on the spatial distances:

h xð Þ ¼ k�1
d xð Þ

Z 1

�1

Z 1

�1
f nð Þ c n; xð Þ dn (2)

where f nð Þ and h xð Þ represent the input image and output image, respectively. n is near the neighborhood
centered on x. c n; xð Þ is the Gaussian weight based on spatial distance, which is used to measure the
spatial distance between the center x and the point n.
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c n; xð Þ ¼ e
�1

2
d n;xð Þ
rd

� �2

(3)

where d n; xð Þ ¼ d n� xð Þ ¼ n� xk k, rd is the standard deviation. kd xð Þ is the normalization factor:

kd xð Þ ¼
Z 1

�1

Z 1

�1
c n; xð Þ dn (4)

Step 2: Obtain the edge filter based on the degree of similarity:

h xð Þ ¼ k�1
r xð Þ

Z 1

�1

Z 1

�1
f nð Þ s f nð Þ; f xð Þð Þ dn (5)

where s f nð Þ; f xð Þð Þ is the weight based on the degree of similarity between pixels:

s f nð Þ; f xð Þð Þ ¼ e
1
2

c f nð Þ;f xð Þð Þ
rc

� �2

(6)

where c f nð Þ; f xð Þð Þ ¼ c f nð Þ � f xð Þð Þ ¼ f nð Þ � f xð Þk k, rc is the standard deviation. kr xð Þ is the
normalization factor:

kr xð Þ ¼
Z 1

�1

Z 1

�1
s f nð Þ; f xð Þð Þ dn (7)

Step 3: Create the bilateral filter by combining the Gaussian weight region filter with the edge filter:

h xð Þ ¼ k�1 xð Þ
Z 1

�1

Z 1

�1
f nð Þ c n; xð Þs f nð Þ; f xð Þð Þ dn (8)

where k xð Þ is the normalization factor:

k xð Þ ¼
Z 1

�1

Z 1

�1
c n; xð Þs f nð Þ; f xð Þð Þ dn (9)

After the local subregion � is defined, the discretized form of the formula (8) can be expressed
as follows:

h xð Þ ¼ k�1 xð Þ
X
�

f nð Þ c n; xð Þ s f nð Þ; f xð Þð Þ (10)

2.1.2 WGAN Deblurring Algorithm
This paper proposes a WGAN deblurring algorithm that adopts both the WGAN loss and perceptual loss

functions [18]. The WGAN loss function ensures that the generated samples are diverse, thereby allows the
fine texture-related details to be restored. The input and output results of the WGAN deblurring algorithm are
shown in Fig. 1. The input is the motion-blurred image, and the output result is the deblurred image [19].

The WGAN between generator G and discriminator D is the minimax value using Kantorovich-
Rubinstein duality [20]:

min
G

max
D2� E

x�Pr

D xð Þ½ � � E
~x�Pg

D ~xð Þ½ � (11)

where x represents the original sharp image and E represents the expectation. � is the set of 1-Lipschitz
functions. Pr is the data distribution, and Pg is the model distribution, defined by ~x ¼ G zð Þ, where the
input z represents the blurred image. D xð Þ represents the probability that x is a real image.
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① WGAN framework

As shown in Fig. 2, the framework of the WGAN deblurring algorithm consists of a generator and a
discriminator [21].

② Loss Function

The loss function of this paper consists of the WGAN loss and perceptual loss functions. The total loss
function L is defined as follows:

L ¼ Lperceptual þ �LWGAN (12)

where � ¼ 0:01 and is set according to the experience value.

Figure 1: Input and output results of the WGAN deblurring algorithm
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Figure 2: Framework of the WGAN deblurring algorithm
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WGAN loss. The WGAN loss LWGAN is calculated as follows:

LWGAN ¼
XN
n¼1

� DhD GhG IB
� �� �

(13)

where IB represents the blurred image. Deblurring is performed by the trained generator GhG and
discriminator DhD. N represents the size of the training data [22].

Perceptual loss. The perceptual loss function is defined as follows:

Lperceptual ¼ 1

Wi;jHi;j

XWi;j

x¼1

XHi;j

y¼1

fi;j I
S

� �
x;y � fi;j GhG IB

� �� �
x;y

� �2
(14)

where Wi;j and Hi;j are the dimensions of the feature maps. fi;j is the feature map obtained by the j-th
convolution before the i-th maxpooling layer within the VGG19 network [23]. IS represents the sharp
image, and IB represents the blurred image.

2.2 Multi-view 3D Reconstruction Based on the TO-RANSAC Algorithm

Multiview 3D reconstruction is mainly composed of four parts: (1) Feature extraction and matching;
(2) Camera parameter calculation; (3) 3D point cloud calculation; and (4) Bundle adjustment. The camera
parameter calculation mainly involves the global rotation matrix and global translation vector for
multiview 3D reconstruction [24]. The global rotation matrix is used to remove the wrong relationship
between two views in the 3D reconstructed model.

The most commonly used method to calculate the global rotation matrix is the RANSAC algorithm [25].
However, the traditional RANSAC algorithm adopts a fixed threshold, which can affect the accuracy of the
global rotation matrix. To improve the calculation accuracy, a threshold optimization random sample
consensus algorithm (TO-RANSAC) is proposed. The TO-RANSAC algorithm can adjust the threshold
adaptively, which prevents errors caused by different thresholds in the 3D reconstruction results.

The global rotation matrix is calculated by the relative rotation matrix through the least-squares
optimization algorithm. The formula is shown in (15):

Rj ¼ RijRi (15)

where Rij is a known relative rotation matrix, Ri and Rj are two global rotation matrices that need to be
calculated respectively. First, we calculate the global rotation matrices. The wrong relationship between
two views needs to be removed. Then, the global rotation matrices can be calculated with the formula (15).

This paper proposes a TO-RANSAC algorithm to remove the wrong relationship between two views in
the 3D reconstructed model. TO-RANSAC is a combination of the RANSAC algorithm and the threshold
optimization concept. The use of different threshold parameters for the traditional RANSAC will affect
the algorithm results. To avoid this problem, the TO-RANSAC algorithm is used to determine
whether the model is reliable on the basis of the NFA (number of false alarms) value [26]. Generally, the
smaller the value of NFA, the more reliable the model is. The calculation formula is:

NFA M ; kð Þ ¼ n0ðn� nsÞ n
k

� �
k
ns

� �
lk Mð Þ a0ð Þk�ns (16)

whereM is the calculated model parameter, k is the number of assumed correct samples, n0 is the number of
possible models, n is the number of total samples, ns is the minimum number of samples used to generate the
modelM , lk Mð Þ is the k-th smallest error for the modelM , and a0 is the probability that the random error is 1.
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The flow chart of the TO-RANSAC algorithm is shown in Fig. 3. The TO-RANSAC algorithm consists
of five steps, which are expressed below:

Step 1: Determine the sampling times N . We used formula (17) to determine the sampling times N .

N ¼ log 1� pð Þ
log 1� eqð Þ (17)

where p is the confidence value, which was set to be p ¼ 0:99. q represents the minimum number of samples
required for the calculation model, which was set to be q ¼ 3. e is the interior point rate, which was set to
be e ¼ 0:95.

Step 2: Calculate the initial global rotation matrix. Formula (16) is used, where M represents the initial
global rotation matrix, which is calculated by the random spanning tree; n is the number of all two-view
relationships, and ns is the number of edges on the random spanning tree.

Step 3: Calculate the errors for the remaining edges and sort the edges by the magnitude of the error. The
error was calculated as the angle difference between the relative rotation matrix and the global rotation
matrix, and the formula used is:

E ¼ D Rj;RijRi

� �
(18)

In formula (18), D a; bð Þ is the angle between the vectors a and b.

Step 4: Calculate the value of NFA M ; kð Þ and update its minimum value. If N > 0, the algorithm returns
to step 2, and the sampling times N are reduced by 1; otherwise, the algorithm proceeds to Step 5.

Step 5: Select the edge set that minimizes the value of NFA M ; kð Þ according to the correct two-view
relationship.

Start

Determine the sampling times N

Calculate the initial global
rotation matrix

Calculate the error of the
remaining edges

and sort them by the error

Calculate the value of NFA(M,k)
and update its minimum value.

N>0?

N=N-1

Select the edge set that
minimizes the value of NFA(M,k)

as the correct two view
relationship.

No

Yes

End

Figure 3: Flow-chart of the TO-RANSAC algorithm
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3 Experiments

For the performance evaluation of our approach, we collected 3000 real-time images of children from a
kindergarten. There were 100 children aged 2–6 years, including 50 female students and 50 male students. A
total of 30 real-time images were collected for each student in the JPG format. To evaluate the effect of the 3D
reconstruction method for motion-blurred images, we simulated the method in three parts. First, simulated
noise images and blurred images were generated. The noise images and blurred images were generated
by a ThinkPad S3-490 computer [27]. The algorithms for the simulated noise images and blurred images
were run by MATLAB 2018b. Second, the BF-WGAN algorithm was run on GeForce RTX 2080Ti GPU
and executed with Python. Moreover, the TO-RANSAC algorithm was run on a ThinkPad S3-
490 computer for deblurring images, which was executed by MATLAB 2018b.

The children were aged from 2–6 years, and one student of each age was selected as an example. Fig. 4
shows the original sharp images of five students from five different angles. The first child was a boy who was
2 years old, and his height was 80.3 cm. The second child was a girl who was 3 years old, and her height was
92.4 cm. The third child was a girl who was 4 years old, and her height was 101.7 cm. The fourth child was a
girl who was 5 years old, and her height was 112.3 cm. The fifth child was a boy who was 6 years old, and his
height was 123.1 cm. The size of the original sharp images was 512 × 512 pixels.

3.1 Generation of Simulated Noise and Blurred Images

We chose the images of a 2-year-old boy and a 4-year-old girl to simulate the experiment. For the
generation of simulated noise and blurred images, we mainly considered two aspects: the image noise
parameters and motion blur parameters.

3.1.1 Image Noise Parameters
Gaussian noise is a common type of noise that occurs with camera shaking [28]. The MATLAB library

includes a function that adds noise to an image, the imnoise function. We used the imnoise function to add
Gaussian noise to the image. Fig. 5 shows the Gaussian noise image with variances V ¼ 0:01, V ¼ 0:008
and V ¼ 0:04.

3.1.2 Motion Blur Parameters
We used the MATLAB special function to blur the image and mainly considered two aspects: The blur

angle and blur amplitude. For the blur angle, the blur amplitude was set to 15 pixels, and the blur angles
studied were 30°, 45°, and 60°. Fig. 6 shows the generated images of the two students with different blur
angles and blur amplitudes.

3.2 Experiment of BF-WGAN Algorithm

3.2.1 Qualitative Evaluation
Fig. 7 shows the image restoration results with noise and blurred image. Set the image restoration results

with Gaussian noise variance V ¼ 0:01, and the image restoration results with a blur amplitude of 15 pixels
and a blur angle of 45�. Fig. 7 shows that BF-WGAN algorithm effectively removes the noise and restores the
fine texture-related details.

For comparison, we compared our algorithm with other image deblurring algorithms, including Xu L’s
algorithm [6], Chakrabarti A’s algorithm [7], Gong D’s algorithm [8] and Nah S’s algorithm [9]. Figs. 8 and 9
show the results of the comparison of the different algorithms, including the noise and blurred images of two
students. (a) is the original sharp image. (b) shows the images with Gaussian noise variance V ¼ 0:008, with
a blur amplitude of 20 pixels and a blur angle of 60°. (c) is the image restored with our BF-WGAN algorithm.
(d) is the image restored with Xu L’s algorithm. (e) is the image restored with Chakrabarti A’s algorithm. (f) is
the image restored with Gong D’s algorithm. (g) is the image restored with Nah S’ s algorithm. Compared
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with the other four algorithms, our algorithms yielded the largest degree of restoration of the edge blur of the
image, and the resulting image was the most similar to the original sharp image.

3.2.2 Quantitative Evaluation
① Time Contrast Experiment

For the time contrast experiment of image deblurring, the images of a 2-year-old boy and a 4-year-old
girl were selected. The experiment was repeated 3 times for each group, and then, the average value of three
measurements was used for analysis.

Figure 4: Original sharp images of five students
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Figure 5: Gaussian noise image with different variances. (a) original sharp image. (b) V ¼ 0:01. (c)
V ¼ 0:008. (d) V ¼ 0:04

Figure 6: Images of the two students with different blur angles. (a) Original sharp image. (b) Blur angle of
30°. (c) Blur angle of 45°. (d) Blur angle of 60°
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Figure 7: Image restoration results with noise and blurred images. (a) Original sharp image. (b) Noise and
blurred image. (c) Restored image

Figure 8: Image restoration results with various algorithms for a male student. (a) Original sharp image. (b)
Noise and Blurred image. (c) BF-WGAN approach. (d) Xu L’s algorithm. (e) Chakrabarti A’s algorithm. (f)
Gong D’s algorithm. (g) Nah S’s algorithm

CMC, 2021, vol.66, no.2 2097



Tab. 1 shows the time contrast results of image deblurring using five algorithms. The BF-WGAN
algorithm greatly reduces the time required for image deblurring because the BF-WGAN algorithm has
fewer parameters than does the CNN, which greatly speeds up the inference process.

② Accuracy Contrast Experiment

We adopt the peak signal-to-noise ratio (PSNR) [29,30] to measure the accuracy of image deblurring.
For the blurred image of the 2-year-old boy, the images had Gaussian noise variance V ¼ 0:008, a blur
amplitude of 20 pixels, and blur angle of 60�. Figs. 10 and 11 show the PSNR results of the blurred
image for the five algorithms. The PSNR value of our BF-WGAN is higher than the other four
representative algorithms, and it yields a better restoration effect.

Figure 9: Image restoration results with various algorithms for a female student. (a) Original sharp image.
(b) Noise and Blurred image (c) BF-WGAN approach. (d) Xu L’s algorithm. (e) Chakrabarti A’s algorithm.
(f) Gong D’s algorithm. (g) Nah S’s algorithm

Table 1: Comparison of the time required for image deblurring using five algorithms

Category Time (s)

Xu L’s algorithm Chakrabarti A’s
algorithm

Gong D’s
algorithm

Nah S’s
algorithm

BF-WGAN
algorithm

2-year-old boy 40.29 22.67 18.41 14.24 3.15

4-year-old girl 41.41 23.55 19.33 14.58 3.27
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3.3 Experiment of 3D Reconstruction

3.3.1 Results of 3D Reconstruction
Fig. 12 shows the 3D reconstruction results for the 2-year-old boy. According to the 3D reconstruction

results, the height, shoulder width and head width of the 2-year-old boy were 79.1 cm, 25.3 cm and 14.2 cm,
respectively. Compared with the actual measured data of the 2-year-old boy, the differences in the height,
shoulder width and head width were 1.2 cm, 0.7 cm and 0.5 cm, respectively. Therefore, the AC-
RANSAC 3D reconstruction algorithm presents a reasonable reconstruction effect.

Figure 10: Comparison of the PSNR value for a 2-year-old boy

Figure 11: Comparison of the PSNR value for a 4-year-old girl
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Fig. 13 shows the 3D reconstruction results for the 4-year-old girl. According to the 3D reconstruction
results, the height, shoulder width and head width of the 4-year-old girl were 102.5 cm, 28.7 cm and 17.2 cm,
respectively. Compared with the actual measured data of the 2-year-old boy, the differences in the height,
shoulder width and head width were 0.8 cm, 0.6 cm and 0.4 cm, respectively. Therefore, the AC-
RANSAC 3D reconstruction algorithm also presents a reasonable reconstruction effect.

3.3.2 Performance of 3D Reconstruction
The TO-RANSAC and RANSAC algorithms were used to remove the wrong two-view relationships.

For the 2-year-old boy and 4-year-old girl, Tabs. 2 and 3 show the comparison of the wrong edges
removed with the TO-RANSAC and RANSAC algorithms. The threshold parameter of the RANSAC was
set to 1°, and the TO-RANSAC algorithm used the adaptive threshold parameters. The second column in
the table shows the number of wrong edges removed after using the TO-RANSAC and RANSAC
algorithms. The third column shows the percentage of wrong edges removed to the total number of
edges. Compared with the RANSAC algorithm, the TO-RANSAC algorithm preserves more relationships
between two views in the 3D reconstructed model.

For the 2-year-old boy and 4-year-old girl, Tabs. 4 and 5 show the comparison of the 3D reconstruction
results determined with the TO-RANSAC and RANSAC algorithms. The 3D reconstruction results of the
TO-RANSAC algorithm were better than those of the RANSAC algorithm. The RANSAC algorithm
used a fixed threshold, which can affect the accuracy of the global rotation matrix. Therefore, the TO-
RANSAC algorithm obtained more 3D points and exhibited higher accuracy. Compared with the
RANSAC algorithm, the two algorithms required almost the same amount of time to run, which indicates
that the TO-RANSAC algorithm is stable.

Figure 12: 3D reconstruction results for the 2-year-old boy
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Table 2: Comparison of the wrong edges removed with the TO-RANSAC and RANSAC algorithms for the
images of a 2-year-old boy

Algorithm Number of removed wrong edges Percentage of removed wrong edges (%)

RANSAC 69 23.75

AC-RANSAC 15 5.25

Table 3: Comparison of the wrong edges removed with the TO-RANSAC and RANSAC algorithms for the
images of a 4-year-old girl

Algorithm Number of removed wrong edges Percentage of removed wrong edges (%)

RANSAC 80 24.88

AC-RANSAC 19 5.93

Table 4: 3D reconstruction comparison of the TO-RANSAC and RANSAC algorithms

Algorithm Number of 3D points Time (s)

RANSAC 11452 11.24

AC-RANSAC 30841 12.15

Figure 13: 3D reconstruction results for the 4-year-old girl
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4 Conclusion

The “intelligent” solutions are essential to take care of solving the blurring problem, which uses effective
critical thinking procedures to restore the sharp image. First, we propose a BF-WGAN algorithm to remove
the motion-blurred images, which combines the BF denoising theory with a WGAN. In this algorithm, the
bilateral filter denoising algorithm is used to remove the noise and retain the details of the blurred image.
Then, the blurred image and corresponding sharp image are input into the WGAN. This algorithm
distinguishes the motion-blurred image from the corresponding sharp image according to the WGAN loss
and perceptual loss functions, which allows the fine texture-related details to be revealed and the high-
precision contours of the images to be revealed. Second, we used the deblurred images generated by the
BF-WGAN algorithm to perform 3D reconstruction. The TO-RANSAC algorithm is proposed, which can
remove the wrong relationships between two views in the 3D reconstructed models relatively accurately.
Compared with the traditional RANSAC algorithm, the TO-RANSAC algorithm can adjust the threshold
adaptively, which improves the accuracy of the 3D reconstruction results. The experimental results show
that our BF-WGAN has a better deblurring effect and higher efficiency than do other representative
algorithms. In addition, the TO-RANSAC 3D reconstruction algorithm yields a calculation accuracy
considerably higher than that of the traditional RANSAC algorithm.

In a word, deep learning is significant for successfully executing image deblurring tasks. Effective deep
learning algorithms can help yield more accurate 3D data, which can be used to measure individuals’ height
and shape quickly and accurately. The vast use of these intelligent systems is due to its intelligent decision-
making algorithms and techniques. However, deep learning trends in intelligent systems have the possibility
of slowing down the entire computing process. There may be significant performance pressure on the
processing and evaluation of images. In order to overcome these limitations in accuracy and
computational time, we need to incorporate an effective deep learning image processing algorithm with
an efficient data processing architecture in the future.
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