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Abstract: With the rapid development of blockchain technology, more and more 
people are paying attention to the consensus mechanism of blockchain. Practical 
Byzantine Fault Tolerance (PBFT), as the first efficient consensus algorithm 
solving the Byzantine Generals Problem, plays an important role. But PBFT also 
has its problems. First, it runs in a completely closed environment, and any node 
can't join or exit without rebooting the system. Second, the communication 
complexity in the network is as high as O(n2), which makes the algorithm only 
applicable to small-scale networks. For these problems, this paper proposes an 
Optimized consensus algorithm, Excellent Practical Byzantine Fault Tolerance 
(EPBFT), in which nodes can dynamically participate in the network by 
combining a view change protocol with a node's add or quit request. Besides, in 
each round of consensus, the algorithm will randomly select a coordination node. 
Through the cooperation of the primary and the coordination node, we reduce the 
network communication complexity to O(n). Besides, we have added a 
reputation credit mechanism and a wrong node removal protocol to the algorithm 
for clearing the faulty nodes in time and improving the robustness of the system. 
Finally, we design experiments to compare the performance of the PBFT and 
EPBFT algorithms. Through experimental, we found that compared with the 
PBFT algorithm, the EPBFT algorithm has a lower delay, communication 
complexity, better scalability, and more practical.  

Keywords: Byzantine fault tolerance; distributed consensus; PBFT; blockchain; 
PBFT optimization 

1 Introduction 
In 2008, an article called “Bitcoin: A Peer-to-Peer Electronic Cash System” introduced Bitcoin into 

people’s field of vision, and has since entered the era of digital currency. The Bitcoin system 
subsequently developed rapidly, attracting the attention and research of a large number of scholars. Later, 
the researchers extracted the underlying framework of the Bitcoin system and named it blockchain. 

Simply, the blockchain is a decentralized distributed database, and the data in the system needs to be 
jointly maintained by all nodes. Each node in the blockchain system is equal, and has a copy of the 
database. Blockchain, as its name, is formed by connecting blocks sequentially, as shown in Fig. 1.  Block 
is the basic data unit of blockchain. It is a special data structure consisting of a block header containing 
metadata and a block body containing transactions. The structure of the blocks in different blockchain 
systems is similar, but the content contained in the block header and block body is different. In the 
Bitcoin system, the block header size is fixed at 80 bytes, and each block body contains at least 500 
transactions. The block structure is shown in Tab. 1. 
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Figure 1: The structure of the blockchain 

Table 1: The struct of the node information table 

Field Size  Description 
Block Size 4 bytes The size of block, in byte 
Block header  80 bytes Several fields form the block header 
Transaction Counter 1–9 bytes How many transactions follow 
Transaction Variable The transaction recorded in this block 

The development of the blockchain can be divided into three stages: (1) The use of blockchain 
technology to release digital currency and realize the point-to-point transmission of value. At this time, it 
is called Blockchain 1.0, which is a decentralized, everyone-oriented virtual currency system and related 
applications. Bitcoin is the representative of it. However, the blockchain system can only be applied to the 
transaction payment field. when applied to other fields, it is necessary to re-adjustment of the underlying 
structure. (2) Use the blockchain to build an application development platform, so that people can develop 
their own blockchain applications based on this platform without rebuilding the underlying blockchain 
system. This is the Blockchain 2.0, use smart contracts to develop pan-finance programmable applications. 
The representative is Ethereum. However, the consensus mechanism of this type of application has high 
latency and low throughput and cannot be applied to other fields besides finance. (3) Blockchain 3.0 
symbolizes that the blockchain has entered the field of social justice and intelligence. We can use 
blockchain to confirm, measure and store the property rights of any information that represents value, 
such as electronic notarization, arbitration, voting, auditing, medical treatment, traceability, etc. The 
difficulty of blockchain 3.0 is the performance problem, which requires a throughput of up to one million. 

With the rapid popularity of cryptographic currency [1], blockchain technology has also been rapidly 
developed and widely used in various fields, such as finance, medical care [2–3], education, IOT [4], edge 
computing [5], and so on. The core of blockchain technology, distributed consensus mechanism, has also 
become a hot topic of research [6].  

The distributed consensus mechanism is to solve the Problem of Byzantine failures [7]: When the 
channel is reliable, how to make the whole system run well and ensure the integrity, reliability, and 
consistency of stored information with the interference of malicious nodes. Research-based on Byzantine 
Generals Problem has been going on for a long time. However, most earlier work either concerns 
techniques designed to demonstrate theoretical feasibility that is too inefficient to be used in practice or 
assumes synchrony [8–10], i.e., relying on known bounds on message delays and process speeds. 
Practical Byzantine Fault Tolerance (PBFT) was the first practical algorithm to tolerate Byzantine errors, 
presented by Castro et al. [11]. PBFT is a state machine replication protocol [12]. It provides liveness and 
safety properties if the number of malicious nodes in the network does not exceed [(n – 1) / 3], where n is 
the number of the total replicas of the network. But PBFT also has some problems: (1) The algorithm runs 
in a completely closed environment, and nodes are not allowed to join or exit freely. (2) It is closed leads 
to the inability to kick malicious nodes out of the network in the operation of the algorithm, which leads 
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to repetitive errors. (3) The communication complexity of the algorithm is as high as O(n2). To solve 
these problems, we propose a better performance Byzantine fault-tolerant algorithm called Excellent 
Practical Byzantine Fault Tolerance (EPBFT). 

EPBFT is a PBFT-based consensus protocol that inherits all of the advantages of PBFT, providing 
the same safety and liveness as PBFT. At the same time, EPBFT works on the weak synchronization 
assumption, which makes it applicable to the Internet. For the issues mentioned above, EPBFT has also 
made some optimizations: it reduces the communication complexity from O(n2) to O(n) and removes the 
commit phase to reduce the delay. EPBFT has better scalability, allowing nodes to join or exit the 
network while the system is running. Besides, the credit score mechanism and the error node clearing 
protocol have been introduced to EPBFT to improve the robustness of the system. The original PBFT 
protocol uses the C/S request-response mode. that is essentially a manifestation of a centralized mindset. 
When applied to a blockchain system, it does not match the peer-to-peer network of the blockchain. So in 
EPBFT, we changed it to the P2P network topology response. Compared with PBFT, EPBFT has better 
communication performance, lower latency, more stability, and more practical. 

Thus, this paper makes the following contributions: (1) Better scalability. When a node joins or exits, 
the node in the network does not need to be down. They only need to perform consensus verification on 
the node’s join or exit. After passing the verification, they can join or exit the system. (2) Lower 
communication complexity. In each round of consensus, the algorithm reduces the communication 
complexity to O(n) by randomly selecting a coordinating node to cooperate with other nodes. (3) High 
system stability. The algorithm introduces a reputation credit mechanism and a faulty node removal 
protocol, which cleans up faulty nodes in the system promptly. (4) change the C/S request-response mode 
in the original PBFT to P2P network topology response mode. 

There is some closest work to us. Liu et al. proposed a dynamic authorization PBFT algorithm [13]. 
It allows the nodes to join the network while the system is running by classifying nodes, but the new 
nodes do not participate in the consensus immediately. The number of consensus nodes remains 
unchanged during the consensus process, and the communication complexity is O(n2). Xu Xiao proposed 
a dynamic BFT [14]. It realizes the dynamic participation of nodes with the help of a reliable central node 
NodeCA and view-change protocol. But the process of the node joining process is assumed to be too ideal. 
It requires the new node to send the join request to the network immediately after the network registration 
is successful. Its communication complexity is also O(n2). Jiang Yanjun proposed an HSBFT algorithm 
[15], which also realized the active participation of nodes by introducing trusted service providers. 
Although it reduces the communication complexity to O(n), it requires five stages to reach a consensus. 
Thus, it increases the delay of the message. 

The rest of the paper organized as follows: In Chapter 2, we will give a brief introduction to the 
system model and some concepts of EPBFT; The EPBFT consensus process, and some of the problems 
that may arise, are discussed in Chapter 3;  In Chapter 4, we will test and analyze EPBFT from latency, 
communication complexity, and Fault tolerance. Finally, we conclude in Chapter 5. 

2 Preliminaries 
In this chapter, we will introduce the system model and some important concepts of EPBFT. 

2.1 System Model 
The system assumption of EPBFT is very similar to PBFT. We assume that there are some malicious 

nodes in an asynchronous distributed system. The behavior of malicious nodes is arbitrary. They may 
send error messages, do not reply, delay the communication of the correct nodes, even join forces to 
attack. But they cannot delay the communication of the correct nodes indefinitely and subvert the 
cryptographic techniques. 

In the system, we use encryption to prevent spoofing, replay attacks and detect message corruption 
[16]. The encryption technologies used in the system have public-key signatures, message authentication 
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codes, and message digests produced by collision-resistant hash functions. We indicate the signature of 
the message m signed by node i is <m>σi, and the digest of the message m is D (m). It should note that we 
signed the digest of a message and then attached it to the end of plaintext message instead of directly 
signing the original text (<m>σi, should be explained in this way). Each node is required to know the 
public key of other nodes. 

2.2 Normal-Case Operation of PBFT 
Under normal circumstances, the PBFT needs three stages to finish consensus: pre-prepare, prepare, 

commit. The pre-prepare phases and prepare phases ensure that non-faulty nodes agree on the order of the 
requests in the same view. The prepare phases and commit phases provide that non-faulty nodes can still 
reach a consensus on the order of the requests even if the view has changed. Through these three phases, 
all non-faulty nodes guarantee to perform the same sequence of requests, and the state of the State 
Machine Replication is consistent. 

Fig. 2 shows the operation of the algorithm in the normal case of no primary faults. Replica 0 is the 
primary, replica 3 is faulty, and C is the client. Dashed lines indicate possible situations. 

 
Figure 2: Normal case operation 

2.3 Node Information Table (NIT) 
In EPBFT, the state and number of nodes are dynamically changing, so each node needs to maintain 

an NIT to get the information in the network in real-time. 

Table 2: The struct of the node information table 

Node ID State IP PK Grade 

1 Active 192.169.3.55 … 3 

2 Sleep 192.168.66.201 … 2 

… Dead … … 0 

where PK is similar to “1Ez69SnzzmePmZX3WpEzMKTrcBF2gpNQ55”. 

The NIT records the information of each node in the network. The state represents the current state 
of a node. It has three states: Active, Sleep, Dead. Dead indicates that the node is faulty. Sleep indicates 
that the node has actively logged out of the network. Active indicates that the node is normal. The Grade 
indicates [17–18] the times of VERIFY-TIMEOUT of the node when the node is selected as the 
coordinating node, the initial value is still 3. When it reduced to 0, the node can also be considered as the 
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faulty node. Besides, the table also includes other information about the node, such as IP, PK. By 
querying the NIT, a node can obtain the number n of active nodes in the network [19]. 

2.4 Primary Selection and View Number 
In EPBFT, the number of nodes is dynamically changing. So the formula, P = V mod Rn, for 

calculating the primary, is no longer applicable, where Rn is the total nodes. The new way to select the 
primary is as follows:  

When the view changes, starting from the row where the current primary is located in the NIT, 
looking for a node, whose state is Active, Grade is greater than 0, as the new primary. If the end of NIT is 
reached, the condition is still not met, then search again from the first line of NIT.  

The view number is also redefined. We use the ‘n-nodeId’ to represent a view, where n represents 
the view is the n-th view, which increments from 0; nodeId represents the node number of the new 
primary node. 

2.5 Network Structure  
PBFT uses a C/S request-response mode. The client sends a request to the distributed system. After 

receiving the request, the distributed system sequentially executes the request and returns the result to the 
client. That is essentially a manifestation of a centralized idea that does not correspond to the 
decentralized features of blockchain [20]. So in EPBFT, we changed the C/S request-response mode of 
PBFT to the P2P network topology response mode. We randomly selected a coordination node in the 
process of consensus. When most nodes approve a new block, the coordination node sends a 
CONFIRMED message to all active nodes. After receiving the CONFIRMED message, the primary starts 
to generate the next block. This way can dynamically generate blocks according to the state of the 
network, which increases the flexibility of the system. 

3 Excellent PBFT 
In this chapter, we will introduce the algorithm of EPBFT in detail. 
Although PBFT has many advantages, its closure and high communication complexity have being 

criticized. 
Therefore, in EPBFT, we propose an Optimized consensus algorithm. We will randomly select a 

node as the temporary coordination node during each round of consensus. Through the coordination node, 
we can not only change the C/S request-response model of the PBFT to the P2P network topology 
response mode but also reduce the communication complexity to O(n). We use backup nodes to represent 
all non-primary nodes. 

3.1 Normal Case Operation 
When a node is selected as the primary node or the primary node receives a CONFIRMED message 

from the coordination node, it takes the transactions from the transaction pool and packs them into a block 
and then starts a three-phases protocol to finish the consensus. The three stages are proposal, verify, 
confirmed. 

In the proposal phase, the primary node calculates the height of the next block and sends a proposal 
message with the block message piggybacked to all other active nodes in its NIT. Then the message is 
added into its log and a timer Tpc start (waiting for a confirmed message).  

The format of the proposal message is <<PROPOSAL,v,h,d,t,R>σp,block>, where v is the current 
view, h is the height of the next block, and d is the digest of the block, d = D(block), t is the timestamp 
when the proposal message was sent, σp is the signature of the primary on PROPOSAL,  R is the location 
of the coordination node, It finds the R-th active node from the row where the primary node is in the NIT. 
R calculate [21] as follow: 
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R = StrToInt �SubStringEnd32�hash(block)��   𝑚𝑚𝑚𝑚𝑚𝑚  𝑛𝑛                                                                (1) 

Where n is the number of active nodes in NIT. 
A backup accepts a proposal message provided: 
(1) d is the digest of the block, σp is correct, and node R is active; 
(2) The v in the proposal message is equal to the local v. 
(3) it has not accepted a proposal message with same v and h but containing a different d; 
(4) h is in the range of [L, H], and L is the last stable checkpoint, H = L + 2 * K, K is a constant; 
(5) The transactions in the block are correct; 
If backup node i accepts a proposal message, it enters the verify phase and sends a verification 

message to the node R. Then it starts a timer Tc (waits for a confirmed message) [22], and adds the 
proposal and verify messages to its log. If the verification fails, nothing will be done. The form of the 
verify message is: <<VERIFY,v,h,d,P,i>σi,block> where the P is the proposal message node i received, i 
is the node Id. 

After receiving a verify message, the node R accepts the verify message and adds it to its log 
provided the signature of the verify message is correct, the v in message equals the replica’s v, the h is 
between L and H. When the node R receives 2f verify messages from different active nodes with the same 
v, h, d, it enters the confirmed phase. Then it broadcasts a confirmed message to all active nodes, 
including the primary node.Theconfirmed message’s format is: <<CONFIRMED,v,h,d,t,ψ>σr,block>, 
where ψ is a set containing the 2f correct verify messages received by node R, t is the timestamp in 
proposal message. 

Fig. 3 shows the process of the algorithm in the normal case of no primary faults. Replica 0 is the 
primary, replica 3 is faulty, and replica 2 is the coordination node of this consensus. 

 
Figure 3: Normal case operation 

3.2 Other Case  
Under normal circumstances, EPBFT reduces the communication complexity to O(n) through a 

coordination node. However, in an asynchronous network, it is difficult to avoid the existence of network 
delay, or the primary and coordination node does evil, which may cause the above process not to be 
executed correctly. Next, let’s discuss the possible anomalies and their solutions.  

Case A 
If the backup node does not receive a proposal message from the primary within the specified timer 

Tp, the backup node starts the view-change protocol and switches to the new view. 
Case B 
If the coordinating node accepts f + 2 (f = (n – 1)/3, n is the total nodes) verify messages from different 

backup nodes, it will broadcast <VERIFY-FAIL,v,h,t,ψ>σr to other nodes, where ψ is the set of f + 2 
different verify messages it accepts. When a backup node receives the verify-fail message, it verifies the 
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signature, and each of the messages in ψ. When they passed the verification, the backup starts the view-
change protocol to switch a new view. 

Case C 
If the backup node does not receive a confirmed message from node R before Tc expired. They 

resend the verify message to node R + 1 and decrement node R’s grace by one. (1) If the backup receives 
the verify message from node R + 1, it indicates that there is a problem with the coordination node, they 
will decrement node R’ time-out by one. And then continue. (2) If the backup still does not receive the 
verify messages from node R + 1, it indicates that the primary node has failed, they will start the view-
change protocol to change the primary. 

Case D 
If the primary does not receive the conformed message within Tpc (Tpc > 2Tc), It randomly selects 

k nodes, and requests conformed messages from them. If most of the responses (with the threshold 
percentage p) from the k backup nodes are the same. The primary node accepts the conformed message. 
The reason for this is to prevent that the coordinating node deliberately does not send a message to the 
primary node to prevent the system from running. 

If there are n active nodes in the current system with f faulty nodes, the probability Pr the primary 
get the correct CONFORMED message is: 

𝑃𝑃𝑃𝑃 =
∑ ∁𝑛𝑛−𝑓𝑓

𝑖𝑖 ∁𝑓𝑓
𝑘𝑘−𝑖𝑖𝑘𝑘

𝑖𝑖=𝑘𝑘𝑘𝑘

∁𝑛𝑛𝑘𝑘
                                                                                                                                      (2) 

For quantitative analysis, we assume f = 4, n = 13, and the results show in the Tab. 3. 

Table 3: Pr with different k and p 

                         P 
k ≥

1
2

 ≥
2
3

 

1 0.69 0.69 
2 0.92 0.46 
3 0.79 0.79 
4 0.94 0.64 
5 0.88 0.48 
  6 0.97 0.78 
7 0.95 0.65 
8 1 0.51 
9 1 0.82 

It can be seen from the table that Pr does not increase linearly as k increases. Even with the increase 
in p, Pr may decrease. In the example of n = 13, f = 4, a better solution is to select six backup nodes for 
inquiry. When more than three identical confirmed messages were received, the primary has a 97% 
probability of getting the correct confirmed message.  

3.3 The Scalability of the Algorithm 
In the PBFT algorithm, nodes are not allowed to join or exit during system operation, which severely 

limits its application in a real scene. In this section, we introduce the scalability of the EPBFT. 

3.3.1 View Change Protocol 
To ensure the liveness of the system, when the backup node suspect that the primary is evil or does not 

receive the proposal message from the primary within the specified time Tc, they will start the view-change 
protocol to switch to a new view. In the EPBFT algorithm, the view-change protocol is as follows: 

Pr 
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When a node begins the view change protocol for a new view, it will stop accepting other messages 
(except checkpoint message, view-change message, new-view message), and then it sends a view-change 
message to the primary of the new view v+1. The format of the view-change message is: <view-change, 
v+1,hlast,C,S,I>σi, where v+1 is the new view, hlast is the height of the previous block, C is a set, 
containing the proposal message and confirmed message of block hlast, S is the NIT of node i, which has 
to delete the old primary node. 

 When the new primary receives 2f valid view-change messages for view v+1 from different replicas 
with the same S, it enters view v+1, multicasts a new-view message to all other active backups and set the 
local NIT to S. The format of the new-view message is: <new-view,v+1,hnext,C,V,S>σp where V is a set 
that contains 2f vailed view-change messages received by the primary, and hnext is the most hlast in view-
change messages in V; C is a set, containing the proposal and confirmed message of hnext.  

A backup accepts a new-view message for v+1 if it is signed properly, if the view-change messages 
in V are valid, if hnext, C, S is matched to V. And then the backup enters view v+1.add the new-view 
message to its log and sets its NIT to S. 

After that, the new primary starts generating blocks from the height hnext.  
Fig. 4 shows the process of the view-change proposal. Replica 3 is the old primary and is faulty, and 

replica 2 is the new primary node. The dotted line indicates that the node does not exist. 

 
Figure 4: The process of View-Change Proposal 

3.3.2 New Node Participation Protocol 
When a new node j, wants to join the network, it multicasts a join-req message to all nodes in the 

network. The format of the join-req message is: <JOIN-REQ,M>σj, where M is the basic information of 
node j, including the IP address, public key.  

After receiving the join-req message, the node i checks the M information. If the verification is 
passed, node i assigns a node number m to node j according to its own NIT. The allocation rules for m are 
as follows: 

(1) If node j is not in NIT, set m to NIT’s length plus one; 
(2) If the node j is in the NIT, but the status is Dead. the join will be rejected; 
(3) If the node j is in the NIT and the state is sleep, then m is set to the original node number of node j. 
Then the node i sends a join-rep message to the node j. The format of the join-rep message is: 

<JOIN-REP,v,t,m,S,n,i>σj, where S is the NIT of node i, n is the number of active nodes in S, m is the 
node number assigned by node i for j, t is the timestamp.  

The node j adds the join-rep message to its log if it is signed properly, m, n is matched to S. Node j 
selects the join-rep message whose n is the largest and has 2 * ((n – 1)/3 + 1)   messages as same as it 
(with the same v, t, S)in the log, as the correct join-rep message. Because node j does not know how many 
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nodes are in the current network. From the right join-rep messages, node j can obtain the total number of 
nodes n in the current network, the state S of each node, and the maximum number of faulty nodes (f = 
((n – 1))/3). Then, it multicasts a join message to all active nodes in S, and set its NIT to S. 

The format of the join message is: <JOIN,v,t,m,V>σj, where v is the view, t is the timestamp in the 
join-rep message, V is a set containing 2f + 1 correct join-rep messages received by the node j. 

After receiving the join message, backup i verifies the signature and each message in V, check v, t, 
m according to the join-rep sent before. If the verification is passed, it needs to add node j to its NIT with 
the help of a view change protocol. Backup i stop accepting other messages (except checkpoint message, 
view-change message, new-view message), and then it sends a view-change message to the primary. 

The format of the view-change message is: <view-change,v,hlast,C,J,i>σi, where v is the view, hlast is 
the height of the previous block, C is a set, containing the proposal message and confirmed message of 
block hlast, J is the join message from node j. 

 When the primary receives 2f valid view-change messages from different replicas with the same v, J, 
it multicasts a new-view message to all other active backups (include the node j) and adds node j to its NIT. 

The format of the new-view message is: <new-view,v,hnext,C,V>σp, where V is a set that contains 2f 
vailed view-change messages received by the primary, and hnext is the smallest hlast in view-change 
messages, in which each of them has another f identical messages as same as it, in V, C is a set, 
containing the proposal and confirmed message of hnext.  

A backup accepts a new-view message if it is signed properly, if the view-change messages in V are 
valid and the J in each the view-change message of V is the same, if hnext, C is matched to V. And then the 
backup adds the new-view message to its log and adds node j to its NIT. 

Fig. 5 is the joining process of node j. Node 0 is the primary node, node 3 is faulty, and j is the new node. 

 
Figure 5: The process of a new node participating 

3.3.3 Active Exit Protocol  
In EPBFT, when a node e actively requests to log out of the network, the following process is performed. 
First, node e multicasts an exit-req message to all other active nodes. The format of the exit-req 

message is: <EXIT-REQ,v,t,n>σe, where v is the view, n is the node number of node e, t is the timestamp 
and is totally ordered.   

When node i receives an exit-req message, it verifies its signature and checks v, t according to its 
current v. If the verification passes, node i will send an exit-rep message to node e. The format of the exit-
rep message is: <EXIT-REP,v,t,n,i>σi, where v is the view, n is the node id of node e, t is the timestamp 
in the exit-req message. 

The node e adds the exit-rep message to its log if it is appropriately signed, v, t, n is the same with its 
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exit-req message. When node e receives 2f correct exit-rep messages from the different backup node with 
the same v, t, n, it multicasts an exit message to all other active nodes, The format of the exit message is:  
<EXIT,v,t,n,V>σe, where V is a set containing the 2f valid exit-rep messages received by the node e.  

After receiving the exit message, backup i verifies the signature and each message in V, check v, t, m 
according to the exit-req received before. If the verification is passed, it needs to remove node j from its 
NIT utilizing the view change protocol. Backup i stop accepting other messages (except checkpoint 
message, view-change message, new-view message), and then it sends a view-change message to the 
primary. The format of the view-change message is: <view-change,v,hlast,C,E,i>σi, where v is the view, 
hlast is the height of the previous block, C is a set, containing the proposal message and confirmed 
message of block hlast, E is the exit message from node e. 

 When the primary receives 2f valid view-change messages from different replicas with the same v, 
E, it multicasts a new-view message to all other active backups (include the node e) and remove the node 
e from its NIT. The format of the new-view message is: <new-view,v,hnext,C,V>σp, where V is a set that 
contains 2f vailed view-change messages received by the primary, and hnext is the most in view-change 
messages,  V,C is a set, containing the proposal and confirmed message of hnext.  

A backup accepts a new-view message if it is signed properly if the view-change messages in V are 
valid and the E in each the view-change message of V is the same if hnext C is matched to V. And then the 
backup adds the new-view message to its log and remove the node j from its NIT. 

Fig. 6 shows the active exit protocol in EPBFT. Node 0 is the primary, node 3 is faulty, and node 1 is 
the exit node e. The dotted line indicates that the node does not exist.  

 
Figure 6: The flow of Active Exit Protocol 

3.3.4 Node Recovery Protocol 
When a node r that has actively quit applies to join the network again, it performs a node recovery 

protocol. 
Firstly, it multicasts a recover-req message to all nodes in the network. The format of the recover-req 

message is: <RECOVER-REQ,r,ψ>σr, where r is the original id of the node r, ψ is the information of 
node r, such as IP, PK. 

After receiving the recover-req message, node i verifies the signature and checks the n and ψ according 
to its NIT. If the verification is passed, it sends a recover-rep message to node r. Otherwise, it does nothing. 
The format of the recover-rep message is: <RECOVER-REP,v,t,r,S,n,i>σi, where S is the NIT of node i, n is 
the number of active nodes in S, m is the original node id of the node r, t is the timestamp.   

The node r adds the recover-rep message to its log if it is signed properly, n is matched to S. m is 
equal to the recover-req message. Node r selects the recover-rep message whose n is the largest and has 2 
* ((n – 1) / 3 + 1) messages as same as it (with the same v, t, S) in the log, as the correct recover-req 
message. Because node r does not know how many nodes are in the current network. From the correct 
recover-req messages, node r can obtain the total number of nodes n in the current network, the state S of 



            
JCS, 2020, vol.2, no.4                                                                                                                                                 177 

each node, and the maximum number of faulty nodes (f = (n – 1) / 3). Then, it multicasts a recover 
message to all active nodes in S, and set its NIT to S. 

The format of the recover message is: <RECOVER,v,t,m,V>σj, where v is the view, t is the 
timestamp in the recover-rep message, V is a set containing 2f+1 correct recover -rep messages received 
by the node r. 

After receiving the recover message, backup i verifies the signature and each message in V, check v, 
t, m according to the recover-rep sent before. If the verification is passed, it needs to change the state of 
node r in its NIT to ACTIVE. Backup i stop accepting other messages (except checkpoint message, view-
change message, new-view message), and then it sends a view-change message to the primary. 

The next process is the same as the new node joining process and will not be described in detail here. 
  Fig. 7 shows the recovery process of node r. Node 0 is the primary node, node 3 is faulty, and node 

r is the node to be recovered. 

 
Figure 7: The process of a new node recovering 

3.4 Reputation Credit Mechanism and Wrong Node Removal Protocol 
To improve the robustness and stability of the system, we should appropriately remove the nodes 

which are marked as evil. For this, we introduce two new concepts: 
Grade: It is the number of times the node has failed. When a coordinating node does not send the 

confirmed message to other backup nodes in time, its Grade decreases by 1. When Grade drops to 0, the 
node is considered to be the fault node and should be cleaned up.  

Error node removal protocol: When a node finds that the grade of a node f in its NIT becomes 0, it 
will add the id of the node to the pre-clearing set E, and periodically check whether E is empty. If it is not 
empty, the view change protocol will start, and these nodes will be cleared from the NIT. 

In this chapter, we present a series of protocols for nodes to participate and exit the EPBFT network 
dynamically. The joining or exiting process of a node does not affect the safety and liveness of the 
algorithm. Because in each sub-process, we all ensure that at least f+1 honest nodes joined. 

3.5 Correctness  
In this section, we present an Excellent PBFT that reduces communication complexity and changes 

the C/S response mode. But in the process of consensus, the node can only enter the next stage with the 
consent of most nodes. So it still maintains the same safety and activity as PBFT. 

To avoid duplication, the backup nodes will retain the last confirmed messages they received and 
reject the messages whose timestamps less than those.  

4 Performance Evaluation 
In this chapter, we will test and analyze EPBFT from the four aspects of communication complexity, 
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delay, fault tolerance, and scalability, and compare it with the original PBFT algorithm to verify the 
timeliness, robustness, and availability of the improved algorithm. 

4.1 Scalability 
In Chapter 4, we introduced in detail how the EPBFT consensus algorithm performs node join, exit, 

and recovery. In this section, we will test these features to ensure their usability and correctness. 
When a new node joins (or recovers), the original consensus nodes do not need to stop, and they 

only need to perform consensus verification on the new node's join (or recovery) request. After the 
verification is passed, it can be added (or recovered) to the subsequent consensus process of the entire 
network. In this experiment, we assume that there were originally 7 consensus nodes in the system, and 
the new node was added to the network as the 8th node. 

The test results of consensus node join (or recovery) are shown in Tab. 4. Each experiment was 
repeated 10 times. 

Table 4: The result of adding (or recovering) consensus node 

Experiment ID Experimental scene Expected results Actual results 

1 The new (or recovery) node is not 
in the NIT of the consensus node 

Node addition (or recovery) success 
(failure) 

As expected 

2 
The new (recovery) node is in the 
NIT of the consensus node, and 
the status is ACTIVE 

Node addition (or recovery) failed As expected 

3 
The new (recovery) node is in the 
NIT of the consensus node, and 
the status is SLEEP 

Node addition (or recovery) failed 
(success) 

As expected 

4 
The new (recovery) node is in the 
NIT of the consensus node, and 
the status is DEAD 

Node addition (or recovery) failed As expected 

When a member node wants to exit the system, other nodes need to perform consensus verification on 
the exit request of the existing node. After the verification is passed, all nodes change the consensus 
parameters and no longer send consensus data to the node in the subsequent consensus process. The node can 
then disconnect from the network and exit the common consensus. In this experiment, we assume that there 
were originally 8 consensus nodes, and one node applied to withdraw from the blockchain network. It is 
worth noting that when the number of nodes is less than 5, nodes are no longer allowed to exit the network. 

The test results of consensus node exit are shown in Tab. 5. Each experiment was repeated 10 times, too. 

Table 5: The result of consensus node exit 

Experiment ID Experimental scene Expected results Actual results 

1 The exited node is in the NIT of the consensus 
nodes, and the status is ACTIVE 

Node exited 
successfully 

Node exited 
successfully 

2 The exited node is in the NIT of the consensus 
nodes, and the status is SLEEP Node exit failed Node exit failed 

3 The exited node is in the NIT of the consensus 
nodes, and the status is DEAD Node exit failed Node exit failed 

4 The exited node is not in the NIT of the 
consensus nodes Node exit failed Node exit failed 

5 There are only 4 consensus nodes in the system Node exit failed Node exit failed 
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It can be proved through experiments that the EPBFT consensus algorithm implements the functions 
of node joining, exiting, and recovering. Compared with the original PBFT algorithm, the improved 
algorithm has better scalability. 

4.2 Performance Analysis 
Indicators for evaluating the pros and cons of blockchain applications include throughput, latency, 

fault tolerance, and traffic. Experiments and statistics on the EPBFT algorithm for these indicators, and 
compares with the classic PBFT algorithm. The performance and advantages of the EPBFT algorithm are 
proved experimentally. 

4.2.1 Latency 
Delay refers to the time interval from the transaction submission to the network until the transaction is 

determined to take effect. It is a measure of network performance and the runtime of consensus algorithms. 
In a non-forked blockchain system, transactions are added to the chain to indicate that the transaction is 
confirmed. In a forked system, it is necessary to wait for no more forks before the transaction is confirmed. 
The lower the delay, the better the system performance. The delay is calculated as: 

𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =   𝑇𝑇𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑏𝑏𝑑𝑑𝑏𝑏𝑡𝑡 +  𝑇𝑇𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏𝑑𝑑𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏 +  𝑇𝑇𝑏𝑏𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑏𝑏𝑑𝑑𝑏𝑏𝑡𝑡                                                             (3) 

Ttx broadcast indicates the time from when the transaction is generated until the consensus node accepts 
the transaction; Tconsensus indicates the consensus time of the transaction; Tblock broadcast indicates the 
consensus block broadcast time. Neither the PBFT algorithm nor the EPBFT algorithm is forked, so in our 
system, as long as the transaction is added to the chain, it means that the transaction is determined. 

We set a total of 7 nodes in the current system, of which 2 are evil nodes. We take 5, 15, 20, 40, 100 
blocks in the current system to propagate and perform 10 experiments on each value, and then use the 
average value as the transaction delay for each value. And then compare the delay of EPBFT and PBFT is 
shown in Fig. 8. 

 
Figure 8: The comparison of PBFT’s delay and EPBFT’s delay 

4.2.2 Fault Tolerance 
Fault tolerance indicates the maximum number of error nodes that the system can tolerate. The more 

the total number of nodes in the system, the more error nodes it can tolerate, but when the number of error 
nodes exceeds the maximum value that the system can tolerate, consensus cannot be reached. The ability 
of EPBFT algorithm to tolerate error nodes is the same as that of PBFT algorithm: f = (n–1)/3. We set a 
total of 7 nodes in the current system and let the number of error nodes are 0,1,2,3,4 to observe the 
performance of the system. We use transaction delay to determine whether the system can reach 
consensus, as shown in Fig. 9. 
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Figure 9: EPBFT’s fault tolerance, where the blue dots indicate the number of error nodes, yellow dots 
indicate the corresponding time required to reach the transaction. It can be seen from the figure that when the 
error node is greater than or equal to 3, the transaction delay is not within the specified time range (theoretical 
is infinite), and consensus cannot be reached. So EPBFT and PBFT maintain the same fault tolerance 

4.2.3 Communication Complexity 
In PBFT, three stages need to be broadcast. In each broadcast process, to ensure the security of the 

data, each node independently processes the message: Accept the transaction or block, and after it is 
verified, broadcast to all other nodes in the network. In this process, a large amount of inter-node 
communication is required. If there are n nodes in the current system, the communication complexity of 
the system during this consensus process can reach O(n2). To reduce communication complexity, in 
EPBFT, a coordination node is randomly selected during each consensus process. Although the existence 
of coordinating nodes reduces the independence between nodes and increases the probability of joint 
attacks, it greatly reduces the communication complexity of messages.  

We set the system need to complete the consensus of 20 blocks. When the total number of nodes is: 
7 (2), 13 (4), 19 (6), 31 (10), 46 (15), computing the communication complexity in the network. The 
number in parentheses indicates the number of error nodes, and the result is shown in Fig. 10. 

 
Figure 10: The comparison of PBFT’s delay and EPBFT’s delay 

It can be seen from the figure that as the number of nodes increases, the maximum communication 
volume of the system in the PBFT algorithm increases rapidly. The EPBFT algorithm, although the 
maximum communication volume in the system, will increase with the number of nodes, but the increase 
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is relatively slow. From the analysis of the experimental results, we can see that our improved algorithm 
greatly reduces the communication complexity in the network. 

4.3 Summary 
In this chapter, we mainly analyze the function and performance of the EPBFT consensus algorithm 

through experiments. First, we test the scalability of the EPBFT algorithm by adding, deleting, and 
recovering nodes to the system. We then examined the delay, fault tolerance, and communication 
complexity of the EPBFT and PBFT algorithms, and compared them. Through experimental results, it can 
be found that compared with the PBFT algorithm, the EPBFT algorithm has a lower delay, 
communication complexity, better scalability, and more practical. 

5 Conclusion 
EPBFT is a Byzantine fault-tolerant consensus protocol that is scalable, practical, low latency, and 

low communication complexity. It is primarily used in licensed networks, such as the alliance chain. 
EPBFT inherits from PBFT, so it guarantees the safety and liveness of the system like PBFT. Besides, 
EPBFT also solves the fatal problem of PBFT: The number of nodes is immutable, and the 
communication complexity is high. It allows nodes to freely join or exit the network without introducing 
centralized components or rebooting the system and reduces the complexity of communication from O(n2) 
to O(n). We also set up a scoring mechanism for the nodes. Using the scoring mechanism, we can remove 
the faulty nodes in the network in time, which increases the robustness of the network. To be more 
suitable for the blockchain system, we also changed the C/S request-response mode of the classic PBFT 
to the P2P network topology response mode. In short, compared to PBFT, our protocol has better 
scalability, better communication performance, higher robustness, and better usability. 
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